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ON SELF-INTERSECTION NUMBER OF A SECTION

ON A RULED SURFACE

MASAYOSHI NAGATA

To Professor K. Ono for his sixtieth birthday

Let E be a non-singular projective curve of genus g^O, P the pro-

jective line and let F be the surface Ex P. Then it is well known that a

ruled surface F* which is birational to F is biregular to a surface which is

obtained by successive elementary transformations from F (for the notion of

an elementary transformation, see [3]). The main purpose of the present

article is to prove the following

THEOREM 1. For any suck F*9 there is a section (i.e., an irreducible curve s

on F such that (s,/) = 1 for a fibre I of F*) such that its self-intersection number

(s, 5) is not greater than g.

In classifying ruled surface F*9 as was noted by Atiyah [1], it is im-

portant to know the minimum value of self-intersection numbers {s, s) of

sections of F*.1) Our Theorem 1 is important in the respect.

The following is a key to our proof of Theorem 1:

THEOREM 2. Let d be a non-negative rational integer. If Q19 , Qg+2d+ι

are points2^ of F, then there is a positive divisor D of F suck that (i) D goes

through Q19 , Qg+2d+i and (ii) D is linearly equivalent to E x P + Σ ? = ί ^ i x P

with a P G P and suitable Rt e E.

In connection with this Theorem 2, we prove the following theorem

too:

Received October 11, 1968
!) Atiyah proved that the minimum value is not greater than 2g—l if #>0. On the

other hand, it was remarked by M. Maruyama that there is an F (for every E) which
carries only sections 5 such that (s,s)^g (see [2]).

2) In this theorem, these Qi need not be ordinary points, namely, some of these Qi
may be infinitely near points of some ordinary points. For the definition of the term "go
through" in such a case, see [3],
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THEOREM 3. Let ζ)?, , Q*+1 be independent generic points of F over a

field of definition k of F. Let S* be the set of positive divisors D of F such that

(i) D goes through ζ)f, ,Q*+1 and (ii) D is linearly equivalent to £ x P + Σ ξ = i

RiXP with a P <Ξ P and suitable Ri e E. If t ^Lg, then S* is not empty and

S* dose not contain any algebraic family of positive dimension.

In appendix, we add some remarks on dimensions of algebraic families.

1. Some preliminary results, notation.

Since the case where g = 0 is obvious, we assume that g^l. P (or P')

denotes a point of P. R (or Rί9 Rj, Rf, etc.) denotes a point of E. Q

(or Qi9 Qj, etc.) denotes a point of F. & is a field of definition for E

and F, and for the sake of simplicity, we assume that k is algebraically

closed. L(R19 , Rs) is the complete linear system \ExP + J¥iml RtxP\.

Specializations are understood with reference to k. For fundamentals on

specializations of cycles, see [4] and [5].

LEMMA 1. Let d be the dimension of the complete linear system | Σ 3 f - i ^ l on

E. Let Σ i - i ^ * be a generic member of the linear system over a field containing

k and let C* be a generic member of L{R19 , Rs) over k{Rt, , R*). Then

(i) dim L(R19 , R.) = 2d + 1,

(ii) trans. degfc &(C*) = d + 1 + trans, deg* fc(/?f, , R*)9

(iii) if dim |Σ5-i-Ril = d and if (R'19 , R'9) is a specialization of

[R%9 , Rf) then every member of L{R'19 , Ri) is a specialization of C* over

the specialization (R*, , #*)-*(/?{, , Ri).

Proof Consider E' = E x P. Then dim TrE> L(Rl9 . . . , # , ) = </ =

dim(L(7?!, , Rs) — £")> from which (i) follows readily. Now, consider

loci T and U of (C*, /??, , 7?f) and C* respectively, over jfc. Then dimΓ

= trans.degfc/c(7?ί, , i?f) + trans. degfc(Λ;,...ίΛ )fc(C*), and on the other hand,

letting v denote the natural projection from T onto U9 we have dim jr^C*)

= dim I Σ? = 1 Ri\ = d. Therefore trans. degfc/c(C*) = dimϋ' = dim T - d=

J+l+trans.degfcA;(i?ί, , Rϊ)9 which proves (ii). As for (iii), we consider

a specialization of (C*, i?ί, , i?*, L(i?i, , -R,)) over the specialization

(Λf, , i?ί) -> (/?ί, - ,R'S). Ex P+HiRΐx P is specialized to ί x P ' l

Σ ^ i X ^ which must be a member of the specialization L* of Z,(i?!, ,i?8).

Since dim L* = dimL(i?!, , Rs) = d = dim L(R'19 , i?ί) and since all
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members of L* are linearly equivalent to each other,3) we see that

L* = L(Rί, , R's). Thus Lemma 1 is proved.

LEMMA 2. Let V be a surface defined over Jc. If M19 , Mn are points

of V and if trans. degkk{Mί9 , Mn)^2n — a, then suitable n — a points among

Mi, , Mn are independent generic points of V over k.

Proof We use induction argument on n. (1) If Mn is a generic

point of V over ί;(Mi, s M ^ j ) , then trans. degfck(M19 ,Mn-1)^2(w—1)—a.

Then, by our induction assumption, there are n — 1 — a independent generic

points among Mi, , MΛ-! and we see the assertion in this case. (2)

Otherwise, we have trans. degkk{M19 , Mn.1)^2{n — 1) — {a — 1), and we

completes the proof by our induction assumption.

2. Proof of Theorem 2.

Let Rf9 , Rg+d be independent generic points of E over k and let

C* be a generic member of L{Rt, , Rg+d) over k{R*9 , i?*+d). Let

Qί» > Q*g+2d+i be independent generic points of C* over k(C*). Then by

Lemma 1, trans, deg*fc(C*, Qf, , 01(7+2(2+1) = trans. degfcA:(C*) + 2g + 2rf +

+ l = d + l + d+g+2g+2d + l = 3g + 4d + 2 = 2{2g + 2 d + 1) - g. Now

we consider locus T of (C*, 0?, , Of&+2d+i) and the natural projection pr

from T into the {2g + 2d + l)-ple product F" of F. Since the self-intersection

number (C*, C*) of C* is equal to 2^ + 2d, we see that pr is generically a

one-one correspondence between T and pr T, which shows that dim T — dim

pr T. Therefore, applying Lemma 2 with w = 2g + 2J + 1, we see that there

are 0 + 2d + l independent generic points of F among Qΐ, , Q*g+2d+i

This proves Theorem 2 in the case where Q19 , 0̂ +2̂ +1 are independent

generic points of F. New we complete the proof making use of specializations.

3. Proof of Theorem 1.

As was noted at the beginning, F* is obtained by successive elementary

transformations with centers, say, P19 , Pm from F. If m < g9 then the

proper transform of an E x P has self-intersection number < #. Therefore

we assume that m>g. Then there is d such that m=# + 2d or m=0+2d + l.

By virtue of Theorem 2, there is a positive divisor D of F such that (i)

3) Note that if D and ZX are divisors which are linearly equivalent to each other,
and if they are specialized to D1 and D[ under the same specialization, then Dx is linearly
equivalent to D[.
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D goes through P19 , Pm and (ii) D is linearly equivalent to E x P +

Σ?ίί -ff« χ P Then the proper transform Dr of A or more precisely, the

divisor of F* which is the transform of D — Σ P*, has self-intersection num-

ber 2# + 2d — m> which is either g or g — 1. ZX has a section s of F* as a

component, and (5, s)^Lg. This completes our proof of Theorem 1.

4. Proof of Theorem 3.
Let P and Λ,(ί = 1, , f) be such that Q J ε ^ x P and Qf+1<=£xP.

Then E x P + Σi.i-ffi x P is in S*, and therefore S* is not empty. Assume

now that there is an irreducible algebraic family S of positive dimension

contained in S*. Let C be a generic member of S over k{Q\9 , Q*+1)

and let R[ be such that C e L{R[9 , R't). Let Σu-i-R" be a generic

member of | Σ i # ί l over fc(Q*, , Q?+1, J?ί, , Λ{) and let C" be a

generic member of L(R[, , i?0 over fc(Qf, , Qf+1, i?ί, , R't, Rfl,

. . ., Λ?). Let U be the locus of C" over & and set d = dim | Σ U # Π

Lemma 1 shows that dim U = trans, deg* fc(C") = d +1 + trans. degfcfc (Λ ,̂ ,

jR't). Set u = trans. degfc&(/??, , /??). Then we may assume that R">

• , Rfύ are independent generic points of E over k. Since / ̂  β', dim

IΣ?-i-ffil =0, whence ί/ = dim | Σί-i R"\ t£t —u. Thus we have that

d i m U ^ t — u + l + u = t+l. Since U is defined over k and since <3J, ,

Q?+1 are independent generic points, dim S < t + 1 — (f + 1) = 0. This com-

pletes our proof of Theorem 3.

Appendix

Our proof of Theorem 2 above really gives a proof of the following

fact:

THEOREM Al. Let % be an algebraic family of positive divisors on a pro-

jective variety V. If dim % ;> d and if P19 , Pd are points of V9 then there is

a member D of % such that Pi e D for all i.

If g is a linear system, then, for a point P of F, ( D £ S | P e D\ forms

a hyperplane of % if % is viewed as a projective space of dimension d.

Therefore if % is a linear system, then Theorem Al is obvious and is well

known. But, in the general case, the same reasoning cannot be given.

Furthermore, if % is an algebraic family of r-cycles (^divisors), then the

dimension defect by the condition to go through one point is not uniform.

For instance, let V be the projective space of dimension n and let gf be the

family of m points which are colinear (m7>3), then dimg = 2{n— 1) + m.
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For g' = {£><= g | P e />} (where Pis a point of V), dimg' = d i m g - n. For
g" = {i)eg'|P rGZ)} (where P' is a point of F which is different from P),
dim g" = dim g' — n. But then, if P" is a point of F which is different
from P, P', (i) if P" is in outside of the line going through P, P', then
g*= {Z> e g " I $"e£>} is empty, (ii) otherwise, dim g* = dim g" - 1.

Here we shall discuss such dimension defect in the general case. Our
result will give another proof of Theorem Al above.

From now on, let F be a projective variety of dimension n and let g
be an (irreducible) algebraic family of positive r-cycles on F. We fix an
algebraically closed, common field of definition k for F and g. Let C* be
a generic member of g over k and let P be a point of F. Denote by
g - P the set {CegiPeC}.

Assume that there is a member C of g — P. Then there is a point P*
of C* such that (C*, P*) is specialized to (C, P). Let U be the locus of P*
over &. Then

THEOREM A2. ΓΛm? w aw algebraic family g ' JMCA ίΛαί (1) C G g ' ς g - p

(2) dim g' = dim g + dim (£/ Π C*) - dim J7.

Proof. To begin with, we may assume that P* is a generic point of

an arbitrarily fixed component of C* Γi U over k{C*), whence we may assume

that d\m (UnC*) = trans. degΛ(c*) k(C*9 P*). Let W and T be the locus of C*

over &(P*) and the locus of (C*, P*) over k respectively. Then dim U + dim

W = trans deg k(P*) + trans. degΛ(P*) k{P*, C*) = dim T = dim F + dim (U Π C*).

Thus dim W = dim F + dim (U Π C*) — dim U. Consider a specialization

W-+W over (C*, P*) -y (C, P). Then, since C* e TF, we have C e W . Thus

it is enough to set g ' = W\

From our Theorem A2, we get the following result immediately:

Let Cf (i = 1, •••,£) be all of the irreducible components of C* and

let Pf be a generic point of C? over fc(Cf, , C?). Let F έ be the locus

of P* over A; for each i. Then

THEOREM A3. For P&V, we have

(1) if P is not in any of Vi9 then g — P ΰ £m/>0>,

(2) otherwise, let p be the maximum of άimUi where Uι ranges over all Vt

which goes through P, then the dimension of every component of F — P is not less

than dim g + r — p.
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Now, our Theorem Al is a corollary to this.
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