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§1. Introduction.

Let & = {&(¢); tT} be a stochastic process, where T is a finite interval.
The ¢-entropy H.(€) of ¢ is defined as the following quantity:

1 H.(¢) = i?f I(&,7),

where I(£,7) is the amount of information about & contained in an another
stochastic process 7 = {7(¢); t€T} and the infimum is taken for all stochastic
processes 7 satisfying the condition:

@ [, Bl —nnear < e

Concerning the ¢-entropy of Gaussian processes, M.S. Pinsker has got
an explicit expression of it in terms of the spectral measure. More precisely,
let &€ = {&(¢); t=T} be a real valued mean continuous Gaussian process. We
denote by r(s,#) the covariance function of &, i.e. 7(s,t) = E{(§(s) — E&(s))
(€(t) — E&(t))}, and we define an integral operator on the space LXT) by
the following:

3) Ko(t) = | (s, )e(s)ds, ¢eLAT), teT.

Then K is a symmetric Hilbert-Schmidt operator with countable nonnega-
tive eigenvalues {1,}5.,. Using these eigenvalues, the g-entropy of & is
expressed in the form:

o
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where ¢ is determined by the equation:
() 2 min(2,, 6%) = &*.
n=

The formula (4) enables us to estimate the asymptotic behavior of H,(§) as
e tends to 0 (cf. [1], [2]).

On the other hand, there are many investigations concerning the equi-
valence of Gaussian processes. In a usual manner, every Gaussian process
& ={&(t); teT} determines a measure on the space R?. Two Gaussian
processes are said to be equivalent, if their corresponding measures are
equivalent, i.e. they are mutually absolutely continuous.

The purpose of this paper is to investigate the relations between the
equivalence of Gaussian processes and the asymptotic properties of their e-
entropy.

Let &= {&(t); teT} and & = {§(t); t€T} be the real valued mean con-
tinuous Gaussian processes and let K and K be the integral operators de-
fined by the formula (3) for ¢ and &, respectively. Denote by {1,} and {1,}
the eigenvalues of K and K, respectively. In §2 we shall give a necessary
condition for the equivalence of & and & in terms of {1,} and {1,}. Con-
sider an operator S on /2 defined by

N 0
s=" vz )
O .

If & is equivalent to & then it will be shown that the eigenvalues {1,}
coincide with the eigenvalues of the operator SAS, where A is a self-adjoint
operator such that 7— A (I = identity operator) is of Hilbert-Schmidt type
(Theorem 1).  Moreover, using the fact that I— A is completely con-
tinuous, we shall prove that the asymptotic behavior of 1, is approximately
similar to that of 4, as #—>c (Theorem 2).

In §3 it will be shown that the ¢-entropy of equivalent Gaussian pro-
cesses are ‘‘asymptotically equal” (Theorem 3). This means the following:
Given a Gaussian process whose e-entropy is known. Then we can estimate
the e-entropy of any Gaussian process which is equivalent to the given
process.
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§2. A necessary condition for the equivalence of Gaussian
processes.

Let & = {&(t); t<T} and & = {&(¢); tT} be real valued mean continuous
Gaussian processes with covariance function 7(s,¢) and #(s,¢) (s, t€T), res-
pectively. We may assume, without loss of generality, that the mean of
&(t) is zero (¢t€T). Define the operators K and K by the formula (3), and
arrange the eigenvalues of K and K in a decreasing order: ,=1,=
and 1,=1,= - - -, respectively. Define operators S and S in /2 as follows:

Vi 0 s 0
(6) S=< V2, . ) S=< V7, . )
(0] ‘. 0] ..

We first derive a necessary condition for the equivalence of the pro-
cesses £ and £ in terms of the corresponding eigenvalues {1,} and {.}.

THEOREM 1. If a Gaussian process & is equivalent to a Gaussian process &,
then there exists an operator A in 1 such that A is self-adjoint and I— A is of
Hilbert-Schmidt type and that the eigenvalues {1,} of K (or of S?) coincide with
those of SAS.

Proof. Let {¢,}a-1({&a}n-1) be the eigenfunctions, which forming a c.
0. n.s. of L¥T), of the operator K (K) corresponding to the eigenvalues
{2} ({Z.}). Define Gaussian random variable &, by

—3 1 = o o 0
&= | deanar, =12 -,

Then &(t) can be expressed as follows:

(7) 1) =

ﬁMs

Vin £alt)é

Since £ is equivalent to & there is an invertible bounded self-adjoint
positive definite operator F such that I — F? is of Hilbert-Schmidt type and
that

(8) E(F&(s)- FER)® = #(s, 1), s, teT,

(Yu.A. Rozanov [3]). Let {#,}3-, and {7,}3., be the eigenvalues and cor-
responding eigenvectors of F which form a c¢. 0. n. s.. Set

*) FE(X) denotes the expectation of a random variable X
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oo

Com = E€, and C = <c,,,m>

.
nom=1

Then C is a unitary operator on 7% and by (7) it follows that

&) = 33 VI ContaltVm

SO

Fét) = gﬂl/fcmson(t)ﬂmvm.

Therefore (8) implies that

) Hs 1) = 30 VA Vim ConCmnt20(8)0m(t).

IL,mn=1

On the other hand, applying Mercer’s expansion theorem we have

(10) #s 1) = 3 Tafa(96a():

Set

o

bam = | Pu(9)pn(s)ds and B = (bun)

n, m=i

Then B is a unitary operator on /2. Multiplying the both sides of (9) and
(10) by &,(s)@,(¢) and integrating them, it follows that

5?42P = 2 I/T]/Z Clncmn‘uibtpbmq) Dy q=1,2, « -+,

lL,mmn=1
Observing this relation, we get

S* = B*SASB,

2y 0"
where A =CD?C and D= o J72 )

The eigenvalues {1,} of S2= B*SASB coincide with those of SAS since B
is unitary. The fact that I — F? is an operator of Hilbert-Schmidt type
implies that I — A is of Hilbert-Schmidt type. Thus the theorem is proved.

From Theorem 1 we can obtain the following theorem concerning the
asymptotic behavior of the eigenvalues {1,} and {Z,}.
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Tueorem 2. If & is equivalent to & then for any 6> 0 there exists an integer
n, such that

(11) (L= 0)2ntng = An = (1 + 0)Annyy N>y
Proof. For the proof it is sufficient to prove the next lemma.

LeMMA. Let S be a self-adjoint completely continuous operator on a Hilbert
space, and A be a self-adjoint operator such that I— A is completely continuous and
that SAS is positive definite. Let 2, and g, (n =1,2, +++) be the n-th largest
etgenvalue of S? and SAS, respectively. Then for any >0 there exists an integer
ny Such that

(1 - 5)2n+n0 = U = (1 + B)Zn—n(p n > M.

Proof. Let {v,} (arrange them so that |v,| = |v,| =+« ) be the eigen-
values of I — A4 and ¢, be the eigenvector corresponding to v,. Let H, be
the closed linear subspace spanned by &, j=1, -+, n. Since I—A is
completely continuous, for any >0 there exists an integer n, such that

Iynl é 5, n > ng.
Define operators A4, and A, as follows:

I, on H,,
A= N
A, on Hy,

A—1, on H,,
A, =

1
0, on H,,a.

Then A, satisfies
1= A, <1 +d)],
and so
1—0)S*<SAS<(+3d)S%
Consequently we have
(12) 1—=08)2n = pi,n =1+ 0)2, n=12, + -,

where z, , denotes the n-th largest eigenvalue of SA;S. On the other
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hand, noting that the dimension of the range of SA4,S is at most #n, we
get

(13) Phn=152=0, n > ng,

where g}, (#5.) denotes the n-th largest nonnegative (nonpositive) eigen-
value of SA,S. From (12), (13) and the equality SAS = SA,S + S4,S, it
follows that

Un = Mneng T 85 ngt1 = Hiineng = (1 + 0)An-ngy 7> Ng,

M = Plining T B3, ng+1 = Hi,ntng =(1- 5)1n+n09 n=12 -,

(cf. F. Riesz, B. Nagy [4] §95). These complete the proof.

§3 The e-entropy of equivalent Gaussian processes.

Using Theorem 2 and the formula (4) for the ¢-entropy of Gaussian
processes, we have the following theorem.

TureoreM 3. If a Gaussian process & = {&(t); tET} is equivalent to a Gaussian
process &€ = {E(t); t=T}, then for any 0<8 <1 and &> 0 there exists 5, = 8,(3, &)
such that, for any fixed &, 54(6,€)10 as ¢}0 and that

(14) (1 — S Ha+oa+s0:(8) < Ho(8) < (1 + 80)Hu—5a-80¢(6).

For the proof we prepare a lemma.

Lemma. Let {2,} and {2,} be the eigenvalues of the integral operator K and
K corresponding to the processes & and &, respectively, as before.

Q) If <1, for all n, then H.() = H.(@).
(i) If 2, =@, for all n (a is a positive constant), then H,.(€) = H,(&).
(i) If 2, =12, for all n> N (N is a constant), then H.(€) = H,(&) +c¢ (c
is a constant) for sufficiently small e.

(iv) If A= Aqey Jor all m (N is a constant), then there exists 8, = 8,(¢)
such that 6,(&) 10 as ¢l0 and Huavspe(€) =1 + 6,)H.(&).

Proof. (i), (il) and (iii) are obvious from the formula (4). For the
proof of (iv), we define the number 6 = 4(¢) by the equation i min(,, 62) =¢2,
n=1
and define the integer » = p(¢) by p = max {n; 1,=6%}. Then from (4)

i
1log 0;" .

M=

H@ =1

n

1]
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We define 4 = §(¢) by the following equation,
(1 + 0)%? = (No* + &),

e L+oet=(+Net+ > 2.

n=p+N+41

Then 6 =4(e) L0 as €L0 and by (4) we have

»+N
(15) Havoye(§) = % 2 log %;L

N 2 -
(16) glog r_ = o(H.(§)) as &—0.

Noting that p(e)t o as ¢)0, for any integer k>0, we can take ¢ >0 such
as p = p(e) >kN. It follows that

n=1 02
1. - kN
~ 1 _ kN 2
=5 nzllogzn 5 log#
Therefore,
1 & i N
—2—2_1 log 0;‘ Z_}llogl,,, — Nlogt?
n_H(é) éﬁ“w——‘*vl; as e —0.
¢ 21 log, — kN log®?

So we have the relation (16), since k is arbitrary. Thus the lemma is
proved.

Proof of Theorem 3. Using Theorem 2, for any 0<d<1 there is an
integer n, such that

1 Zn+n0 é z'n. S 1

TFor =g feme M

Define the sequences {4,,,} and {2;,,} as follows:

(L~ 8)*An n = ny,
Ain =
l""ﬂo’ n > Ny
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22,7&

{ (14 8)%Z, n=ng
Antngs n > n.

We shall construct Gaussian processes &, and &, whose eigenvalues are
{4..} and {2,,}. For this we set

1
]/l‘ﬁ ’ n=1,
2 2zm
ou(t) = ‘/ITI cos_let, n=22m+1, m=1,2,++-,
2

(IT1 denotes the length of the interval 7T') and

Ms

7i(Sy 1) = 23 23,0 Pa(S)Palt), i=1,2

n=1

1l

Then each r(s,?) is continuous in (s,¢#) and positive definite, therefore it
determine a Gaussian process &; = {£,(¢); t=T} whose covariance function is
(s, t) having the eigenvalues {4;,}. Here we apply the lemma to the
processes & and &. Using (i) and (ii) of the lemma, we get

Huts)e(8) < H (8) < Ha-0)e(&),

and using (iii) and (iv), it follows that there exists &, = §,(3,¢&) such that
3,(0,€) 40 as ¢/ 0 and that

HE(EI) é (1 'I" Bo)H(l—Bo)e(E),
H@(Ez) = (1 - 50)H(1+5o)€(6)-

These three inequalities give the relation (14). Thus we have proved
Theorem 3.

From this theorem we can get the following result by simple calcula-
tion.

THEOREM 4. . In addition lo the assumption of Theorem 3, suppose that H,(&)
satisfies

. Havse(§)
) ImoHEe  <h

Then
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LHGE
19 fim ey =

Remark. There exist Gaussian processes & and & which satisfy the re-
lation (18) and are not equivalent (cf. Example 2).

ExampLE 1. Let &= {§(¢); t €T} be the Brownian motion. Then
H,(¢) is of the form

2
H.(8) =»%%I———81§ +0<—;2—), as €0,

([2) and it satisfies the condition (17). If a Gaussian process & = {&(¢); teT}
is equivalent to & then by Theorem 4 it holds that

- 2
H. (8 = Z'Z;l‘%-l—o(—gz— , as ¢—~>0.

For example, we present the Ornstein-Uhlenbeck Brownian motion as &.

Exampre 2. Let €= {&(¢); teT} and &= {(¢); t=T} be stationary
Gaussian processes with spectral density f(2) and F). Suppose that the
following conditions (i) and (ii) are satisfied.

(i) F(2) = e~ (loga)™?, for sufficiently large 2,
where 0<¢, 0<a, and — oo < << o0,

) lm 5 = 1

From these assumptions we can obtain ([5]) that

_2 _B _2 _B
H.(€) = ce T(log%) ey 0(5 ° <log—i—> « ) , as €—0,
where

L
3

0 =-LFa( 281 + o) || )

21 at P
Therefore we have

H.(&) = H.(&) + o(H.(8)), as &—0.

This shows that & and & satisfy the relation (18).
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Consider an another condition:

(i) f) = f2) + 249, for sufficiently large 2,

where 0<¢" and 0<d< % . Then it is straightforward that (i) and (iii)

imply (ii). Therefore under the assumptions (i) and (iii), the relation (18)
is fulfilled, but by the theorem in [6] we see that & is not equivalent to &.
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