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§1. Introduction,

Let ξ = {ξ(t); t^T] be a stochastic process, where T is a finite interval.

The ε-entropy He(ζ) of ζ is defined as the following quantity:

(1) H,(ξ) = m£I(ξ,η),

where I{ξ,y) is the amount of information about ξ contained in an another

stochastic process η — {η{t); t^T] and the infimum is taken for all stochastic

processes η satisfying the condition:

(2) ( E\ξ(t)~V(t)\2dt<ε2.

Concerning the ε-entropy of Gaussian processes, M.S. Pinsker has got

an explicit expression of it in terms of the spectral measure. More precisely,

let ξ = {£(/); t^T] be a real valued mean continuous Gaussian process. We

denote by r{s,t) the covariance function of £, i.e. r(s, t) = E[{ξ{s) — Eζ{s))

(ζ{t) — Eζ(t))}, and we define an integral operator on the space L2{T) by

the following:

(3) Kφ(t) = \ r(s,t)φ(s)ds, φtΞL\T)9 t^T.

Then K is a symmetric Hilbert-Schmidt operator with countable nonnega-

tive eigenvalues {λn}Z=i Using these eigenvalues, the ε-entropy of ξ is

expressed in the form:

(4) Hε(ξ) = \ ΛΣ log [max(A., 1)] ,
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where Θ is determined by the equation:

(5) fj min(jln, 0
2) = ε 2 .

W = l

The formula (4) enables us to estimate the asymptotic behavior of He(ζ) as

ε tends to 0 (cf. [1], [2]).

On the other hand, there are many investigations concerning the equi-

valence of Gaussian processes. In a usual manner, every Gaussian process

ζ = {ξ(t); t^T] determines a measure on the space Rτ. Two Gaussian

processes are said to be equivalent, if their corresponding measures are

equivalent, i.e. they are mutually absolutely continuous.

The purpose of this paper is to investigate the relations between the

equivalence of Gaussian processes and the asymptotic properties of their ε-

entropy.

Let f = {£(*); t<=T] and f = {£(*); t<=T] be the real valued mean con-

tinuous Gaussian processes and let K and K be the integral operators de-

fined by the formula (3) for ξ and f, respectively. Denote by {λn} and [Xn]

the eigenvalues of K and K, respectively. In §2 we shall give a necessary

condition for the equivalence of ζ and I in terms of {2n} and {λn}. Con-

sider an operator S on I2 defined by

•X, o
o

If I is equivalent to f, then it will be shown that the eigenvalues {Zn}

coincide with the eigenvalues of the operator SAS, where A is a self-adjoint

operator such that I — A (I = identity operator) is of Hilbert-Schmidt type

(Theorem l). Moreover, using the fact that I—A is completely con-

tinuous, we shall prove that the asymptotic behavior of λn is approximately

similar to that of λn as n -> oo (Theorem 2).

In §3 it will be shown that the ε-entropy of equivalent Gaussian pro-

cesses are c'asymptotically equal" (Theorem 3). This means the following:

Given a Gaussian process whose ε-entropy is known. Then we can estimate

the ε-entropy of any Gaussian process which is equivalent to the given

process.
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§2. A necessary condition for the equivalence of Gaussian
processes.

Let ξ = {?(*); t<=T] and I = {£(*); t^T] be real valued mean continuous

Gaussian processes with covariance function r(s,t) and r(s,t) (s, ί e T ) , res-

pectively. We may assume, without loss of generality, that the mean of

ξ(t) is zero ( ί e T ) . Define the operators K and K by the formula (3), and

arrange the eigenvalues of K and K in a decreasing order: λx ^ λz ^

and λx ^ Λ2 = * * •> respectively. Define operators S and S in I2 as follows:

•X o \ / /I7 o
o J \ o .

We first derive a necessary condition for the equivalence of the pro-

cesses ζ and I in terms of the corresponding eigenvalues {λn} and {λn}.

THEOREM 1. If a Gaussian process ξ is equivalent to a Gaussian process ζ,

then there exists an operator A in I2 such that A is self adjoint and I—A is of

Hilbert-Schmidt type and that the eigenvalues {λn} of K {or of S2) coincide with

those of SAS.

Proof. Let {φn}n=i({φn}Z=i) be the eigenfunctions, which forming a c.

o. n. s. of L2(T), of the operator K (K) corresponding to the eigenvalues

Unl ({%n}) Define Gaussian random variable £Λ by

fΛ = - 7 = - ( W)φn(t)dt, (n = 1, 2, ).

Then ζ{t) can be expressed as follows:

oo

Since f is equivalent to f, there is an invertible bounded self-adjoint

positive definite operator F such that I — F2 is of Hilbert-Schmidt type and

that

(8) E(Fζ{s) Fζ{t)Γ = ?{s, t), s, ί e T ,

(Yu.A. Rozanov [3]). Let {μΛ}n=i and {ηn}n=i be the eigenvalues and cor-

responding eigenvectors of F which form a c. o. n. s.. Set

E(X) denotes the expectation of a random variable X.
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cnm = Eξnηm and C = (cnm)

Then C is a unitary operator on /2 and by (7) it follows that

so

= Σ # » cnmφn(t)μmym.
n, m=l

Therefore (8) implies that

(9) r(s,t)= fj )/JΓτ/^ ClnCmnμlφι(s)φm(t).
l,m,n = l

On the other hand, applying Mercer's expansion theorem we have

(10) r(s, t) = Σ ;n9n(5)^n(i).
w = l

Set

( 5)Js and 5 = (δ n

Then B is a unitary operator on I2. Multiplying the both sides of (9) and

(10) by ψp{s)ψq{t) and integrating them, it follows that

oo

UpqΛp = ZJ yλi y Xm CιnCmnμnbipbmq, p, Q = 1, 2, .
l,m,n=l

Observing this relation, we get

S2 = B*SASB,

μx C
where A = CD2C and D =

The eigenvalues {!„} of S2 - B*SASB coincide with those of SAS since B

is unitary. The fact that I — F2 is an operator of Hilbert-Schmidt type

implies that / — A is of Hilbert-Schmidt type. Thus the theorem is proved.

From Theorem 1 we can obtain the following theorem concerning the

asymptotic behavior of the eigenvalues {λn} and {Zn}.
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THEOREM 2. If f is equivalent to ξ then for any δ> 0 there exists an integer

n0 such that

(11) (1 - δ)λn+no < λn < (1 + δ)λn-»0> n>nQ.

Proof For the proof it is sufficient to prove the next lemma.

LEMMA. Let S be a self adjoint completely continuous operator on a Hilbert

space, and A be a self adjoint operator such that I — A is completely continuous and

that SAS is positive definite. Let λn and μn {n = 1,2, ) be the n-th largest

eigenvalue of S2 and SAS, respectively. Then for any δ>0 there exists an integer

n0 suck that

(1 - δ)λn+no ^μn<(l + δ)λn-no, n > n0.

Proof Let {vn} (arrange them so that 1^1 ^ \v2\ ^ ) be the eigen-

values of / — A and ζn be the eigenvector corresponding to vn. Let Hn be

the closed linear subspace spanned by ζj9 j = 1, , n. Since I — A is

completely continuous, for any δ > 0 there exists an integer n0 such that

n >n0.

Define operators Ax and A2 as follows:

/, on Hno>

A, on HnQi

A— I, on

0, on

Then Ai satisfies

and so

(1 - δ)Sz < SA,S ^ (1 + δ)S2.

Consequently we have

(12) (1 - δ)2n < μun ^ (1 + δ)λn, n = 1,2,

where μUn denotes the n-th largest eigenvalue of SAβ. On the other
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hand, noting that the dimension of the range of SΛZS is at most nQ9 we

get

(13) μt,n = μln = 0, n > w0,

where μj,n(μj,n) denotes the n-th largest nonnegative (nonpositive) eigen-

value of SA2S. From (12), (13) and the equality SΛS = SAβ + &A2S> it

follows that

f*n ^ J"l.n-n 0 + ^2. no+l = i"l.n-n 0 ^ U + W Λ - n 0 » » > »Of

A*n ^ A^l.n+no + ^2. no+l = /Ί.»+» o ^ (1 — tf)*»+»0> ** = 1, 2, ' ' * ,

(cf. F. Riesz, B. Nagy [4] §95). These complete the proof.

§3 The e-entropy of equivalent Gaussian processes.

Using Theorem 2 and the formula (4) for the ε-entropy of Gaussian

processes, we have the following theorem.

THEOREM 3. If a Gaussian process f = {ξ{t); t^T} is equivalent to a Gaussian

process ξ= {ξ{t); ί e T } , then for any 0 < 3 < 1 and ε > 0 there exists δo=do(δ,ε)

suck that, for any fixed δ, δo(δ, ε) | 0 as ε 4-0 and that

(14) (1 - δo)Hίi+δχι+δMξ) ^ Hε(l) <(l + δQ)Ha-δχi-δo)e(S).

For the proof we prepare a lemma.

LEMMA. Let {λn} and {ln} be the eigenvalues of the integral operator K and

K corresponding to the processes ξ and f, respectively, as before.

(i) If λn<λn for all n, then He{ξ) ^ He(ξ).

(ii) If λn = a2λn for all n (a is a positive constant), then Hae(ξ) = He(ξ).

(iii) If λn = λn for all n>N (N is a constant), then He(ξ) = Hε(ξ) + c (c

is a constant) for sufficiently small ε.

(iv) If λn — λn+N for all n (N is a constant), then there exists δ1 = δ^ε)

such that £i(εU0 as ε | 0 and Ha+δi)*{ξ) <(l + δJHΛξ).

Proof (i), (ii) and (iii) are obvious from the formula (4). For the
oo

proof of (iv), we define the number θ = θ{ε) by the equation Σ min(λn,θ
2)=ε2,

and define the integer p = p{ε) by p = max{n; λn^θ2}. Then from (4)
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We define δ = o(ε) by the following equation,

(1 + δ)*ε* = (iV#2 + ε2),

i.e. (1 + δYε2 = (p + N)θ2 + fj λn.

Then δ = δ{ε)iθ as ε10 and by (4) we have

(15) flci+*).(f)=4- Σ
z »=i

Therefore in order to prove the lemma it is enough to show that

(16) Jhog-^-^iWf)) as

Noting that p(ε)t°° as ε |0, for any integer k>0, we can take ε >0 such

as p = p{ε) >kN. It follows that

Therefore,

4-Σ log - ^ Σ
2 n = l </4 n = l 1

-η- as ε -> 0.
k

So we have the relation (16), since k is arbitrary. Thus the lemma is

proved.

Proof of Theorem 3. Using Theorem 2, for any 0 < δ < 1 there is an

integer n0 such that

Define the sequences {̂ i,w} and {̂ 2,τι} as follows:

(1 - β) 2!., n < Λ0,
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(1 + δ)2λn, n ^ n0,

n > n0.fwo>

We shall construct Gaussian processes ζί and ζ2, whose eigenvalues are

{λun} and {λ2tn}. For this we set

Ψn(t) = n = 2m + 1, m = 1,2,

/, w = 2m, m = 1,2,

(|T I denotes the length of the interval T) and

oσ

r^s, t) = 2 Λ,7*̂ w(s)̂ U)> z' = 1,2.

Then each r^s, ί) is continuous in (s, f) and positive definite, therefore it

determine a Gaussian process ?* = {fi(0; ί^T} whose covariance function is

ri(s, t) having the eigenvalues {λi>n\. Here we apply the lemma to the

processes ξx and ξ2. Using (i) and (ii) of the lemma, we get

and using (iii) and (iv), it follows that there exists δo = δQ(δ,ε) such that

δo{δ,ε)i,O as ε^O and that

These three inequalities give the relation (14). Thus we have proved

Theorem 3.

From this theorem we can get the following result by simple calcula-

tion.

THEOREM 4. . In addition to the assumption of Theorem 3, suppose that He{ξ)

satisfies

(17)

Then
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(18) lim ^ j | = 1.

Remark. There exist Gaussian processes ζ and I which satisfy the re-

lation (18) and are not equivalent (cf. Example 2).

EXAMPLE 1. Let ξ = {ζ(t); / e T} be the Brownian motion. Then

Hε(ξ) is of the form

, as

([2]) and it satisfies the condition (17). If a Gaussian process I = {ζ{t);

is equivalent to £, then by Theorem 4 it holds that

For example, we present the Ornstein-Uhlenbeck Brownian motion as f.

EXAMPLE 2. Let £ = {£(*); ^ G ^l and £={£(*); ί e T } be stationary

Gaussian processes with spectral density /U) and f(λ). Suppose that the

following conditions (i) and (ii) are satisfied.

(i) /U) = cr(1+α)(logA)Λ for sufficiently large λ,

where 0 < c , 0<a, and — o o < ^ < o o .

i f(λ) ~ '

From these assumptions we can obtain ([5]) that

2 £_ 2_

g-^-) a +o(ε α ( log^-) α ) , as

where

1

. _ l + a( 2H5(l + α ) | T r c ' ^ α

Therefore we have

HM = H.(ξ) + o(HM, as ε -> 0.

This shows that ξ and I satisfy the relation (18).



130 SHUNSUKE IHARA

Consider an another condition:

(iii) f{λ) = f{λ) + c'λ~(1+*+d\ for sufficiently large λ,

where 0 < c' and 0 < d < -~~. Then it is straightforward that (i) and (iii)

imply (ii). Therefore under the assumptions (i) and (iii), the relation (18)

is fulfilled, but by the theorem in [6] we see that f is not equivalent to ζ.
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