ON SELF-INTERSECTION NUMBER OF A SECTION ON A RULED SURFACE

MASAYOSHI NAGATA

To Professor K. Ono for his sixtieth birthday

Let E be a non-singular projective curve of genus $g \geq 0, \boldsymbol{P}$ the projective line and let F be the surface $E \times \boldsymbol{P}$. Then it is well known that a ruled surface F^{*} which is birational to F is biregular to a surface which is obtained by successive elementary transformations from F (for the notion of an elementary transformation, see [3]). The main purpose of the present article is to prove the following

Theorem 1. For any such F^{*}, there is a section (i.e., an irreducible curve s on F such that $(s, l)=1$ for a fibre l of F^{*}) such that its self-intersection number (s, s) is not greater than g.

In classifying ruled surface F^{*}, as was noted by Atiyah [1], it is important to know the minimum value of self-intersection numbers (s, s) of sections of $F^{*} .{ }^{1)}$ Our Theorem 1 is important in the respect.

The following is a key to our proof of Theorem 1:
Theorem 2. Let d be a non-negative rational integer. If $Q_{1}, \cdots, Q_{g+2 d+1}$ are points ${ }^{2}$) of F, then there is a positive divisor D of F such that (i) D goes through $Q_{1}, \cdots, Q_{g+2 d+1}$ and (ii) D is linearly equivalent to $E \times P+\sum_{i=1}^{g+d} R_{i} \times \boldsymbol{P}$ with $a P \in \boldsymbol{P}$ and suitable $R_{i} \in E$.

In connection with this Theorem 2, we prove the following theorem too:

[^0]Theorem 3. Let $Q_{1}^{*}, \cdots, Q_{i+1}^{*}$ be independent generic points of F over a field of definition k of F. Let S^{*} be the set of positive divisors D of F such that (i) D goes through $Q_{1}^{*}, \cdots, Q_{t+1}^{*}$ and (ii) D is linearly equivalent to $E \times P+\sum_{i=1}^{t}$ $R_{i} \times \boldsymbol{P}$ with a $P \in \boldsymbol{P}$ and suitable $R_{i} \in E$. If $t \leq g$, then S^{*} is not empty and S^{*} dose not contain any algebraic family of positive dimension.

In appendix, we add some remarks on dimensions of algebraic families.

1. Some preliminary results, notation.

Since the case where $g=0$ is obvious, we assume that $g \geq 1 . \quad P$ (or P^{\prime}) denotes a point of $\boldsymbol{P} . \quad R$ (or $R_{i}, R_{j}^{\prime}, R_{i}^{*}$, etc.) denotes a point of $E . Q$ (or Q_{i}, Q_{j}^{\prime}, etc.) denotes a point of $F . k$ is a field of definition for E and F, and for the sake of simplicity, we assume that k is algebraically closed. $L\left(R_{1}, \cdots, R_{s}\right)$ is the complete linear system $\left|E \times P+\sum_{i=1}^{s} R_{i} \times \boldsymbol{P}\right|$. Specializations are understood with reference to k. For fundamentals on specializations of cycles, see [4] and [5].

Lemma 1. Let d be the dimension of the complete linear system $\left|\sum_{i=1}^{s} R_{i}\right|$ on E. Let $\sum_{i=1}^{s} R_{i}^{*}$ be a generic member of the linear system over a field containing k and let C^{*} be a generic member of $L\left(R_{1}, \cdots, R_{s}\right)$ over $k\left(R_{1}^{*}, \cdots, R_{s}^{*}\right)$. Then
(i) $\operatorname{dim} L\left(R_{1}, \cdots, R_{s}\right)=2 d+1$,
(ii) trans. $\operatorname{deg}_{k} k\left(C^{*}\right)=d+1+$ trans. $\operatorname{deg}_{k} k\left(R_{1}^{*}, \cdots, R_{s}^{*}\right)$,
(iii) if $\operatorname{dim}\left|\sum_{i=1}^{s} R_{i}^{\prime}\right|=d$ and if $\left(R_{1}^{\prime}, \cdots, R_{s}^{\prime}\right)$ is a specialization of $\left(R_{1}^{*}, \cdots, R_{s}^{*}\right)$ then every member of $L\left(R_{1}^{\prime}, \cdots, R_{s}^{\prime}\right)$ is a specialization of C^{*} over the specialization $\left(R_{1}^{*}, \cdots, R_{s}^{*}\right) \rightarrow\left(R_{1}^{\prime}, \cdots, R_{s}^{\prime}\right)$.

Proof. Consider $\quad E^{\prime}=E \times P$. Then $\quad \operatorname{dim} \operatorname{Tr}_{E^{\prime}} L\left(R_{1}, \cdots, R_{s}\right)=d=$ $\operatorname{dim}\left(L\left(R_{1}, \cdots, R_{\mathrm{s}}\right)-E^{\prime}\right)$, from which (i) follows readily. Now, consider loci T and U of $\left(C^{*}, R_{1}^{*}, \cdots, R_{s}^{*}\right)$ and C^{*} respectively, over k. Then $\operatorname{dim} T$ $=$ trans. $\operatorname{deg}_{k} k\left(R_{1}^{*}, \cdots, R_{s}^{*}\right)+$ trans. $\left.\operatorname{deg}_{k\left(R_{1}^{*}\right.}, \ldots, R_{s}^{*}\right) k\left(C^{*}\right)$, and on the other hand, letting p denote the natural projection from T onto U, we have $\operatorname{dim} p^{-1}\left(C^{*}\right)$ $=\operatorname{dim}\left|\sum_{i=1}^{s} R_{i}\right|=d$. Therefore trans. $\operatorname{deg}_{k} k\left(C^{*}\right)=\operatorname{dim} U=\operatorname{dim} T-d=$ $d+1+$ trans. $\operatorname{deg}_{k} k\left(R_{1}^{*}, \cdots, R_{s}^{*}\right)$, which proves (ii). As for (iii), we consider a specialization of $\left(C^{*}, R_{1}^{*}, \cdots, R_{s}^{*}, L\left(R_{1}, \cdots, R_{s}\right)\right)$ over the specialization $\left(R_{1}^{*}, \cdots, R_{s}^{*}\right) \rightarrow\left(R_{1}^{\prime}, \cdots, R_{s}^{\prime}\right) . \quad E \times P+\sum_{i} R_{i}^{*} \times \boldsymbol{P}$ is specialized to $E \times P^{\prime}+$ $\Sigma R_{i}^{\prime} \times \boldsymbol{P}$, which must be a member of the specialization L^{*} of $L\left(R_{1}, \cdots, R_{s}\right)$. Since $\operatorname{dim} L^{*}=\operatorname{dim} L\left(R_{1}, \cdots, R_{s}\right)=d=\operatorname{dim} L\left(R_{1}^{\prime}, \cdots, R_{s}^{\prime}\right)$ and since all
members of L^{*} are linearly equivalent to each other, ${ }^{3)}$ we see that $L^{*}=L\left(R_{1}^{\prime}, \cdots, R_{s}^{\prime}\right)$. Thus Lemma 1 is proved.

Lemma 2. Let V be a surface defined over k. If M_{1}, \cdots, M_{n} are points of V and if trans. $\operatorname{deg}_{k} k\left(M_{1}, \cdots, M_{n}\right) \geq 2 n-\alpha$, then suitable $n-\alpha$ points among M_{1}, \cdots, M_{n} are independent generic points of V over k.

Proof. We use induction argument on n. (1) If M_{n} is a generic point of V over $k\left(M_{1}, \cdots, M_{n-1}\right)$, then trans. $\operatorname{deg}_{k} k\left(M_{1}, \cdots, M_{n-1}\right) \geq 2(n-1)-\alpha$. Then, by our induction assumption, there are $n-1-\alpha$ independent generic points among M_{1}, \cdots, M_{n-1} and we see the assertion in this case. (2) Otherwise, we have trans. $\operatorname{deg}_{k} k\left(M_{1}, \cdots, M_{n-1}\right) \geq 2(n-1)-(\alpha-1)$, and we completes the proof by our induction assumption.

2. Proof of Theorem 2.

Let $R_{1}^{*}, \cdots, R_{g+d}^{*}$ be independent generic points of E over k and let C^{*} be a generic member of $L\left(R_{1}^{*}, \cdots, R_{g+d}^{*}\right)$ over $k\left(R_{1}^{*}, \cdots, R_{g+d}^{*}\right)$. Let $Q_{1}^{*}, \cdots, Q_{2 g+2 d+1}^{*}$ be independent generic points of C^{*} over $k\left(C^{*}\right)$. Then by Lemma 1, trans. $\operatorname{deg}_{k} k\left(C^{*}, Q_{1}^{*}, \cdots, Q_{2 \nmid+2 d+1}^{*}\right)=$ trans. $\operatorname{deg}_{k} k\left(C^{*}\right)+2 g+2 d+$ $+1=d+1+d+g+2 g+2 d+1=3 g+4 d+2=2(2 g+2 d+1)-g$. Now we consider locus T of $\left(C^{*}, Q_{1}^{*}, \cdots, Q_{2 g+2 d+1}^{*}\right)$ and the natural projection pr from T into the $(2 g+2 d+1)$-ple product $F^{\prime \prime}$ of F. Since the self-intersection number (C^{*}, C^{*}) of C^{*} is equal to $2 g+2 d$, we see that pr is generically a one-one correspondence between T and pr T, which shows that $\operatorname{dim} T=\operatorname{dim}$ pr T. Therefore, applying Lemma 2 with $n=2 g+2 d+1$, we see that there are $g+2 d+1$ independent generic points of F among $Q_{1}^{*}, \cdots, Q_{2}^{*} g+2 d+1$. This proves Theorem 2 in the case where $Q_{1}, \cdots, Q_{g+2 d+1}$ are independent generic points of F. New we complete the proof making use of specializations.

3. Proof of Theorem 1.

As was noted at the beginning, F^{*} is obtained by successive elementary transformations with centers, say, P_{1}, \cdots, P_{m} from F. If $m \leq g$, then the proper transform of an $E \times P$ has self-intersection number $\leq g$. Therefore we assume that $m>g$. Then there is d such that $m=g+2 d$ or $m=g+2 d+1$. By virtue of Theorem 2, there is a positive divisor D of F such that (i)

[^1]D goes through P_{1}, \cdots, P_{m} and (ii) D is linearly equivalent to $E \times P+$ $\sum_{i=1}^{o+d} R_{i} \times \boldsymbol{P}$. Then the proper transform D^{\prime} of D, or more precisely, the divisor of F^{*} which is the transform of $D-\Sigma P_{i}$, has self-intersection number $2 g+2 d-m$, which is either g or $g-1 . \quad D^{\prime}$ has a section s of F^{*} as a component, and $(s, s) \leq g$. This completes our proof of Theorem 1.

4. Proof of Theorem 3.

Let P and $R_{i}(i=1, \cdots, t)$ be such that $Q_{i}^{*} \in R_{i} \times P$ and $Q_{i+1}^{*} \in E \times P$. Then $E \times P+\sum_{i=1}^{t} R_{i} \times \boldsymbol{P}$ is in S^{*}, and therefore S^{*} is not empty. Assume now that there is an irreducible algebraic family S of positive dimension contained in S^{*}. Let C be a generic member of S over $k\left(Q_{1}^{*}, \cdots, Q_{t+1}^{*}\right)$ and let R_{i}^{\prime} be such that $C \in L\left(R_{1}^{\prime}, \cdots, R_{t}^{\prime}\right)$. Let $\sum_{i=1}^{t} R_{i}^{\prime \prime}$ be a generic member of $\left|\Sigma_{i} R_{i}^{\prime}\right|$ over $k\left(Q_{1}^{*}, \cdots, Q_{t+1}^{*}, R_{1}^{\prime}, \cdots, R_{t}^{\prime}\right)$ and let $C^{\prime \prime}$ be a generic member of $L\left(R_{1}^{\prime}, \cdots, R_{t}^{\prime}\right)$ over $k\left(Q_{1}^{*}, \cdots, Q_{i+1}^{*}, R_{1}^{\prime}, \cdots, R_{t}^{\prime}, R_{1}^{\prime \prime}\right.$, $\left.\cdots, R_{t}^{\prime \prime}\right)$. Let U be the locus of $C^{\prime \prime}$ over k and set $d=\operatorname{dim}\left|\sum_{i=1}^{t} R_{i}^{\prime}\right|$. Lemma 1 shows that $\operatorname{dim} U=$ trans. $\operatorname{deg}_{k} k\left(C^{\prime \prime}\right)=d+1+\operatorname{trans} . \operatorname{deg}_{k} k\left(R_{1}^{\prime \prime}, \cdots\right.$, $\left.R_{t}^{\prime \prime}\right)$. Set $u=$ trans. $\operatorname{deg}_{k} k\left(R_{1}^{\prime \prime}, \cdots, R_{t}^{\prime \prime}\right)$. Then we may assume that $R_{1}^{\prime \prime}$, $\cdots, R_{u}^{\prime \prime}$ are independent generic points of E over k. Since $t \leq g$, dim $\left|\sum_{i=1}^{u} R_{i}^{\prime \prime}\right|=0$, whence $d=\operatorname{dim}\left|\sum_{i=1}^{t} R_{i}^{\prime \prime}\right| \leq t-u$. Thus we have that $\operatorname{dim} U \leq t-u+1+u=t+1$. Since U is defined over k and since Q_{1}^{*}, \cdots, Q_{t+1}^{*} are independent generic points, $\operatorname{dim} S \leq t+1-(t+1)=0$. This completes our proof of Theorem 3.

Appendix

Our proof of Theorem 2 above really gives a proof of the following fact:

Theorem A1. Let \mathfrak{F} be an algebraic family of positive divisors on a projective variety V. If $\operatorname{dim} \mathfrak{F} \geq d$ and if P_{1}, \cdots, P_{d} are points of V, then there is a member D of \mathfrak{F} such that $P_{i} \in D$ for all i.

If \mathfrak{F} is a linear system, then, for a point P of $V,\{D \in \mathfrak{F} \mid P \in D\}$ forms a hyperplane of \mathfrak{F} if \mathfrak{F} is viewed as a projective space of dimension d. Therefore if \mathfrak{F} is a linear system, then Theorem A1 is obvious and is well known. But, in the general case, the same reasoning cannot be given. Furthermore, if \mathfrak{F} is an algebraic family of r-cycles (\neq divisors), then the dimension defect by the condition to go through one point is not uniform. For instance, let V be the projective space of dimension n and let \mathfrak{F} be the family of m points which are colinear $(m \geq 3)$, then $\operatorname{dim} \mathfrak{F}=2(n-1)+m$.

For $\mathfrak{F}^{\prime}=\{D \in \mathfrak{F} \mid P \in D\}$ (where P is a point of V), $\operatorname{dim} \mathfrak{F}^{\prime}=\operatorname{dim} \mathfrak{F}-n$. For $\mathfrak{F}^{\prime \prime}=\left\{D \in \mathfrak{F}^{\prime} \mid P^{\prime} \in D\right\}$ (where P^{\prime} is a point of V which is different from P), $\operatorname{dim} \mathfrak{F}^{\prime \prime}=\operatorname{dim} \mathfrak{F}^{\prime}-n$. But then, if $P^{\prime \prime}$ is a point of V which is different from P, P^{\prime}, (i) if $P^{\prime \prime}$ is in outside of the line going through P, P^{\prime}, then $\mathfrak{F}^{*}=\left\{D \in \mathfrak{F}^{\prime \prime} \mid \mathfrak{P}^{\prime \prime} \in D\right\}$ is empty, (ii) otherwise, $\operatorname{dim} \mathfrak{F}^{*}=\operatorname{dim} \mathfrak{F}^{\prime \prime}-1$.

Here we shall discuss such dimension defect in the general case. Our result will give another proof of Theorem A1 above.

From now on, let V be a projective variety of dimension n and let \mathfrak{F} be an (irreducible) algebraic family of positive r-cycles on V. We fix an algebraically closed, common field of definition k for V and \mathfrak{F}. Let C^{*} be a generic member of \mathfrak{F} over k and let P be a point of V. Denote by $\mathfrak{F}-P$ the set $\{C \in \mathfrak{F} \mid P \in C\}$.

Assume that there is a member C of $\mathfrak{F}-P$. Then there is a point P^{*} of C^{*} such that $\left(C^{*}, P^{*}\right)$ is specialized to (C, P). Let U be the locus of P^{*} over k. Then

Theorem A2. There is an algebraic family \mathfrak{F}^{\prime} such that (1) $C \in \mathfrak{F}^{\prime} \subseteq \mathfrak{F}-P$ and (2) $\operatorname{dim} \mathfrak{F}^{\prime}=\operatorname{dim} \mathfrak{F}+\operatorname{dim}\left(U \cap C^{*}\right)-\operatorname{dim} U$.

Proof. To begin with, we may assume that P^{*} is a generic point of an arbitrarily fixed component of $C^{*} \cap U$ over $k\left(C^{*}\right)$, whence we may assume that $\operatorname{dim}\left(U \cap C^{*}\right)=$ trans. $\operatorname{deg}_{k\left(C^{*}\right)} k\left(C^{*}, P^{*}\right)$. Let W and T be the locus of C^{*} over $k\left(P^{*}\right)$ and the locus of $\left(C^{*}, P^{*}\right)$ over k respectively. Then $\operatorname{dim} U+\operatorname{dim}$ $W=\operatorname{trans} . \operatorname{deg} k\left(P^{*}\right)+$ trans. $\operatorname{deg}_{k\left(P^{*}\right)} k\left(P^{*}, C^{*}\right)=\operatorname{dim} T=\operatorname{dim} F+\operatorname{dim}\left(U \cap C^{*}\right)$. Thus $\operatorname{dim} W=\operatorname{dim} F+\operatorname{dim}\left(U \cap C^{*}\right)-\operatorname{dim} U$. Consider a specialization $W \rightarrow W^{\prime}$ over $\left(C^{*}, P^{*}\right) \rightarrow(C, P)$. Then, since $C^{*} \in W$, we have $C \in W^{\prime}$. Thus it is enough to set $\mathfrak{F}^{\prime}=W^{\prime}$.

From our Theorem A2, we get the following result immediately:
Let $C_{i}^{*}(i=1, \cdots, t)$ be all of the irreducible components of C^{*} and let P_{i}^{*} be a generic point of C_{i}^{*} over $k\left(C_{1}^{*}, \cdots, C_{i}^{*}\right)$. Let V_{i} be the locus of P_{i}^{*} over k for each i. Then

Theorem A3. For $P \in V$, we have
(1) if P is not in any of V_{i}, then $\mathfrak{F}-P$ is empty,
(2) otherwise, let p be the maximum of $\operatorname{dim} U_{i}$ where U_{i} ranges over all V_{i} which goes through P, then the dimension of every component of $F-P$ is not less than $\operatorname{dim} \mathfrak{F}+r-p$.

Now, our Theorem A1 is a corollary to this.

References

[1] M.F. Atiyah, Complex fibre bundles and ruled surfaces, Proc. London Math. Soc. (3) 5 (1955), 407-434.
[2] M. Maruyama, On classification of ruled surfaces, forthcoming in Lect. Math. Kyoto Univ.
[3] M. Nagata, On rational surfaces I, Mem. Coll. Sci. Univ. Kyoto, (A Math.) 32-3 (1960), 351-370.
[4] Y. Nakai- M. Nagata, Algebraic geometry, Kyoritsu, Tokyo 1957 (in Japanese).
[5] O. Zariski, Theory and applications of holomorphic functions on algebraic varieties over arbitrary ground fields, Mem. A.M.S. 5 (1951).

Department of Mathematics
Kyoto University

[^0]: Received October 11, 1968

 1) Atiyah proved that the minimum value is not greater than $2 g-1$ if $g>0$. On the other hand, it was remarked by M. Maruyama that there is an F (for every E) which carries only sections s such that $(s, s) \geqq g$ (see [2]).
 ${ }^{2)}$ In this theorem, these Q_{i} need not be ordinary points, namely, some of these Q_{i} may be infinitely near points of some ordinary points. For the definition of the term "go through" in such a case, see [3].
[^1]: 3) Note that if D and D^{\prime} are divisors which are linearly equivalent to each other, and if they are specialized to D_{1} and D_{1}^{\prime} under the same specialization, then D_{1} is linearly equivalent to D_{1}^{\prime}.
