N . Ito
Nagoya Math. J.
Vol. 37 (1970), 201-208

ON PERMUTATION GROUPS OF PRIME DEGREE p WHIGH CONTAIN AT LEAST TWO CLASSES OF CONJUGATE SUBGROUPS OF INDEX p. II $^{1)}$

NOBORU ITO ${ }^{2}$

To Professor Katuzi Ono on his 60th birthday

Let p be a prime and let Ω be the set of p symbols $1,2, \cdots, p$, called points. Let $\mathbb{8} \delta$ be a transitive permutation group on Ω such that
(I) \mathfrak{F} contains a subgroup \mathfrak{B} of index p which is not the stabilizer of a point.
\mathfrak{B} has two point orbits, say D and $\Omega-D$ (cf. [3]). Let k be the number of points in D. Then $1<k<p-1$. Replacing D by $\Omega-D$, if need be, we can assume that $k \leqq \frac{1}{2}(p-1)$.

Now the only known transitive permutation groups of degree p satisfying the condition (I) are the following groups:
(i) Let $F(q)$ be the field of q elements. Let $V(r, q) L F(r, q)$ and $S F(r, q)$ be the r-dimensional vector space, the r-dimensional projective special linear group and r-dimensional semilinear group over $F(q)$ respectively, where $r \geqq 3$ and $p=\left(q^{r}-1\right) /(q-1)$. Let Π be the set of one-dimensional subspaces of $V(r, q) . \quad S F(r, q)$ can be considered as a permutation group on Π. Identify Π with Ω. Then any subgroup $\mathbb{E S S}^{\text {S }} \operatorname{SF}(r, q)$ containing $L F(r, q)$ satisfies (I) with $k=\left(q^{r-1}-1\right) /(q-1)$.
(ii) $\mathscr{y}=L F(2,11)$, where $p=11$ and $k=5$.

Now among the groups mentioned above only $L F(2,11)$ satisfies the following condition:

[^0](II) the restriction of \mathfrak{B} to D is faithful.

In [6] we have proved that if the restriction of \mathfrak{B} to D is not faithful, then \mathbb{E} is isomorphic to one of the groups mentioned in (i). In [7] we have proved that if \mathscr{E} satisfies (I) and (II), and if k is a prime, then \mathscr{E} is isomorphic to $L F(2,11)$.

In this note we prove the following
Theorem: Let $\mathbb{F S}_{5}$ be a group satisfying (I) and (II). Then $k-1$ is not a prime.

Proof. (a) Let \mathfrak{R} be a minimal normal subgroup of $\mathbb{C b}$. Since \mathbb{C} is primitive, \mathfrak{R} is transitive on Ω. Let \mathfrak{F} be a Sylow p-subgroup of \mathscr{E}. Then \mathfrak{B} is contained in \mathfrak{R}. As a minimal normal subgroup \mathfrak{R} is a direct product of mutually isomorphic simple groups. Since the order of \mathfrak{R} is divisible by p only to the first power, \mathfrak{R} must be simple. Since $\mathfrak{F}=\mathfrak{R} \mathfrak{B}, \mathfrak{R}: \mathfrak{R} \cap \mathfrak{B}=$ $\mathfrak{C}: \mathfrak{B}=p$. Then since $\mathfrak{R} \cap \mathfrak{B}$ has two point orbits (cf. [3]), D and $\Omega-D$
 can assume the simplicity of $\mathfrak{6}$. So from now on let \mathbb{E} be simple.
(b) Let $N s \mathfrak{F}$ denote the normalizer of \mathfrak{F} in \mathfrak{G}. Since \mathfrak{F} coincides with its own centralizer in $\mathbb{E}, N S \mathfrak{F} / \mathfrak{F}$ is a cyclic group of order dividing $p-1$. If $N s \mathfrak{F}\{\mathfrak{F}$, then by a transfer theorem of Burnside \mathbb{E} contains a normal Sylow p-complement. Since $\mathbb{E S}$ is simple, this implies that $\mathfrak{G F}=\mathfrak{P}$, contradicting (I). Let $p q$ be the order of $N s \ngtr$. If $q=p-1$, then $N s \oiint$ contains an odd permutation contradicting the simplicity of $\mathfrak{b s}$. Therefore $1<q<p-1$. Now the following results of Brauer concerning groups which contain self-centralizing subgroups of prime order can be applied for (\$) with p ([1]):

The degree of an irreducible character \boldsymbol{X} of ${ }^{(5)}$ is congruent to either $1,0,-1$ or $-\delta_{p} q$ modulo p, where δ_{p} is equal to ± 1. We say that \boldsymbol{X} has p-type A, D, B, or C, according as the degree of \boldsymbol{X} is congruent to $1,0,-1$, or $-\delta_{p q}$ modulo p respectively. The number of irreducible characters of \mathbb{E} of p-type A or B is equal to q and that of p-type C is equal to $(p-1) / q$. Let P be an element of order p of \mathbb{E}. Then we have that $\boldsymbol{X}(P)=1,0,-1$, according as \boldsymbol{X} has p-type A or D or B. Two irreducible characters of p-type C take the same value at any p-regular element of \mathbb{E} and the sum of the values at P over all characters of p-type C equals $\boldsymbol{\delta}_{p}$.
(c) Without loss of generality, we may assume that D consists of the points $1,2, \cdots, k$. Let G be an element of \mathfrak{G}. Then $G(D)=D$ if and only if G belongs to \mathfrak{B}. Since $\mathfrak{G}: \mathfrak{B}=p$, there exist exactly p distinct $G(D)^{\prime} s$, which will be denoted by $D_{1}=D, D_{2}, \cdots, D_{p} . \quad D_{i}^{\prime} s$ are called blocks. Now let \mathfrak{A} be the stabilizer of the point 1 in \mathscr{S} and A an element of \mathfrak{A}. Then $A(D)=D$ if and only if A belongs to $\mathfrak{X} \cap \mathfrak{B}$. Since D is an orbit of $\mathfrak{B}, \mathfrak{A} \cap \mathfrak{B}$ has index k in \mathfrak{B} and hence in \mathfrak{A}. So there exist exactly k distinct $A(D)$'s, say $D_{1}, D_{2}, \cdots, D_{k} . \quad$ Every $D_{i}(i=1,2, \cdots, k)$ contains the point 1. By a theorem of Burnside we get from (I) that $\mathscr{5}$ is nonsolvable and doubly transitive. So \mathfrak{A} is transitive on $\Omega-\{1\}$. Hence every point $j \neq 1$ of Ω appears in the same number, say λ, of $D_{i}^{\prime} s(i=1,2, \cdots, k)$. Thus we get the following equality:

$$
\begin{equation*}
k^{2}-k=\lambda(p-1) \tag{1}
\end{equation*}
$$

Since $k \leqq \frac{1}{2}(p-1), \quad \lambda \leqq \frac{1}{2}(k-1)$.
Now assume that $k-1=l$ is a prime. Then by (1) l divides $p-1$. Since \mathscr{E} is doubly transitive, the order of $\mathscr{5}$ is divisible by $p-1$, and hence by l. Let \mathfrak{Z} be a Sylow l-subgroup of \mathbb{E} contained in $\mathfrak{A} \cap \mathfrak{B}$. Since \mathfrak{B} is faithful on D by (II), the order of \mathfrak{Z} is equal to l and \mathfrak{Z} coincides with its own centralizer in $\mathfrak{C b}$. Therefore the results of Brauer mentioned in (b) are applicable to \mathscr{G} with l in place of p.
(d) Let $1_{\mathscr{U} \cap \mathfrak{B}}$ be the principal character of $\mathfrak{A} \cap \mathfrak{B}$ and $1_{\mathscr{U} \cap \mathfrak{B}}^{*}$ the character of \mathscr{E} induced by $\mathbf{1}_{थ \cap \mathfrak{B}}$. Let \boldsymbol{X}_{0} be the irreducible character of \mathscr{E} given by $\boldsymbol{X}_{0}(G)=\alpha(G)-1$, where G is an element of $\mathscr{5}$ and $\alpha(G)$ denotes the number of points left fixed by G. By the reciprocity theorem of Frobenius we see that the multiplicity of \boldsymbol{X}_{0} in $\mathbf{1}_{\mathscr{R} \cap \mathfrak{B}}^{*}$ is equal to the number of points orbits of $\mathfrak{X} \cap \mathfrak{B}$ less 1 . Now by (c) \mathfrak{B} is doubly transitive on D, and hence $\mathfrak{A} \cap \mathfrak{B}$ is transitive on $D-\{1\}$. Let \mathfrak{N}_{k+1} be the stabilizer of the point $k+1$ in $\mathfrak{6}$. Then since $\Omega-D$ is an orbit of $\mathfrak{B}, \mathfrak{B} \cap \mathfrak{A}_{k+1}$ has index $p-k$ in \mathfrak{B}. Since k and $p-k$ are relatively prime, $\mathfrak{A} \cap \mathfrak{B} \cap \mathfrak{A}_{k+1}$ also has index $p-k$ in $\mathfrak{A} \cap \mathfrak{B}$. So $\mathfrak{A} \cap \mathfrak{B}$ is transitive on $\Omega-D$. Therefore \boldsymbol{X}_{0} appears in $\mathbf{1}_{\mathscr{U} \cap \mathfrak{B}}^{*}$ with the multiplicity 2 . Put

$$
\begin{equation*}
\mathbf{1}_{\mathscr{A} \cap \mathfrak{B}}^{*}=\mathbf{1}_{\mathscr{G}}+2 \boldsymbol{X}_{0}+\boldsymbol{Y}, \tag{2}
\end{equation*}
$$

where $\mathbf{1}_{\mathscr{G}}$ denotes the principal character of \mathbb{E} and \boldsymbol{Y} is a (in general, reducible) character of degree $(k-2) p+1$. Since $\mathbf{1}_{\mathscr{U} \cap \mathfrak{B}}^{*}(P)=0, \mathbf{1}_{\mathscr{B}}(P)=1$ and $\boldsymbol{X}_{0}(P)=-1, \quad \boldsymbol{Y}(P)=1$. Therefore by the results of Brauer mentioned in (b) either a character \boldsymbol{X} of p-type A or a character \boldsymbol{X} of p-type C with $\boldsymbol{X}(E) \equiv-q(\bmod p)$ appears as an irreducible component of \boldsymbol{Y}, where E denotes the identity element of \mathscr{B}.

First assume that a character $\boldsymbol{X}=\boldsymbol{A}_{\mathbf{2}}$ of p-type A appears as an irreducible component of \boldsymbol{Y}. Put $\boldsymbol{A}_{2}(E)=a p+1$. Since (5) is simple, $a \neq 0$.

If \boldsymbol{A}_{2} has 1-type A, then $a p+1 \equiv 1(\bmod l), a \equiv 0(\bmod l)$ and $a p+1$ $\geqq l p+1=(k-1) p+1$. This is a contradiction, since $\boldsymbol{Y}(E)=(k-2) p+1$ and $\boldsymbol{A}_{2}(E) \leqq \boldsymbol{Y}(E)$.

If \boldsymbol{A}_{2} has l-type D, then $a p+1 \equiv 0(\bmod l) . ~ S i n c e ~ p \equiv 1(\bmod l)$, $a \equiv-1(\bmod l)$. This implies that $\boldsymbol{Y}=\boldsymbol{A}_{2}$.

If \boldsymbol{A}_{2} has l-type B, then $a p+1 \equiv-1(\bmod l), a \equiv-2(\bmod l)$ and $a=l-2$. Then using the results of Brauer mentioned in (b) we see that the decomposition of \boldsymbol{Y} into irreducible components has the following form: $\boldsymbol{Y}=\boldsymbol{A}_{2}+\boldsymbol{D}$, where \boldsymbol{D} is an irreducible character of degree p of $\mathfrak{C H}$.
(e) Let \mathfrak{M} be a Sylow l-complement of the normalizer of \mathfrak{Z} in \mathfrak{G}. Then \mathfrak{M} is cyclic of order, say m, dividing $l-1$. Let M be a generator of \mathfrak{M}. $\quad M$ restricted to D leaves the point 1 and another point, say 2 fixed, and consists of $(l-1) / m m$-cycles. Let L be a generator of Ω. Then by the results of Brauer mentioned in (b) we get that $\boldsymbol{X}_{0}(L)=0$, and hence that $\alpha(L)=1$.

Let b be the permutation representation of \mathbb{F} on the set W of blocks $D_{1}, D_{2}, \cdots, D_{p}$. L leaves the point 1 fixed, and hence $b(L)$ leaves the set Δ of blocks $D_{1}, D_{2}, \cdots, D_{k}$ containing the point 1 fixed. Since $\alpha(L)=1$, D_{1} is the only block of W left fixed by $b(L)$ (cf. [2], p. 22). Therefore $b(L)$ restricted to Δ leaves the block D_{1} fixed, and consists of one l-cycle. Hence $b(M)$ restricted to Δ leaves the block D_{1} and another block, say D_{2} fixed and consists of $(l-1) / m m$-cycles. By (c) there exist exactly λ blocks of Δ which contain the point 2 . The set of these λ blocks are left fixed by $b(M)$. Thus

$$
\begin{equation*}
\lambda \equiv 1(\bmod m) \quad \text { or } \quad \lambda \equiv 2(\bmod m) \tag{3}
\end{equation*}
$$

according as D_{2} contains the point 2 or not. If $\lambda=1$, then by a theorem
of Ostrom-Wagner ([2], p. 214) \mathfrak{F} does not satisfy the condition (II). Thus λ is bigger than 1 . Then by (3) we get that either $\lambda=2$ or

$$
\begin{align*}
((l-1) / m)+2 & \geqq((l-1) /(\lambda-1))+2 \tag{4}\\
& =(1+2 \lambda-3) /(\lambda-1) \\
& \geqq(l+1) /(\lambda-1) .
\end{align*}
$$

(f) Assume that λ is bigger than 2. If \boldsymbol{A}_{2} has l-type C, then by the results of Brauer mentioned in (b) there exist $(l-1) / m$ characters of (5) algebraically conjugate to \boldsymbol{A}_{2}. Here if q is relatively prime to l, then q divides $(p-1) / l=(l+1) / \lambda$. By the results of Brauer mentioned in (b) there exist exactly q characters of p-types A or B of \mathscr{E}. But we have already $((l-1) / m)+2$ characters of p-types A or B of \mathscr{G}, namely $\mathbf{1}_{\mathscr{C}}, \boldsymbol{X}_{0}$ and the algebraically conjugate family of \boldsymbol{A}_{2}. By (4) this is a contradiction. Thus l divides q. Then since there exists an element of order q in \mathscr{E} and since $\mathfrak{\Omega}$ coincides with its own centralizer in \mathfrak{G}, we obtain that $q=l$.
(g) We claim that if either $\lambda=2$ or $q=l$, then \mathfrak{B} restricted to D is triply transitive.

If \mathfrak{B} restricted to D is not triply transitive, $\mathfrak{A} \cap \mathfrak{B}$ restricted to $D-\{1\}$ is not doubly transitive. If $m=1$, then by a transfer theorem of Burnside $\mathscr{S b}_{5}$ contains a normal Sylow l-complement, contradicting the simplicity of \mathscr{E}. So m is bigger than 1 , and by a theorem of Burnside $\mathfrak{A} \cap \mathfrak{B}$ restricted to $D-\{1\}$ is a Frobenius group of order $l m$. Since $k=l+1$ is even, by a previous result ([4]) we get that $m=\frac{1}{2}(k-2)$. Hence the order g of $\mathfrak{C S}$ is equal to $\frac{1}{2} p k(k-1)(k-2)$. Sylow's theorem gives $g=p q(1+x p)$, where x is a positive integer, and so we get that

$$
\begin{equation*}
\frac{1}{2} k(k-1)(k-2)=q(1+x p) . \tag{5}
\end{equation*}
$$

First assume that $\lambda=2$. Then from (5) it follows that

$$
(p-1)(k-2)=q(1+x p)
$$

Hence $2 \equiv q+k(\bmod p)$. Since $k \leqq \frac{1}{2}(p-1)$ and $q \leqq \frac{1}{2}(p-1)$, this is a contradiction.

Next assume that $q=l$. Then from (5) it follows that

$$
\begin{equation*}
\frac{1}{2} k(k-2)=1+x p \tag{6}
\end{equation*}
$$

Hence $2 x+3 \equiv 0(\bmod l)$. Put $2 x=y l-3$. Then y is a positive integer. From (6) it follows that $(y l-3) p=l^{2}-3$. Since $p \geqq 2 k+1=2 l+3$, this is a contradiction.
(h) Assume that \mathfrak{B} restricted to D is triply transitive. Then $\mathfrak{A} \cap \mathfrak{B}$ is doubly transitive on $D-\{1\}$. Put $d_{i}=(D-\{1\}) \cap D_{i}$ for $i=2,3, \cdots, k$. Then by (c) every d_{i} contains exactly $\lambda-1$ points, and also by (c) there exist $\lambda-1$ of $d_{i} s$, say $d_{2}, d_{3}, \cdots, d_{\lambda}$ which contain the point 2 . Let \mathfrak{N}_{2}
 $D-\{1,2\}$, every point $\neq 1,2$ of D appears in the same number, say μ, of $d_{i}^{\prime} s(i=2,3, \cdots, \lambda)$. Thus we obtain that

$$
\begin{equation*}
(\lambda-1)^{2}=(\lambda-1)+\mu(k-2) \tag{7}
\end{equation*}
$$

Put $p-1=n l$. Then by (1) $k=n \lambda$. Hence from (7) it follows that $2 \mu+2=0(\bmod \lambda)$. Put $2 \mu+2=\nu \lambda$. Then ν is a positive integer. Then again from (7) it follows that

$$
(2 \lambda-2)(\lambda-2)=(\nu \lambda-2)(n \lambda-2)
$$

Since n is even, this implies that $\nu=1$ and $n=2$. Thus $p=2 l+1$. By a previous result ([5]) ©f is triply transitive on Ω, which is a contradiction ([3]). Therefore \mathfrak{B} restricted to D cannot be triply transitive. In particular by (f) \boldsymbol{A}_{2} cannot be of l-type C.
(i) By (g) we have that $g=\frac{1}{2} p k(k-1)(k-2)$. If \boldsymbol{A}_{2} is of l-type B, then by (d) $\boldsymbol{A}_{2}(E)=(k-3) p+1$. Since $\boldsymbol{A}_{2}(E)$ divides g, we obtain that $\frac{1}{2} k(k-2) \equiv 0(\bmod (k-3) p+1) . \quad$ Since $p \geqq 2 k+1$, this is impossible.
(j) If \boldsymbol{A}_{2} is of l-type D, then by (d) $\boldsymbol{A}_{2}=\boldsymbol{Y}$ and hence

$$
\begin{equation*}
\mathbf{1}_{\mathscr{H} \cap \mathfrak{B}}^{*}=\mathbf{1}_{\mathbb{\Theta}}+2 \boldsymbol{X}_{0}+\boldsymbol{A}_{2} . \tag{8}
\end{equation*}
$$

Let II be the set of all pairs (i, D_{j}) such that the point i belongs to the block D_{j}. There exist $p k$ pairs of this kind. Obviously ${ }^{(5 S}$ can be considered as a permutation group on Π, and then $\mathfrak{A} \cap \mathfrak{B}$ is the stabilizer of the pair $\left(1, D_{1}\right)$ in 5 . By (8) the norm of $1_{\mathscr{2} \cap \mathfrak{B}}^{*}$ is equal to 6 , and this is equal to the number of orbits of $\mathfrak{A} \cap \mathfrak{B}$ on Π. But it is easy to check that
the following 7 sets of pairs are disjoint, non-empty and left fixed by $\mathfrak{A} \cap \mathfrak{B}$, which is a contradiction: $O_{1}=\left\{\left(1, D_{1}\right)\right\}, O_{2}=\left\{\left(i, D_{1}\right), \quad i \neq 1\right\}, \quad O_{3}=\left\{\left(1, D_{i}\right)\right.$, $i \neq 1\}, O_{4}=\left\{\left(i, D_{j}\right), 1 \neq i \in D_{1}, j \neq 1\right.$ and $\left.1 \in D_{j}\right\}, O_{5}=\left\{\left(i, D_{j}\right), i \notin D_{1}\right.$ and $\left.1 \in D_{j}\right\}, O_{6}=\left\{\left(i, D_{j}\right), \quad i \in D_{1}\right.$ and $\left.1 \notin D_{j}\right\}$ and $O_{7}=\left\{\left(i, D_{j}\right), \quad i \notin D_{1}\right.$ and $\left.1 \notin D_{j}\right\}$.
(k) Finally we can assume that a character \boldsymbol{X} of p-type C with $\boldsymbol{X}(E) \equiv-q(\bmod p)$ appears in \boldsymbol{Y}. By the results of Brauer mentioned in (b) there exist $(p-1) / q$ characters $\boldsymbol{C}_{1}=\boldsymbol{X}, \boldsymbol{C}_{2}, \cdots, \boldsymbol{C}_{(p-1) / q}$ of ©f which are algebraically conjugate to \boldsymbol{X}. Since \boldsymbol{Y} is rational, every \boldsymbol{C}_{i} appears in \boldsymbol{Y} with the same multiplicity γ. Put

$$
\begin{equation*}
\boldsymbol{Y}=\gamma \sum_{i=1}^{(p-1) / q} \boldsymbol{C}_{i}+\cdots \tag{9}
\end{equation*}
$$

Put $\boldsymbol{X}(E)=c p-q$. Then c is a positive integer. From (9) we obtain that

$$
\begin{equation*}
r((p-1) / q)(c p-q) \leqq(k-2) p+1 \tag{10}
\end{equation*}
$$

By (g) and (h) we see that q divides $n=(p-1) / 1$, since otherwise we get that $q=l$ and that \mathfrak{B} restricted to D is triply transitive. Thus from (10) we obtain that

$$
\begin{equation*}
r(k-1)(n \mid q)(c p-q) \leqq(k-2) p+1 . \tag{11}
\end{equation*}
$$

(11) obviously implies that $\gamma=1, n=q, c=1$ and that

$$
\begin{equation*}
\boldsymbol{Y}=\sum_{i=1}^{(p-1) / q} \boldsymbol{C}_{i} . \tag{12}
\end{equation*}
$$

Since 1 and D_{1} are only point and block left fixed by L respectively, we get that $1_{\mathscr{U} \cap \mathfrak{B}}^{*}(L)=1$. Hence by the results of Brauer mentioned in (b) we obtain (from (2) and (12)) that $\boldsymbol{C}_{1}(L)=0$. Thus \boldsymbol{X} has l-type D, and $p \equiv q(\bmod l)$. Since $p \equiv 1(\bmod l), q=n \equiv 1(\bmod l)$. Since q is bigger than $1, n \geqq l+1$. Then $p-1=\ln \geqq l(l+1)$. Therefore by (1) we get that $\lambda=1$, which is a contradiction (see (e)).

Remark. Assume that ©f satisfies (I) and (II). If $k \geqq \frac{1}{2}(p-1)$, then by a theorem of Joran ([8]) we get that either $p=2(k-1)+1$ or $p=2(k-1)+3$. If $p=2(k-1)+1$, then by a previous result ([5]) we get that $p=11$ and $\mathfrak{F} \cong L F(2,11)$. If $p=2(k-1)+3$, then by (1) we get that $k=3, p=7$ and $\mathbb{E} \cong L F(2,7)$ contradicting the assumption (II).

Bibliography

[1] R. Brauer, On permutation groups of prime degree and related classes of groups, Ann. of Math. (2) 44 (1943), 57-79.
[2] P. Dembowski, Finite geometries, Berlin Heiderberg New York 1968.
[3] N. Ito, Über die Gruppen $P S L_{n}(q)$, die eine Untergruppe von Primzahlindex enthalten. Acta Sci. Math. Szeged 21, (1960), 206-217.
[4] N. Ito, On a class of doubly transitive permutation groups, Illinois J. Math. 6 (1962), 341-352.
[5] N. Ito Transitive permutation groups of degree $p=2 q+1, p$ and q being prime numbers. II, Trans. Amer. Math. Soc. 113 (1964), 454-487.
[6] N. Ito, On a class of doubly, but not triply transitive permutation groups, Arch. Math. 18 (1967), 564-570.
[7] N. Ito, On permutation groups of prime degree p which contain (at least) two classes of conjugate subgroups of index p, Rendiconti Sem. Mat. Padova 38 (1967), 287-292.
[8] H. Wielandt, Finite permutation groups, New York (1964).

Department of Mathematics

University of Illinois at Chicago Circle
Chicago, Illinois, 60680, USA

[^0]: Received Jan. 22, 1969

 1) This paper is a continuation of ([7]) with the same title.
 2) This research was partially supported by NSF Grant GP-6539.
