ON A CLASSICAL THETA-FUNCTION

TOMIO KUBOTA

To Professor Katuzi Ono on his 60th birthday

The purpose of this paper is to get a certain explicit expression of automorphic factors, formulated rather differently than usual, of the classically well known theta function ${ }^{1}$)

$$
\begin{equation*}
\vartheta(z)=\vartheta_{3}(0, z)=\sum_{m=-\infty}^{\infty} e^{\pi i m^{2} z}, \quad(z=x+i y, \quad y>0) \tag{1}
\end{equation*}
$$

The special linear group $G=S L(2, \boldsymbol{R})$ over the real field \boldsymbol{R} has a 2 -fold topological covering group \widetilde{G}, and the maximal compact subgroup $T=S O(2)$ of G has also a naturally corresponding 2 -fold covering group \widetilde{T} in \widetilde{G}. While the upper half plane H is usually identified with the homogeneous space G / T, the properties discussed in $\S 1$ of the automorphic factors of $\vartheta(z)$, (13) among others, show directly that for the purpose of investigating $\vartheta(z)$ it is legitimate to identify the upper half plane H with $\tilde{G} / \widetilde{T}$. Moreover, as we see in $\S 2$, the quadratic reciprocity law in the rational number field \boldsymbol{Q} can be formulated as a multiplicativity of a number-theoretical function defined on a discrete subgroup of \widetilde{G}. For a totally imaginalry number field this kind of result was already stated in [4] in a simpler form, but in general we need the covering group \tilde{G}.

It is famous in number theory that there is a close relationship between the quadratic reciprocity law and the function $\vartheta(z)^{2}$. . The investigation in this paper, inclusive of all explicit calculations, may be regarded as a trial to catch as simply as possible the theoretical background of that interesting phenomenon.

[^0]The contents of the present paper have various connections with [6], but can be read independently.

§1. Automorphic factors of the theta function.

Let Γ be the subgroup of the elliptic modular group $S L(2, \boldsymbol{Z})$ consisting of all $\sigma \in S L(2, \boldsymbol{Z})$ such that $\sigma \equiv\left(\begin{array}{ll}1 & 1\end{array}\right)$ or $\left(\begin{array}{ll}1 & 1\end{array}\right)(\bmod 2)$. On the other hand, normalize the square root of a complex number $z \neq 0$ once for all by

$$
\begin{equation*}
\sqrt{z}=e^{\frac{1}{2} i \arg z} \sqrt{|z|}, \quad-\pi \leqq \arg z<\pi . \tag{2}
\end{equation*}
$$

Then, for the theta function in (1), we have

$$
\begin{equation*}
\vartheta(z)=\frac{1}{\sqrt{-i z}} \vartheta\left(-\frac{1}{v}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\vartheta(z)=\vartheta(z+2) . \tag{4}
\end{equation*}
$$

The formula (3) is Poisson's summation formula. Since Γ is generated by $\left(\begin{array}{ll} \\ 1^{-1}\end{array}\right)$ and $\left(\begin{array}{ll}1 & 2 \\ & 1\end{array}\right)$, a consequence of (3), (4) is

$$
\begin{equation*}
\vartheta(z)=\frac{c_{\sigma}}{\sqrt{c z+d}} \vartheta(\sigma z), \quad\left|c_{\sigma}\right|=1, \tag{5}
\end{equation*}
$$

for an arbitrary $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$. Of course, $\sigma z=\frac{a z+b}{c z+d}, \quad c_{\sigma}$ is a constant depending upon σ, and is already studied in classical literatures ${ }^{3}$. But, here we propose to look for a convenient expression of c_{σ} for our purpose.

Proposition 1. Let $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an element of Γ such that $b \neq 0$ and $\sigma \equiv 1$ (mod. 4). Then the constant c_{σ} in the transformation formula (5) is given by $c_{\sigma}=(-c, d)\left(\frac{2 b}{d}\right)$ for $c \neq 0$, and $c_{\sigma}=1$ for $c=0$. Here, $\left(\frac{2 b}{d}\right)$ is the Jacobi symbol, and (c, d) is the Hilbert symbol of degree 2 for \boldsymbol{R}.

Proof.4) Denoting by $\xi=\frac{b}{a},(a, b \in \boldsymbol{Z})$, a rational number given by an irreducible fraction, we define a Gauss sum of exponential type by

$$
\begin{equation*}
G_{0}(\xi)=\sum_{c \bmod a} e^{2 \pi i \xi c^{2}}, \quad(c \in \boldsymbol{Z}), \tag{6}
\end{equation*}
$$

3) [3], for example.
${ }^{4}$) This proof is partly identical with the proof in [2] of the reciprocity law of the Gauss sum.
and put

$$
\begin{equation*}
G(\xi)=G_{0}(\xi) /\left|G_{0}(\xi)\right| \tag{7}
\end{equation*}
$$

whenever $G_{0}(\xi) \neq 0$. Now, if $t>0$, then

$$
\begin{aligned}
\vartheta(2 \xi+i t) & =\sum_{m=-\infty}^{\infty} e^{\pi i m^{2}(2 \xi+i t)} \\
& =\sum_{c \bmod a}^{\infty} e^{2 \pi i \xi c^{2}} \sum_{m=-\infty}^{\infty} e^{-\pi(a m+c)^{2} t},
\end{aligned}
$$

and Poisson's summation formula yields

$$
\sum_{m=-\infty}^{\infty} e^{-\pi(m a+c)^{2} t}=\frac{1}{\sqrt{t}} \frac{1}{|a|} \sum_{m=-\infty}^{\infty} e^{-\pi \frac{m^{2}}{a^{2} t}+\frac{2 \pi i c}{a} m} .
$$

So, we obtain

$$
\begin{equation*}
\lim _{t \rightarrow 0} \sqrt{t} \vartheta(2 \xi+i t)=G_{0}(\xi) /|a| \tag{8}
\end{equation*}
$$

If, especially, this is applied to the both sides of (3), the so-called resciprocity of Gauss sum

$$
\begin{equation*}
\frac{G_{0}(\xi)}{\sqrt{|a|}}=\eta^{\operatorname{sgn} \xi} \frac{\sqrt{2|b|}}{\left|b_{0}\right|} G_{0}\left(-\frac{1}{4 \xi}\right), \quad \eta=e^{\frac{\pi i}{4}}, \tag{9}
\end{equation*}
$$

as stated in [2], Satz 161, is derived, where $\operatorname{sgn} \xi=\xi /|\xi|$. From (9) follows also

$$
\begin{equation*}
G(\xi)=\eta^{\operatorname{sgn} \xi} G\left(-\frac{1}{4 \xi}\right) \tag{10}
\end{equation*}
$$

Next we put $z=$ it in the formula (5), and use (2), (3), (8) to have

$$
1=c_{\sigma}(c, d) \eta^{\operatorname{sgn} d-1} G\left(\frac{b}{2 d}\right), \quad(c \neq 0) .
$$

Furthermore, from (10) and from elementary properties of Gauss sums ${ }^{5}$) follows

$$
\begin{aligned}
& G\left(\frac{b}{2 d}\right)=G\left(\frac{b / 2}{d}\right)=\left(\frac{2 b}{d}\right) G\left(\frac{1}{d}\right) \\
= & \left(\frac{2 b}{d}\right) \eta^{\operatorname{sgn} d} G\left(-\frac{d}{4}\right),
\end{aligned}
$$

5) See [1], [2].
and $d \equiv 1(\bmod 4)$ implies $G\left(-\frac{d}{4}\right)=\eta^{-1}$. Hence, $c_{\sigma}=(-c, d)\left(\frac{2 b}{d}\right)$ as asserted. If $c=0$, then $d=1$. So, the assertion is claer by (4).

Using fundamental properties of the Jacobi symbol, we can deduce from Proposition 1 immediately the following

Corollary. Let $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an element of Γ such that $\sigma \equiv 1(\bmod 4)$. Then, $c_{\sigma}=(c, d)\left(\frac{2 c}{d}\right)$ for $c \neq 0$, and $c_{\sigma}=1$ for $c=0$.

As shown in [5], the factor system of the 2 -fold non-trivial covering group \tilde{G} of $G=S L(2, \boldsymbol{R})$ is given by

$$
\begin{equation*}
a(\sigma, \tau)=(x(\sigma), x(\tau))\left(-x(\sigma)^{-1} x(\tau), x(\sigma \tau)\right), \quad(\sigma, \tau \in G), \tag{11}
\end{equation*}
$$

where, for $\sigma=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \beta \\ \delta\end{array}\right) \in G, x(\sigma)=\gamma$ or δ according to $\gamma \neq 0$ or $=0$. Now, for the square root fixed by (2), the relation

$$
\begin{equation*}
\sqrt{c(\tau z)+d} \cdot \sqrt{c^{\prime} z+d^{\prime}}=a(\sigma, \tau) \sqrt{c^{\prime \prime} z+d^{\prime \prime}} \tag{12}
\end{equation*}
$$

holds with $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \tau=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right), \quad \sigma \tau=\left(\begin{array}{ll}a^{\prime \prime} & b^{\prime \prime} \\ c^{\prime \prime} & d^{\prime \prime}\end{array}\right)$, l
$x(\sigma)<0$ is equivalent with the fact that $0 \leqq \arg (c z+a)<\pi$, resp. $-\pi \leqq \arg$ $(c z+d)<0$ is the case for all z in the upper half plane H. Therefore, if the elements of \tilde{G} are denoted by $\tilde{\sigma}=(\sigma, \varepsilon),(\sigma \in G, \varepsilon= \pm 1)$, and the operation of $\tilde{\sigma}$ on a function $f(z)$ of a complex variable is defined by $f^{\tilde{c}}(z)=f(\sigma z)$, then

$$
j(\tilde{\sigma}, z)=\varepsilon \sqrt{c z+d}
$$

becomes an automorphic factor over \tilde{G}, that is, j satisfies

$$
\begin{equation*}
j(\tilde{\sigma} \tilde{\tau}, z)=j \tilde{\tau}(\tilde{\sigma}, z) j(\tilde{\tau}, z), \quad(\tilde{\sigma}, \tilde{\tau} \in G) . \tag{13}
\end{equation*}
$$

Thus we get
Proposition 2. Let $\tilde{\Gamma}$ be the covering group of Γ determined by the factor set (11), denote by $\tilde{\sigma}=(\sigma, \varepsilon),(\sigma \in \Gamma, \varepsilon= \pm 1)$, an element of $\tilde{\Gamma}$, and put $\chi(\tilde{\sigma})=$ $\chi(\sigma, \varepsilon)=c_{\sigma} \varepsilon, c_{\sigma}$ being as in (5). Then χ is a representation of degree 1 of $\tilde{\Gamma}$, i.e., we have $\chi(\tilde{\sigma} \tilde{\tau})=\chi(\tilde{\sigma}) \chi(\tilde{\tau}),(\tilde{\sigma}, \tilde{\tau} \in \tilde{\Gamma})$.

In this way, the automorphic factor in (5) of $\vartheta(z)$ is decomposed into a representation of $\tilde{\Gamma}$ and an automorphic factor of \tilde{G}. Making use of this result, the following therorem is proved:

Theorem. Let $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an element of Γ, and put $\eta=e^{\frac{\pi i}{4}}$, Then, c_{σ} in (5), or in other words $\chi(\sigma, 1)$ in Propositoin 2, is given by:
conditions on σ
2|c and

$$
\begin{array}{ll}
c \neq 0, & d \equiv 1(\bmod 4) \\
c \neq 0, & d \equiv-1(\bmod 4) \\
c=0, & d=1 \\
c=0, & d=-1
\end{array}
$$

2|d and

$d \neq 0$,	$c \equiv 1(\bmod 4)$
$d \neq 0$,	
	$c \equiv-1(\bmod 4)$
$d=0$,	
$d=0$,	$c=-1$

value of $c_{\sigma}=\chi(\sigma, 1)$

$$
\begin{gathered}
(c, d)\left(\frac{2 c}{d}\right) \\
i(c, d)\left(\frac{2 c}{d}\right) \\
1 \\
-i \\
\eta\left(\frac{2 d}{c}\right) \\
\eta^{-1}\left(\frac{2 d}{c}\right) \\
\eta \\
\eta^{-1}
\end{gathered}
$$

Proof. If $d \equiv 1(\bmod 4)$ and $c \equiv 0(\bmod 4)$, then $a \equiv 1(\bmod 4)$, and the theorem follows at once from Proposition 1. So, we assume $d \equiv 1$, $c \equiv 2(\bmod 4)$. Put $\tau^{\prime}=\left(\begin{array}{rr}1 & -2 \\ 1\end{array}\right), \tau=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right), \rho=\binom{-1}{1} ;$ then $\rho_{\tau}=\tau^{\prime} \rho$, and a $a(\rho, \tau)=1, a\left(\tau^{\prime}, \rho\right)=1$ by (11). Therefore, $\chi(\tau, 1)=1$, where ($\tau, 1$) stands for an element of $\tilde{\Gamma}$. Hence, under the additional assumption $c+2 d \neq 0$, Proposition 2 and the results for the case of $c \equiv 0(\bmod 4)$ imply

$$
\begin{aligned}
c_{\sigma} & =\chi(\sigma, 1)=\chi(\sigma \tau, 1) a(\sigma, \tau) \\
& =(c+2 d, d)\left(\frac{2(c+2 d)}{d}\right)(c, 2)(-2 c, c+2 d) \\
& =(-2 c d, c+2 d)^{6}\left(\frac{2 c}{d}\right)=(c, 2 d)\left(\frac{2 c}{d}\right) \\
& =(c, d)\left(\frac{2 c}{d}\right) .
\end{aligned}
$$

If $c+2 d=0$, then d must be 1 . So,

[^1]$$
c_{\sigma}=(c, 2)(-2 c, d)=1=(c, d)\left(\frac{2 c}{d}\right) .
$$

Thus the theorem is verified for the case of $d \equiv 1(\bmod 4)$.
Next we put $\tau=\binom{-1}{-1}, \rho=\left(1^{-1}\right)$ to have $\rho^{2}=\tau, \quad a(\rho, \rho)=-1$. Since (3) implies $\chi(\rho, 1)=\eta, \chi(\tau, 1)$ must be $-i$. Therefore, if $d \equiv-1(\bmod 4)$ and $c \neq 0$, then

$$
\begin{aligned}
c_{\sigma} & =\chi(\sigma, 1)=\chi(\sigma \tau, 1) \chi(\tau, 1)^{-1} a(\sigma, \tau) \\
& =i(-c,-d)\left(\frac{-2 c}{-d}\right)(-1, c)(c,-c) \\
& =i(-1,-d)(c, d)\left(\frac{-2 c}{-d}\right)=i(c, d)\left(\frac{2 c}{d}\right) .
\end{aligned}
$$

The assertion for $c=0$ is almost the same thing as $\chi(\tau, 1)=-i$. Thus the proof for the case of $2 \mid c$ is finished.

If $2 \mid d$ and $d \neq 0$, then $a(\sigma, \rho)=(-c, d)$ for $\rho=\left(\begin{array}{ll}1^{-1}\end{array}\right)$.
So,

$$
c_{\sigma}=\chi(\sigma \rho, 1) \chi(\rho, 1)^{-1}(-c, d)=\eta^{-1}(-c, d) \chi(\sigma \rho, 1),
$$

and our assertion reduces to former cases. If $d=0$, then $c_{\sigma}=\eta^{-1}(-c,-c)$. $\chi(\sigma \rho, 1)$, and the theorem is still valid.
This completes the proof.

§2. Remarks on the reciprocity law.

In a previous paper [4], the author has shown that the reciprocity law of the power residue symbol of an arbitrary degree in a totally imaginary number field is essentially equivalent with the multiplicativity of a function defined by means of the power residue symbol on an arithmetically defined discontinuous subgroup of $S L(2, \boldsymbol{C})$. For the rational number field, a corresponding result is stated in Proposition 2 of this paper using the quadratic residue symbol which is the only residue symbol of a number field with real conjugates. Proposition 2 shows that, whenever a number field has a real conjugate, $S L(2, \boldsymbol{R})$ is not enough to get a corresponding result to the theorem of [4] for the number field, but we must use the covering group \tilde{G} which is not an algebraic group. Although Proposition 2 concerns only the rational number field, the situation is not completely different for the
general case; we merely need such a theta function of several variables as is used in the integral representation of Dedeking's zeta function instead of the theata function in (1), to have a generalization of Proposition 2, i.e., a result like the theorem of [4].

As well as the theorem of [4] is proved by an elementary computation, it is possible to see the equivalence of Proposition 2 and the quadratic reciprocity law directly without any analytic function. For example, put $\sigma=\left(\begin{array}{ll}a & b \\ 2 c & d\end{array}\right), \quad(c \neq 0), \tau=\left(\begin{array}{cc}1 & 2 m \\ & 1\end{array}\right)$. Since then $a(\sigma, \tau)=1$, the relation $\chi(\tilde{\sigma} \tilde{\tau})$ $=\chi(\tilde{\sigma}) \chi(\tilde{\tau})$ together with Theorem 1 yields

$$
(c, d)\left(\frac{c}{d}\right)=(c, d+4 c m)\left(\frac{c}{d+4 c m}\right),
$$

which is a somewhat non-explicit formulation of the quadratic reciprocity. Conversely, assuming the quadratic recipricity, we can prove Proposition 2 by the method in [4]. The procedure becomes, however, rather complicated. In this manner one can any way understand the mechanism of the so-called analytic proof of the reciprocity law.

Proposition 2 gives various different forms, or formal generalizations, of the quadratic recipirocity law. Put for instance $\sigma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \tau=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)$, $\sigma \equiv \tau \equiv 1(\bmod 4), c \neq 0, c^{\prime} \neq 0, c a^{\prime}+d c^{\prime} \neq 0$. Then, Proposition 2 entails

$$
\begin{gathered}
(c, d)\left(\frac{2 c}{d}\right) \cdot\left(c^{\prime}, d^{\prime}\right)\left(\frac{2 c^{\prime}}{d^{\prime}}\right) \\
=\left(c a^{\prime}+d c^{\prime}, c b^{\prime}+d d^{\prime}\right)\left(\frac{2\left(c a^{\prime}+d c^{\prime}\right)}{c b^{\prime}+d d^{\prime}}\right) \cdot\left(c, c^{\prime}\right)\left(-c c^{\prime}, c a^{\prime}+d c^{\prime}\right)
\end{gathered}
$$

References

[1] H. Hasse, Allgemeine Theorie der Gaussschen Summen in algebraischen Zahlkörpern, Abh. Deutsch. Akad. d. Wiss. zu Berlin, Math-Naturw. Klasse, 1951.
[2] E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Leipzig, 1923.
[3] C. Hermite, Sur quelques formules relatives à la transformation des fonctions elliptiques, Oeuvres I (1905), 487-496.
[4] T. Kubota, Ein arithmetischer Satz über eine Matrizengruppe, J. reine angew. Math. 222 (1966), 55-57.
[5] T. Kubota, Topological covering of SL(2) over a local field, J. Math. Soc. Japan 19 (1967), 114-121.
[6] A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964), 143-211.

[^0]: Received March 31, 1969

 1) Called in many cases theta constant. It is an automorphic form with respect to the discontinuous group Γ defined in $\S 1$.
 2) For example, see [2].
[^1]: 6) Apply here the formula $(a, b)\left(-a^{-1} b, a+b\right)=1$ of Hilbert's symbol.
