N. Ito Nagoya Math. J. Vol. 37 (1970), 201–208

ON PERMUTATION GROUPS OF PRIME DEGREE pWHICH CONTAIN AT LEAST TWO CLASSES OF CONJUGATE SUBGROUPS OF INDEX p. II¹⁾

NOBORU ITO²⁾

To Professor Katuzi Ono on his 60th birthday

Let p be a prime and let Ω be the set of p symbols $1, 2, \dots, p$, called points. Let \mathfrak{G} be a transitive permutation group on Ω such that

(I) \mathfrak{G} contains a subgroup \mathfrak{B} of index p which is not the stabilizer of a point.

 \mathfrak{B} has two point orbits, say D and $\mathcal{Q} - D$ (cf. [3]). Let k be the number of points in D. Then 1 < k < p - 1. Replacing D by $\mathcal{Q} - D$, if need be, we can assume that $k \leq \frac{1}{2} (p-1)$.

Now the only known transitive permutation groups of degree p satisfying the condition (I) are the following groups:

(i) Let F(q) be the field of q elements. Let V(r,q) LF(r,q) and SF(r,q) be the *r*-dimensional vector space, the *r*-dimensional projective special linear group and *r*-dimensional semilinear group over F(q) respectively, where $r \ge 3$ and $p = (q^r - 1)/(q - 1)$. Let Π be the set of one-dimensional subspaces of V(r,q). SF(r,q) can be considered as a permutation group on Π . Identify Π with Ω . Then any subgroup \mathfrak{G} of SF(r,q) containing LF(r,q) satisfies (I) with $k = (q^{r-1} - 1)/(q - 1)$.

(ii) $\mathfrak{G} = LF(2, 11)$, where p = 11 and k = 5.

Now among the groups mentioned above only LF(2, 11) satisfies the following condition:

Received Jan. 22, 1969

¹⁾ This paper is a continuation of ([7]) with the same title.

²⁾ This research was partially supported by NSF Grant GP-6539.

(II) the restriction of \mathfrak{B} to D is faithful.

In [6] we have proved that if the restriction of \mathfrak{B} to D is not faithful, then \mathfrak{G} is isomorphic to one of the groups mentioned in (i). In [7] we have proved that if \mathfrak{G} satisfies (I) and (II), and if k is a prime, then \mathfrak{G} is isomorphic to LF(2, 11).

In this note we prove the following

THEOREM: Let \mathfrak{G} be a group satisfying (I) and (II). Then k-1 is not a prime.

Proof. (a) Let \mathfrak{N} be a minimal normal subgroup of \mathfrak{G} . Since \mathfrak{G} is primitive, \mathfrak{N} is transitive on \mathfrak{Q} . Let \mathfrak{P} be a Sylow *p*-subgroup of \mathfrak{G} . Then \mathfrak{P} is contained in \mathfrak{N} . As a minimal normal subgroup \mathfrak{N} is a direct product of mutually isomorphic simple groups. Since the order of \mathfrak{N} is divisible by p only to the first power, \mathfrak{N} must be simple. Since $\mathfrak{G} = \mathfrak{N}\mathfrak{B}$, $\mathfrak{N}: \mathfrak{N} \cap \mathfrak{B} = \mathfrak{G}: \mathfrak{B} = p$. Then since $\mathfrak{N} \cap \mathfrak{B}$ has two point orbits (cf. [3]), D and $\mathfrak{Q} - D$ are the point orbits of $\mathfrak{N} \cap \mathfrak{B}$. Therefore in order to prove the theorem we can assume the simplicity of \mathfrak{G} . So from now on let \mathfrak{G} be simple.

(b) Let Ns denote the normalizer of \mathfrak{P} in \mathfrak{G} . Since \mathfrak{P} coincides with its own centralizer in \mathfrak{G} , $Ns\mathfrak{P}/\mathfrak{P}$ is a cyclic group of order dividing p-1. If $Ns\mathfrak{P} = \mathfrak{P}$, then by a transfer theorem of Burnside \mathfrak{G} contains a normal Sylow *p*-complement. Since \mathfrak{G} is simple, this implies that $\mathfrak{G} = \mathfrak{P}$, contradicting (I). Let pq be the order of $Ns\mathfrak{P}$. If q = p - 1, then $Ns\mathfrak{P}$ contains an odd permutation contradicting the simplicity of \mathfrak{G} . Therefore 1 < q < p - 1. Now the following results of Brauer concerning groups which contain self-centralizing subgroups of prime order can be applied for \mathfrak{G} with p ([1]):

The degree of an irreducible character X of \mathfrak{G} is congruent to either 1, 0, -1 or $-\delta_p q$ modulo p, where δ_p is equal to ± 1 . We say that Xhas p-type A, D, B, or C, according as the degree of X is congruent to 1, 0, -1, or $-\delta_{p^q}$ modulo p respectively. The number of irreducible characters of \mathfrak{G} of p-type A or B is equal to q and that of p-type C is equal to (p-1)/q. Let P be an element of order p of \mathfrak{G} . Then we have that X(P) = 1, 0, -1, according as X has p-type A or D or B. Two irreducible characters of p-type C take the same value at any p-regular element of \mathfrak{G} and the sum of the values at P over all characters of p-type C equals δ_p .

202

PERMUTATION GROUPS

(c) Without loss of generality, we may assume that D consists of the points 1, 2, \cdots , k. Let G be an element of \mathfrak{G} . Then G(D) = D if and Since $\mathfrak{B}: \mathfrak{B} = p$, there exist exactly p distinct only if G belongs to \mathfrak{B} . G(D)'s, which will be denoted by $D_1 = D, D_2, \dots, D_p$. D_i 's are called Now let \mathfrak{A} be the stabilizer of the point 1 in \mathfrak{G} and A an element blocks. of a. Then A(D) = D if and only if A belongs to $\mathfrak{A} \cap \mathfrak{B}$. Since D is an orbit of $\mathfrak{B},\mathfrak{A}\cap\mathfrak{B}$ has index k in \mathfrak{B} and hence in \mathfrak{A} . So there exist exactly k distinct A(D)'s, say D_1, D_2, \dots, D_k . Every $D_i(i = 1, 2, \dots, k)$ contains the point 1. By a theorem of Burnside we get from (I) that \mathfrak{G} is nonsolvable and doubly transitive. So \mathfrak{A} is transitive on $\mathfrak{Q} - \{1\}$. Hence every point $j \neq 1$ of Ω appears in the same number, say λ , of $D_i^* s(i = 1, 2, \dots, k)$. Thus we get the following equality:

(1)
$$k^2 - k = \lambda(p-1).$$

Since $k \leq \frac{1}{2}(p-1)$, $\lambda \leq \frac{1}{2}(k-1)$.

Now assume that k-1 = l is a prime. Then by (1) l divides p-1. Since \mathfrak{G} is doubly transitive, the order of \mathfrak{G} is divisible by p-1, and hence by l. Let \mathfrak{L} be a Sylow l-subgroup of \mathfrak{G} contained in $\mathfrak{A} \cap \mathfrak{B}$. Since \mathfrak{B} is faithful on D by (II), the order of \mathfrak{L} is equal to l and \mathfrak{L} coincides with its own centralizer in \mathfrak{G} . Therefore the results of Brauer mentioned in (b) are applicable to \mathfrak{G} with l in place of p.

(d) Let $1_{\mathfrak{U}\cap\mathfrak{B}}$ be the principal character of $\mathfrak{U}\cap\mathfrak{B}$ and $1_{\mathfrak{U}\cap\mathfrak{B}}^*$ the character of \mathfrak{G} induced by $1_{\mathfrak{U}\cap\mathfrak{B}}$. Let X_0 be the irreducible character of \mathfrak{G} given by $X_0(G) = \alpha(G) - 1$, where G is an element of \mathfrak{G} and $\alpha(G)$ denotes the number of points left fixed by G. By the reciprocity theorem of Frobenius we see that the multiplicity of X_0 in $1_{\mathfrak{U}\cap\mathfrak{B}}^*$ is equal to the number of points of $\mathfrak{U}\cap\mathfrak{B}$ less 1. Now by (c) \mathfrak{B} is doubly transitive on D, and hence $\mathfrak{U}\cap\mathfrak{B}$ is transitive on $D-\{1\}$. Let \mathfrak{A}_{k+1} be the stabilizer of the point k+1 in \mathfrak{G} . Then since $\mathfrak{Q} - D$ is an orbit of \mathfrak{B} , $\mathfrak{B}\cap\mathfrak{A}_{k+1}$ has index p-k in \mathfrak{B} . Since k and p-k are relatively prime, $\mathfrak{U}\cap\mathfrak{B}\cap\mathfrak{A}_{k+1}$ also has index p-k in $\mathfrak{U}\cap\mathfrak{B}$. So $\mathfrak{U}\cap\mathfrak{B}$ is transitive on $\mathfrak{Q} - D$. Therefore X_0 appears in $1_{\mathfrak{U}\cap\mathfrak{B}}^*$ with the multiplicity 2. Put

(2)
$$\mathbf{1}_{\mathfrak{U}\cap\mathfrak{B}}^* = \mathbf{1}_{\mathfrak{G}} + 2\mathbf{X}_0 + \mathbf{Y},$$

where $\mathbf{1}_{\mathfrak{G}}$ denotes the principal character of \mathfrak{G} and Y is a (in general, reducible) character of degree (k-2)p+1. Since $\mathbf{1}_{\mathfrak{U}\cap\mathfrak{V}}^*(P)=0$, $\mathbf{1}_{\mathfrak{G}}(P)=1$ and $X_0(P)=-1$, Y(P)=1. Therefore by the results of Brauer mentioned in (b) either a character X of p-type A or a character X of p-type C with $X(E) \equiv -q \pmod{p}$ appears as an irreducible component of Y, where E denotes the identity element of \mathfrak{G} .

First assume that a character $X = A_2$ of *p*-type A appears as an irreducible component of Y. Put $A_2(E) = ap + 1$. Since \mathfrak{G} is simple, $a \neq 0$.

If A_2 has 1-type A, then $ap + 1 \equiv 1 \pmod{l}$, $a \equiv 0 \pmod{l}$ and $ap + 1 \ge lp + 1 = (k-1)p + 1$. This is a contradiction, since Y(E) = (k-2)p + 1 and $A_2(E) \le Y(E)$.

If A_2 has *l*-type *D*, then $ap + 1 \equiv 0 \pmod{l}$. Since $p \equiv 1 \pmod{l}$, $a \equiv -1 \pmod{l}$. This implies that $Y = A_2$.

If A_2 has *l*-type *B*, then $ap + 1 \equiv -1 \pmod{l}$, $a \equiv -2 \pmod{l}$ and a = l - 2. Then using the results of Brauer mentioned in (b) we see that the decomposition of Y into irreducible components has the following form: $Y = A_2 + D$, where D is an irreducible character of degree p of \mathfrak{G} .

(e) Let \mathfrak{M} be a Sylow *l*-complement of the normalizer of \mathfrak{L} in \mathfrak{G} . Then \mathfrak{M} is cyclic of order, say *m*, dividing l-1. Let *M* be a generator of \mathfrak{M} . *M* restricted to *D* leaves the point 1 and another point, say 2 fixed, and consists of (l-1)/m *m*-cycles. Let *L* be a generator of \mathfrak{L} . Then by the results of Brauer mentioned in (b) we get that $X_0(L) = 0$, and hence that $\alpha(L) = 1$.

Let b be the permutation representation of \mathfrak{G} on the set W of blocks D_1, D_2, \dots, D_p . L leaves the point 1 fixed, and hence b(L) leaves the set Δ of blocks D_1, D_2, \dots, D_k containing the point 1 fixed. Since $\alpha(L) = 1$, D_1 is the only block of W left fixed by b(L) (cf. [2], p. 22). Therefore b(L) restricted to Δ leaves the block D_1 fixed, and consists of one *l*-cycle. Hence b(M) restricted to Δ leaves the block D_1 and another block, say D_2 fixed and consists of (l-1)/m m-cycles. By (c) there exist exactly λ blocks of Δ which contain the point 2. The set of these λ blocks are left fixed by b(M). Thus

(3) $\lambda \equiv 1 \pmod{m}$ or $\lambda \equiv 2 \pmod{m}$,

according as D_2 contains the point 2 or not. If $\lambda = 1$, then by a theorem

204

of Ostrom-Wagner ([2], p. 214) \otimes does not satisfy the condition (II). Thus λ is bigger than 1. Then by (3) we get that either $\lambda = 2$ or

(4)
$$((l-1)/m) + 2 \ge ((l-1)/(\lambda-1)) + 2$$
$$= (1+2\lambda-3)/(\lambda-1)$$
$$\ge (l+1)/(\lambda-1).$$

(f) Assume that λ is bigger than 2. If A_2 has *l*-type *C*, then by the results of Brauer mentioned in (b) there exist (l-1)/m characters of \mathfrak{G} algebraically conjugate to A_2 . Here if *q* is relatively prime to *l*, then *q* divides $(p-1)/l = (l+1)/\lambda$. By the results of Brauer mentioned in (b) there exist exactly *q* characters of *p*-types *A* or *B* of \mathfrak{G} . But we have already ((l-1)/m) + 2 characters of *p*-types *A* or *B* of \mathfrak{G} , namely $\mathbf{1}_{\mathfrak{G}}$, \mathbf{X}_0 and the algebraically conjugate family of A_2 . By (4) this is a contradiction. Thus *l* divides *q*. Then since there exists an element of order *q* in \mathfrak{G} and since \mathfrak{L} coincides with its own centralizer in \mathfrak{G} , we obtain that q = l.

(g) We claim that if either $\lambda = 2$ or q = l, then \mathfrak{B} restricted to D is triply transitive.

If \mathfrak{B} restricted to D is not triply transitive, $\mathfrak{A} \cap \mathfrak{B}$ restricted to $D - \{1\}$ is not doubly transitive. If m = 1, then by a transfer theorem of Burnside \mathfrak{G} contains a normal Sylow *l*-complement, contradicting the simplicity of \mathfrak{G} . So m is bigger than 1, and by a theorem of Burnside $\mathfrak{A} \cap \mathfrak{B}$ restricted to $D - \{1\}$ is a Frobenius group of order lm. Since k = l + 1 is even, by a previous result ([4]) we get that $m = \frac{1}{2}(k-2)$. Hence the order g of \mathfrak{G} is equal to $\frac{1}{2}pk(k-1)(k-2)$. Sylow's theorem gives g = pq(1 + xp), where x is a positive integer, and so we get that

(5)
$$\frac{1}{2}k(k-1)(k-2) = q(1+xp).$$

First assume that $\lambda = 2$. Then from (5) it follows that

$$(p-1)(k-2) = q(1+xp).$$

Hence $2 \equiv q + k \pmod{p}$. Since $k \leq \frac{1}{2}(p-1)$ and $q \leq \frac{1}{2}(p-1)$, this is a contradiction.

Next assume that q = l. Then from (5) it follows that

NOBORU ITO

(6)
$$\frac{1}{2}k(k-2) = 1 + xp.$$

Hence $2x + 3 \equiv 0 \pmod{l}$. Put 2x = yl - 3. Then y is a positive integer. From (6) it follows that $(yl - 3)p = l^2 - 3$. Since $p \ge 2k + 1 = 2l + 3$, this is a contradiction.

(h) Assume that \mathfrak{B} restricted to D is triply transitive. Then $\mathfrak{A} \cap \mathfrak{B}$ is doubly transitive on $D - \{1\}$. Put $d_i = (D - \{1\}) \cap D_i$ for $i = 2, 3, \dots, k$. Then by (c) every d_i contains exactly $\lambda - 1$ points, and also by (c) there exist $\lambda - 1$ of $d_i^2 s$, say $d_2, d_3, \dots, d_{\lambda}$ which contain the point 2. Let \mathfrak{A}_2 be the stabilizer of the point 2 in \mathfrak{G} . Since $\mathfrak{A} \cap \mathfrak{A}_2 \cap \mathfrak{B}$ is transitive on $D - \{1, 2\}$, every point $\neq 1, 2$ of D appears in the same number, say μ , of $d_i^2 s(i = 2, 3, \dots, \lambda)$. Thus we obtain that

(7)
$$(\lambda - 1)^2 = (\lambda - 1) + \mu(k - 2).$$

Put p-1 = nl. Then by (1) $k = n\lambda$. Hence from (7) it follows that $2\mu + 2 = 0 \pmod{\lambda}$. Put $2\mu + 2 = \nu\lambda$. Then ν is a positive integer. Then again from (7) it follows that

$$(2\lambda - 2) (\lambda - 2) = (\nu\lambda - 2) (n\lambda - 2).$$

Since *n* is even, this implies that $\nu = 1$ and n = 2. Thus p = 2l + 1. By a previous result ([5]) \mathfrak{G} is triply transitive on Ω , which is a contradiction ([3]). Therefore \mathfrak{B} restricted to *D* cannot be triply transitive. In particular by (f) A_2 cannot be of *l*-type *C*.

(i) By (g) we have that $g = \frac{1}{2} pk(k-1)(k-2)$. If A_2 is of *l*-type *B*, then by (d) $A_2(E) = (k-3)p + 1$. Since $A_2(E)$ divides *g*, we obtain that $\frac{1}{2}k(k-2) \equiv 0 \pmod{(k-3)p+1}$. Since $p \ge 2k+1$, this is impossible.

(j) If A_2 is of *l*-type *D*, then by (d) $A_2 = Y$ and hence

(8) $\mathbf{1}_{\mathfrak{A}\cap\mathfrak{B}}^* = \mathbf{1}_{\mathfrak{G}} + 2\mathbf{X}_0 + \mathbf{A}_2.$

Let II be the set of all pairs (i, D_j) such that the point *i* belongs to the block D_j . There exist pk pairs of this kind. Obviously \mathfrak{G} can be considered as a permutation group on II, and then $\mathfrak{A} \cap \mathfrak{B}$ is the stabilizer of the pair $(1, D_1)$ in \mathfrak{G} . By (8) the norm of $\mathbf{1}_{\mathfrak{A} \cap \mathfrak{B}}^*$ is equal to 6, and this is equal to the number of orbits of $\mathfrak{A} \cap \mathfrak{B}$ on II. But it is easy to check that

206

the following 7 sets of pairs are disjoint, non-empty and left fixed by $\mathfrak{A} \cap \mathfrak{B}$, which is a contradiction: $O_1 = \{(1, D_1)\}, O_2 = \{(i, D_1), i \neq 1\}, O_3 = \{(1, D_i), i \neq 1\}, O_4 = \{(i, D_j), 1 \neq i \in D_1, j \neq 1 \text{ and } 1 \in D_j\}, O_5 = \{(i, D_j), i \notin D_1 \text{ and } 1 \in D_j\}, O_6 = \{(i, D_j), i \in D_1 \text{ and } 1 \notin D_j\}$ and $O_7 = \{(i, D_j), i \notin D_1 \text{ and } 1 \notin D_j\}$.

(k) Finally we can assume that a character X of p-type C with $X(E) \equiv -q \pmod{p}$ appears in Y. By the results of Brauer mentioned in (b) there exist (p-1)/q characters $C_1 = X, C_2, \cdots, C_{(p-1)/q}$ of \mathfrak{G} which are algebraically conjugate to X. Since Y is rational, every C_i appears in Y with the same multiplicity γ . Put

(9)
$$\boldsymbol{Y} = \boldsymbol{\gamma} \sum_{i=1}^{(p-1)/q} \boldsymbol{C}_i + \cdots$$

Put X(E) = cp - q. Then c is a positive integer. From (9) we obtain that

(10)
$$7((p-1)/q)(cp-q) \leq (k-2)p+1.$$

By (g) and (h) we see that q divides n = (p-1)/1, since otherwise we get that q = l and that \mathfrak{B} restricted to D is triply transitive. Thus from (10) we obtain that

(11)
$$\gamma(k-1)(n/q)(cp-q) \leq (k-2)p+1.$$

(11) obviously implies that r = 1, n = q, c = 1 and that

(12)
$$Y = \sum_{i=1}^{(p-1)/q} C_i.$$

Since 1 and D_1 are only point and block left fixed by L respectively, we get that $1_{\mathfrak{A}\cap\mathfrak{B}}^*(L) = 1$. Hence by the results of Brauer mentioned in (b) we obtain (from (2) and (12)) that $C_1(L) = 0$. Thus X has *l*-type D, and $p \equiv q \pmod{l}$. Since $p \equiv 1 \pmod{l}$, $q = n \equiv 1 \pmod{l}$. Since q is bigger than 1, $n \geq l+1$. Then $p-1 = ln \geq l (l+1)$. Therefore by (1) we get that $\lambda = 1$, which is a contradiction (see (e)).

Remark. Assume that \mathfrak{G} satisfies (I) and (II). If $k \ge \frac{1}{2}(p-1)$, then by a theorem of Joran ([8]) we get that either p=2(k-1)+1 or p=2(k-1)+3. If p=2(k-1)+1, then by a previous result ([5]) we get that p=11 and $\mathfrak{G} \cong LF(2,11)$. If p=2(k-1)+3, then by (1) we get that k=3, p=7 and $\mathfrak{G} \cong LF(2,7)$ contradicting the assumption (II).

NOBORU ITO

Bibliography

- R. Brauer, On permutation groups of prime degree and related classes of groups, Ann. of Math. (2) 44 (1943), 57–79.
- [2] P. Dembowski, Finite geometries, Berlin Heiderberg New York 1968.
- [3] N. Ito, Über die Gruppen $PSL_n(q)$, die eine Untergruppe von Primzahlindex enthalten. Acta Sci. Math. Szeged **21**, (1960), 206-217.
- [4] N. Ito, On a class of doubly transitive permutation groups, Illinois J. Math. 6 (1962), 341–352.
- [5] N. Ito Transitive permutation groups of degree p=2q+1, p and q being prime numbers. II, Trans. Amer. Math. Soc. 113 (1964), 454-487.
- [6] N. Ito, On a class of doubly, but not triply transitive permutation groups, Arch. Math. 18 (1967), 564–570.
- [7] N. Ito, On permutation groups of prime degree p which contain (at least) two classes of conjugate subgroups of index p, Rendiconti Sem. Mat. Padova 38 (1967), 287-292.
- [8] H. Wielandt, Finite permutation groups, New York (1964).

Department of Mathematics University of Illinois at Chicago Circle Chicago, Illinois, 60680, USA