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NOTE ON THE INFINITE DIMENSIONAL

LAPLACIAN OPERATOR

TAKEYUKI HIDA

To Professor Katuzi Ono on the occasion of his 60th birthday.

§0. Introduction.

The infinite dimensional Laplacian operator can be discussed in con-

nection with the infinite dimensional rotation group ([1]). Our interest

centers entirely on observing how each one-parameter subgroup of the infi-

nite dimensional rotation group contributes to the determination of the

Laplacian operator.

We shall start with the measure of white noise. Let E be a nuclear

space of C°°-functions which is dense in L^R1) and satisfies the relation

(1) E c L'iR1) c E*,

where £ * stands for the dual space of E. Given a (characteristic) functional

C(^) = exp ( 1-1|?||2), Hfll being the Z^Λ^-norm of ξ <= E, we can form a

probability measure μ on E* such that

(2)

where <#,£>, x e E*9 ζ e E9 is the continuous bilinear form which links E

and E*. We call μ the measure of white noise.

By the infinite dimensional rotation group, we mean the group O(E) which

consists of all the linear transformations g on E satisfying the following two

conditions:

i) Each g is an isomorphism of E,

ii) C(gξ) = C(ξ) for every f e £ .

For each one-parameter subgroup {gt} of O(E) we are given a unitary

group {Ut} in the following manner:

(3) Utφ(x) = φifftx), f e L W A
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where gf is the conjugate of gt. With {Ut} we can associate a generator

X:

f Λ\ d
u

, - = *
dt

We shall be interested in an operator Δ acting on L2(E*, μ) which enjoys

the following properties:

i) Δ is a quadratic form of the X's,

ii) commutes with each X,

iii) annihilates constants,

iv) negative definite.

(cf. [2, Chapt. X]). It will be shown that such an operator Δ exists and

is determined uniquely up to constant factor. Indeed, our Δ coincides with

the infinite dimensional Laplacian operator given by Umemura [1].

In §2 we shall see that finite dimensional rotations play a dominant

role in the determination of Δ giving attention to the property (5) ii).

However, to determine Δ completely we shall need quite different require-

ments arising from (5) iii) and iv). In fact, we shall make use of the

feature of the support of μ (§3).

Our method may not be the shortest way to obtain the explicit form

of J, however the discussion in this note seems to be helpful to carry on

the harmonic analysis on the Hubert space L2{E*,μ).

§1. Preliminaries.

Let {ξn, n^:l} be a complete orthonormal system (c. o. n. s.) in L2(Rι)

such that each ξn belongs to E9 and let μ be the measure of white noise.

A tame function based on {ξn} is a function on {E*,μ) expressed in the

form /«#, £j>, •••,<#, ξp» by a function / on Rp for some p > 0.

For a strongly continuous one-parameter subgroup {gt, t real} we define

the generator A:

(6) A = -jj- gt t=o

The unitary group {Ut} and its generator X are given by (3) and (4). We

now introduce the operator -- |-: If φ(χ) == /«&, £i>, (x9 £2>> *)> then
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^-φ is given by (-A- φ)(x) =-^-f{t19t2, •)!*,=<•». *,>. By a formal com-

putation we have the following assertion.

PROPOSITION 1. Suppose that Aξn^E for every n. Then, for a tame function

φ(x) based on {ξn}, the generator X of the unitary group {Ut} is expressed in the

form

(7) (Xφ)(x) =

To avoid notational complication, we sometimes use the notations φj9 φjk9

• to ednote -^— φ9 - φ, .

oξj oςjόςjc

We now come to a consideration of a quadratic form of the X's of the

form (7). Let X and Y be generators of unitary groups corresponding to

one-parameter groups {gt} and {ht} with generators A and B9 respectively.

Suppose that Aξj e E and ££/ e E for every y. Set

Aξj = Σ îp?2» and

Then we have a formal expression

(8) (XY)φ[x) = Σ oίjk{x)φjk{x) + Σ i3;

for a tame function 9, where

aJk{x) = Σ

and

kq

Thus a quadratic form Δ of the X's may be thought of as an operator ex-

pressed formally in the form

(9) Δ = Σ

Noting the expressions of ajk and βj in (8), aJk and bj in (9) must be the

limits of quadratic forms and linear forms of the <#, £n>, n >: 1, respectively.

Now our problem can be stated as follows:

Starting out with the expression (9), determine the coefficients ajk{x) and
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b\x) so that Δ satisfies all the conditions i) — iv) in (5).

It is quite reasonable to assume that

(10) all the ajk{%) and b\x) belong to the domains of —£— and β... ,
Oξp Oξpθξq

and that

(11) ajk{x) = akj(x)9 j , k^l.

§2. Commutativity with finite dimensional rotations.

I n this section we shall find a necessary condition which is imposed

upon the coefficients of Δ given by (9) by the requirement that Δ be com-

mutative with finite dimensional rotations.

If g e 0{E) acts in such a way that gξ = ξ for every ξ orthogonal to

some finite dimensional subspace of E9 then g is called a finite dimensional

orthogonal transformation. The collection of such g's forms a subgroup of

O(E). We can also define a finite dimensional rotation in a similar manner.

An arbitrary finite dimensional rotation g can be expressed as the

product of two dimensional rotations via the Euler angles. Thus, in order

that Δ be commutative with finite dimensional orthogonal transformations

Δ must commute with two dimensional rotations. To be somewhat more

specific let us take a two dimensional subspace spanned by ξp and ξq, and

let gt be the rotation through the angle t in the plane {fp,£g}. With this

choice of gt we are given a unitary group [Ut] and its generator Xpq re-

presented in the form

(12) XPq = <x, ξP> -^ - <x9 ξq> -^- .

As in §1, let {ξn} be a c. o. n. s. in L^R1) such that ξn e E for every n.

PROPOSITION 2. Suppose that the operator Δ given by (9) commutes with Xpq

for every pair (p,q). Then we have

(13) a'*(x) = c(x9 ξj> <x9 ξk> + δj,kd, /, fc = 1,2, • ,

(14) bj(x) = b<x9ξj>, j = 1,2,

where b9 c and d are constants.
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Proof. The proof of (14) is quite easy. I n fact, with a particular choice

of φ: φ(x) = <α?,£q>, the equation

(15) XmΔφ = ΔX9qφ

implies that

b*(x) = <x, ξp> b\{x) - <<c, ξqy bq

p(x).

Noting that bp(x) belongs to the span of the (x,ξnys, we see that b\ is a

constant independent of q and that b% = 0 for p ψ q. Thus (14) is proved.

We proceed to the proof of (13). By using (14), the equation (15) for

general φ can be expressed in the form

(16) 2(Σ apk(x)φqk(x) - Σ aq\x)φpk{x))

= Σ ai*{x) <χ, ξpy φjk(χ) - Σ 4\x) {x, ξqy φjk{x).
j , k j , k

Set φ{x) = <x9ξp><x,ζq>, then we have

(17) app(x)-an(x) = Xpqa
pq(x).

If both j and Jc are different from p and q, then we have

(18) Xpqa
Jk(x) = 0;

and for k ψ q we have

(19) Xiββ'*(a0 = -α»(a0 .

Since aJk{x) is quadratic in <fl5,fn>'s, direct computations of the relation

(18) for all possible pairs (p,q) enable us to obtain the expression

ajk(x) = aJk«x, ζόy + <a, ζkY) + c'\x, ξj> <x, ξk> + dj\

For j ψ k the relation (19) requires that aJk = 0. We may set aJj = 0. Finally,

the equation (17) leads us to obtain dpp = dqq and cpp = c w = cP 9. Further,

using (19) again, we see that djk = 0 for j ψ k. Thus the equation (13) is

proved.

So far we have just used the relation (15) to obtain the following for-

mal expression:

(90 J = c Σ < ^ f y X ^ e * > - Λ - + d Σ - ^ - + ftΣ<»^i>-4~.
J,Λ OξjOζjc j Oξj j Oξj



18 TAKEYUKI HID A

§3. Conclusion.

By a c. o. n. s. {ξn;n^.l} in L^R1) we are given a sequence {<#, £Λ>;

n:>l} of mutually independent standard Gaussian random variables. The

strong law of large numbers shows that

i N

(20) l i m - 4 r Σ < ^ f » > 2 = l f° r almost all a e E*9

iV->oo iV n = l

and that

1 7SΓ

(21) lim-ΊvΓ Σ <α,?n>4 = 3 for almost all x e £ * .

Now we can use the property (5) iii) which must be satisfied by Δ given

by (9A). From (20) and (21) the relations Δl = 0 and Δ3 = 0 imply the fol-

lowing equations:
c + rf + & = 0, and 3c 4- rf + ft = 0,

that is, c = 0 and ft = —d.

The negative difiniteness (5) iv) requires that for φ(x) = <#,?!>

j (Δφ{%))ψ(x)dμ{x) = b J <», ξ^dμix) = ft ̂  0

must hold. To avoid trivial operator, the constant ft should be strictly

negative: ft<0.

Summing up the above discussions, we have

THEOREM. If the operator Δ of the form (9) satisfies the conditions (5) i) ~

iv), then

(9"

with a positive constant d.

The operator given by (9") is exactly the same as the infinite dimen-

sional Laplacian operator given by Umemura in [1]. In fact, the Δ given

by (9") acts on L2(E*,μ) and its domain is rich enough including all the

so-called Fourier-Hermite polynomials. It is interesting to note that the

properties (20) and (21), that is the feature of so to speak the support of μ,

contribute in final determination of the infinite dimensional Laplacian ope-

rator.
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