FORMAL FOUNDATION OF ANALYTICAL
 DYNAMICS BASED ON THE CONTACT STRUCTURE

MINORU KURITA

Dedicated to Prof. K. Ono in celebration of his 60th birthday

A systematic treatment of analytical dynamics was given by E. Cartan in [1], where the 1-form $\sum_{i} p_{i} d q_{i}-H d t$ plays the fundamental role. We give here a further investigation. One of our main purposes is to clarify relations between dynamical systems and Finsler spaces and the other is to formulate an intrinsic bundle structure of the systems. This paper is closely related to my previous papers [4] [5].

1. A contact structure on the dynamical system

The phase space in analytical dynamics can be stated mathematically as follows. Let M be an n-dimensional differentiable manifold of class C^{∞} and local coordinates of a point x in M be $x^{1}, \cdots \cdots, x^{n}$. Let p be a vector in the dual tangent space whose components with respect to the natural frame are p_{1}, \cdots, p_{n}. The dual tangent bundle ${ }^{c} T(M)$ of M consists of points (x, p) and ${ }^{c} T(M)$ is nothing but a phase space. By the coordinate transformation

$$
\begin{equation*}
\bar{x}^{i}=\varphi^{i}\left(x^{1}, \cdots, x^{n}\right) \quad(i=1,2, \cdots, n) \tag{1.1}
\end{equation*}
$$

p_{i} 's are transformed as

$$
\begin{equation*}
\bar{p}_{i}=p_{j} \frac{\partial x^{j}}{\partial \bar{x}^{2}} . \tag{1.2}
\end{equation*}
$$

We omit summation symbols in this paper, as is usual in the tensor calculus. We denote the time interval $-\infty<t<\infty$ by τ. A function $H=H(x, p, t)$ of class C^{∞} on ${ }^{c} T(M) \times \tau$ with the assumption

$$
\begin{equation*}
\text { the rank of the matrix }\left(\frac{\partial^{2} H}{\partial p_{i} \partial p_{j}}\right)=n \tag{1.3}
\end{equation*}
$$

[^0]defines a dynamical system on M. Hereafter we use notations $H_{x^{t}}, H_{p_{t}}$, $H_{p_{i} p_{j}}$ for the derviatives $\partial H / \partial x^{i}, \partial H / \partial p_{i}, \partial^{2} H / \partial p_{i} \partial p_{j}$.

In general a 1 -form ω on a $2 n+1$ dimensional manifold such that $\omega \wedge(d \omega)^{n} \neq 0$ is said to define a contact structure. Here we have

Theorem 1. A 1-form $\Omega=p_{i} d x^{i}-H d t$ defines a contact structure on ${ }^{c} T(M) \times \tau$, where exceptional points form a set without inner points.

This can be verified as follows. We get by calculation

$$
\Omega \wedge(d \Omega)^{n}=(-1)^{\frac{(n+1)(n+2)}{2}}\left(p_{i} H_{p_{i}}-H\right) d p_{1} \wedge \cdots \wedge d p_{n} \wedge d x^{1} \wedge \cdots \wedge d x^{n} \wedge d t
$$

If $p_{i} H_{p_{t}}-H$ vanishes on a open set we get by differentiation $p_{i} H_{p_{t} p_{j}}=0$ which contradicts to (1.3).

Next we put

$$
\begin{equation*}
\theta^{i}=d x^{i}-H_{p_{i}} d t, \quad \rho_{i}=d p_{i}+H_{x^{i}} d t \quad(i=1, \cdots, n) \tag{1.4}
\end{equation*}
$$

Then we get a fundamental relation

$$
\begin{equation*}
d \Omega=\rho_{i} \wedge \theta^{i} \tag{1.5}
\end{equation*}
$$

A curve $x=x(t), p=p(t)$ on ${ }^{c} T(M)$ is called a path if it satisfies $\theta^{i}=0$, $\rho_{i}=0(i=1, \cdots, n)$. Then we get

Theorem 2. We take a family C of curves $x(t), p(t)\left(t_{1} \leqq t \leqq t_{2}\right)$ with $x^{(1)}=x\left(t_{1}\right), x^{(2)}=x\left(t_{2}\right)$, where $x^{(1)}$ and $x^{(2)}$ are fixed points in M. The integral $\int \Omega$ is stationary for the path in the above sense among the family C.

The proof rums as follows as is essentially given in [1]. We take a 1-parametric family $x(t, \varepsilon), p(t, \varepsilon)$ from C and assume that $\varepsilon=0$ for the path. Then we have $d \Omega(\partial / \partial t, \partial / \partial \varepsilon)=\rho_{i}(\partial / \partial t) \theta^{i}(\partial / \partial \varepsilon)-\rho_{i}(\partial / \partial \varepsilon) \theta^{i}(\partial / \partial t)$ and for $\varepsilon=0$ $\theta^{i}(\partial / \partial t)=0, \quad \rho_{i}(\partial / \partial t)=0$, and so

$$
d \Omega\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial \varepsilon}\right)=\frac{\partial}{\partial t} \Omega\left(\frac{\partial}{\partial \varepsilon}\right)-\frac{\partial}{\partial \varepsilon} \Omega\left(\frac{\partial}{\partial t}\right)=0
$$

Hence we get

$$
\begin{aligned}
& {\left[\frac{\partial}{\partial \varepsilon} \int_{t_{1}}^{t_{2}} \Omega\left(\frac{\partial}{\partial t}\right) d t\right]_{\varepsilon=0}=\int_{t_{1}}^{t_{2}}\left[\frac{\partial}{\partial \varepsilon} \Omega\left(\frac{\partial}{\partial t}\right)\right]_{\varepsilon=0} d t} \\
& \quad=\int_{t_{1}}^{t_{2}} \frac{\partial}{\partial t}\left[\Omega\left(\frac{\partial}{\partial \varepsilon}\right)\right]_{\varepsilon=0} d t=\left[\Omega\left(\frac{\partial}{\partial \varepsilon}\right)_{\varepsilon=0}\right]_{t_{1}}^{t_{2}}=0
\end{aligned}
$$

Next we take a 1-form

$$
\begin{equation*}
\omega=p_{i} d x^{i} \tag{1.6}
\end{equation*}
$$

on ${ }^{c} T(M)$. We restrict this to a submanifold generated by a family of paths $x=x\left(t, \alpha^{1}, \cdots, \alpha^{k}\right), p=p\left(t, \alpha^{1}, \cdots, \alpha^{k}\right)$. By virtue of the relation $\theta^{i}(\partial / \partial t)=$ $0, \rho_{i}(\partial / \partial t)=0$ we get by the same process as in the proof of theorem 1 $d \Omega\left(\partial / \partial t, \partial / \partial \alpha^{l}\right)=0$. Hence $d \Omega$, which is an exterior differential form of second order, does not contain terms $d t \wedge d \alpha^{l}$. We put $d \Omega=m_{h l} d \alpha^{h} \wedge d \alpha^{l}$ $\left(m_{h l}=-m_{l h}\right)$. Then by $d(d \Omega)=0$ we see that $d \Omega$ does not contain t. When we put $t=$ const., $d \Omega$ reduces to $d p_{i} \wedge d x^{i}$ and we get the well known theorem.

Theorem 3. The form $d \omega=d p_{i} \wedge d x^{i}$ on ${ }^{c} T(M)$ is invariant for a shift of points (x, p) along the path through each point.

This leads to an invariance of

$$
\begin{gathered}
(d \omega)^{n-1}=(-1)^{\frac{(n-1)(n-2)}{2}}(n-1)!\sum_{i} d p_{1} \wedge \cdots \wedge \widehat{d p_{i}} \wedge \cdots \wedge d p_{n} \wedge d x^{1} \\
\wedge \cdots \wedge \widehat{d x^{i} \wedge} \cdots \wedge d x^{n}
\end{gathered}
$$

where means a lack of the terms $d p_{i}$ and $d x^{i}$. This is a volume element for a set of paths in ${ }^{c} T(M)$.

2. Finsler space

Let M be an n-dimensional differentiable manifold with a point x, whose local coordinates are x^{1}, \cdots, x^{n}. We denote the components of a vector y in $T(M)$ at x by y^{1}, \cdots, y^{n} with respect to the natural frame. A Finsler structure F on M is defined by a function $F=F(x, y)$ on $T(M)$ $(y \neq 0)$ or its subspace, satisfying the following conditions.
(1) $F(x, y)$ is positively homogeneous of degree 1 in y^{1}, \cdots, y^{n}
(2) rank of the matrix $\left(\frac{\partial^{2} F}{\partial y^{i} \partial y^{j}}\right)$ is $n-1$.

When we put $\quad p_{i}=\frac{\partial F}{\partial y^{2}} \quad(i=1, \cdots, n)$,
we can define a fundamental mapping $(x, y) \rightarrow(x, p)$. The image of the mapping is a hypersurface N which we called p-manifold in [4] [5]. A 1-form $\omega=p_{i} d x^{i}$ on N gives a contact structure, and when we express N locally by

$$
\begin{equation*}
p_{n}=-H\left(x^{1}, \cdots, x^{n}, p_{1}, \cdots, p_{n-1}\right) \tag{2.2}
\end{equation*}
$$

and put $\theta^{a}=d x^{a}-H_{p_{a}} d x^{n}, \quad \rho_{a}=d p_{a}+H_{x^{a}} d x^{n}$, we get $d \omega=\rho_{a} \wedge \theta^{a}$. Here the index a runs as $a=1,2, \cdots, n-1$. The solution curves of $\theta^{a}=0$, $\rho_{a}=0$ are lifts to ${ }^{c} T(M)$ of extremals on M of our Finsler structure. (The sign of ρ_{a} is different form that in [5].) The form ω is invariant under a dilatation (or a geodesic flow c.f. [4] p. 93). Hence the invariance of

$$
\begin{gather*}
\omega \wedge(d \omega)^{n-1}=(-1)^{\frac{n(n-1)}{2}}(n-1)!\sum_{i}(-1)^{i-1} p_{i} d p_{1} \wedge \cdots \wedge \widehat{d p_{i}} \wedge \cdots \wedge d p_{n} \\
\wedge d x^{1} \wedge \cdots \wedge d x^{n} \tag{2.3}
\end{gather*}
$$

follows.
We can construct conversely a Finsler structure from a hypersurface in ${ }^{c} T(M)$ given by (2.2), where the rank of the matrix $\left(H_{\rho_{a} p_{b}}\right)$ is equal to $n-1$. $(a, b=1, \cdots, n-1)$ This can be done as follows. We put $z^{a}=H_{p_{a}}$. By the above assumption p_{a} 's are functions of $x^{1}, \cdots, x^{n}, z^{1}, \cdots, z^{n-1}$ locally. We put $z^{a}=y^{a} / y^{n}$ and define F by

$$
\begin{equation*}
F=p_{a} y^{a}-H\left(x^{1}, \cdots, x^{n}, p_{1}, \cdots, p_{n-1}\right) y^{n} \tag{2.4}
\end{equation*}
$$

When we consider F as a function of $x^{1}, \cdots, x^{n}, y^{1}, \cdots, y^{n}$ it is homogeneous of degree 1 in y^{1}, \cdots, y^{n}. Moreover we get

$$
\begin{aligned}
& \frac{\partial F}{\partial y^{a}}=p_{a}+y^{b} \frac{\partial p_{b}}{\partial y^{a}}-y^{n} \frac{\partial H}{\partial p_{b}} \frac{\partial p_{b}}{\partial y^{a}}=p_{a}, \\
& \frac{\partial F}{\partial y^{n}}=\frac{\partial p_{a}}{\partial y^{n}} y^{a}-\frac{\partial H}{\partial p_{a}} \frac{\partial p_{a}}{\partial y^{n}} y^{n}-H=-H=p_{n} .
\end{aligned}
$$

Finally by the differentiation of $y^{a}=y^{n} H_{p_{a}}$ with respect to y^{c} we get $\delta_{a c}=y^{n} H_{p_{c} p_{b}} F_{y^{b} y_{c}}$. Hence the rank of the matrikx ($F_{y^{b} y_{c}}$) is the same with that of ($H_{p_{a} p_{b}}$), namely $n-1$. Thus we have proved

Theorem 4. For the hypersurface (2.2), where the rank of the matrix ($H_{p_{a} p_{b}}$) is equal to $n-1$, we can define a Finsler structure by (2.4) on M, whose p-manifold is (2.2).

3. Relations between dynamical systems and Finsler spaces

By theorem 4 we can construct a Finsler structure on the dynamical system. We only put $x^{n+1}=t, p_{n+1}=-H$. Then applying theorem 4 to this case we get

Theorem 5. For a given dynamical system defined in section 1 we can construct a Finsler structure F on $M \times \tau$ in such a way that the lifts of extremals of F to ${ }^{c} T(M \times \tau)$ correspond to the paths of the dynamical systems.

As an example we take up the fundamental case

$$
H=\frac{1}{2} g^{i j}(x)\left(p_{i}-c_{i}(x)\right)\left(p_{j}-c_{j}(x)\right)+U(x),
$$

where $x=\left(x^{1}, \cdots, x^{n}\right)$ and $\operatorname{det}\left(g^{i j}\right) \neq 0$. We put $\left(g_{i j}\right)=\left(g^{i j}\right)^{-1}$. We have $z^{i}=H_{p_{i}}=g^{i j}\left(p_{j}-c_{j}\right), \quad p_{i}-c_{i}=g_{i j} z^{j}$. Putting $z^{i}=y^{i} / y^{n+1}$ we get $F=p_{i} y^{i}-$ $H y^{n+1}=\left(2 y^{n+1}\right)^{-1} g_{i j} y^{i} y^{j}+c_{i} y^{i}-U y^{n+1}$. And so the paths of our dynamical system correspond to the extremals of the integral

$$
\int F(x, \dot{x}) d t=\int\left(\frac{1}{2} g_{i j}(x) \dot{x}^{i} \dot{x}^{j}+c_{i} \dot{x}-U(x)\right) d t .
$$

Next we take up a case of an autonomous system. This means that $H(x, p, t)$ does not contain t. In this case along each path, namely a solution curve of $\theta^{i}=0, \rho_{i}=0, H$ is constant, as is well known. We take up a hypersurface

$$
\begin{equation*}
H(x, p)=E \text { (const.). } \tag{3.1}
\end{equation*}
$$

We assume $\operatorname{grad}_{p} H=\left(H_{\rho_{1}}, \cdots, H_{p_{n}}\right) \neq(0, \cdots, 0)$. (The set of points such that $\operatorname{grad}_{p} H=0$ is a one without inner points.) Then we can assume $H_{p_{n}} \neq 0$ without loss of generality and we can put

$$
\begin{equation*}
p_{n}=-h\left(x^{1}, \cdots, x^{n}, p_{1}, \cdots, p_{n-1}\right) \tag{3.2}
\end{equation*}
$$

locally. If we know

$$
\operatorname{det}\left(\frac{\partial^{2} h}{\partial p_{a} \partial p_{b}}\right) \neq 0 \quad(a, b=1, \cdots, n-1 .)
$$

we can introduce a Finsler structure on M based on the equienergy surface (3.1) by theorem 4. We have by (3.1) and (3.2)

$$
\begin{equation*}
H\left(x^{1}, \cdots, x^{n}, p_{1}, \cdots, p_{n-1},-h\right)=E . \tag{3.3}
\end{equation*}
$$

Now we take $x^{1}, \cdots, x^{n}, p_{1}, \cdots, p_{n-1}, E$ as independent variables and differentiate (3.3) with respect to p_{a}. Then we get $\partial h / \partial p_{a}=H_{p_{a}} / H_{p_{n}}$. Again we differentiate this with respect to p_{b} and we get

$$
H_{p_{a} p_{b}}-H_{p_{a} p_{n}} \frac{\partial h}{\partial p_{b}}-H_{p_{b} p_{n}} \frac{\partial h}{\partial p_{a}}+H_{p_{n} p_{n}} \frac{\partial h}{\partial p_{a}} \frac{\partial h}{\partial p_{b}}-H_{p_{n}} \frac{\partial^{2} h}{\partial p_{a} \partial p_{b}}=0 .
$$

Putting $Y_{a}=H_{p_{n}} X_{a}, Y_{n}=-H_{p_{a}} X_{a}=-H_{p_{a}} Y_{a} / H_{p_{n}}$ we get

$$
\frac{\partial^{2} h}{\partial p_{a} \partial p_{b}} X_{a} X_{b}=\left(H_{p_{n}}\right)^{-3}\left(H_{p_{a} p_{b}} Y_{a} Y_{b}+2 H_{p_{a} p_{n}} Y_{a} Y_{n}+H_{p_{n} p_{n}} Y_{n}^{2}\right)=\left(H_{p_{n}}\right)^{-3} H_{p_{i} p_{j}} Y_{i} Y_{j}
$$

Hence we get
Theorem 6. If the quadratic form $H_{p_{i} p_{j}} Y_{i} Y_{j}$ is of rank $n-1$ for Y_{i} satisfying $H_{p_{i}} Y_{i}=0$, we can introduce a Finsler structure F based on the equienergy surface (3.1) as in theorem 4.

Explicit calculation of F runs as follows. We put $y^{i}=\lambda H_{p_{i}}$, from which we get $p_{i}=K_{i}(x, z)$ where $z^{i}=y^{i} / \lambda$. We put these into $H(x, p)-E=0$ and we get λ locally, which is possible when

$$
\begin{equation*}
\frac{\partial}{\partial \lambda} H\left(x, K\left(x, \frac{y}{\lambda}\right)\right)=H_{p_{i}} \frac{\partial K_{i}}{\partial z^{j}}\left(-\frac{y^{j}}{\lambda^{2}}\right)=-\frac{1}{\lambda} \frac{\partial K_{i}}{\partial z^{j}} H_{p_{i}} H_{p_{j}} \neq 0 \tag{3.4}
\end{equation*}
$$

This can be verified as follows. We have $z^{i}=H_{p_{i}}(x, K(x, z))$ and by differentiation with respect to z^{j} we get $\delta_{i j}=H_{p_{i} p_{k}} \partial K_{k} / \partial z^{j}$. Hence $\left(\partial K_{i} / \partial z^{j}\right)$ is an inverse to $\left(H_{p_{t}} p_{j}\right)$. Now the assumption in theorem 6 redices to

$$
\left|\begin{array}{cc}
H_{p_{1} p_{1}} \cdots \cdots \cdots \cdot H_{p_{1} p_{n}} & H_{p_{1}} \\
\cdots \cdots \cdots \\
H_{p_{n} p_{1}} \cdots \cdots \cdots \cdots H_{p_{n} p_{n}} & H_{p_{n}} \\
H_{p_{1}} \cdots \cdots \cdots \cdot H_{p_{n}} & 0
\end{array}\right| \neq 0
$$

which proves (3.4), where the exceptional points form a set without inner points.

The application of theorem 6 to the case

$$
H=\frac{1}{2} g^{i j}(x)\left(p_{i}-c_{i}(x)\right)\left(p_{j}-c_{j}(x)\right)+U(x)
$$

gives

$$
\begin{equation*}
F=p_{i} y^{i}=\lambda^{-1} g_{i j} y^{i} y^{j}+c_{i} y^{i}= \pm \sqrt{2(E-U) g_{i j} y^{2} y^{j}}+c_{i} y^{i} \tag{3.5}
\end{equation*}
$$

which is known as Maupertuis's principle. (c.f. [3] p. 225)
Next we consider a relation between the invariant volume element

$$
\begin{equation*}
d V=(-1)^{\frac{n(n-1)}{2}}(d \omega)^{n} / n!=d p_{1} \wedge \cdots \wedge d p_{n} \wedge d x^{1} \wedge \cdots \wedge d x^{n} \tag{3.6}
\end{equation*}
$$

on ${ }^{c} T(M)$ and that on the equienergy surface (3.1). By theorem 6 a Finsler structure is introduced on M corresponding to (3.1). The contact structure
associated with it can be given by $\omega=p_{i} d x^{i}$ ($E=$ const.) and the invariant volume element on it is given by a constant multiple of (2.3), namely

$$
\begin{equation*}
d V_{E}=\Sigma(-1)^{i-1} p_{i} d p_{1} \wedge \cdots \widehat{\wedge d p_{i}} \wedge \cdots \wedge d p_{n} \wedge d x^{1} \wedge \cdots \wedge d x^{n} . \tag{3.7}
\end{equation*}
$$

We have by (3. 3)

$$
d p_{n}=-\left(H_{p_{n}}\right)^{-1}\left(H_{x^{i}} d x^{i}+H_{p_{a}} d p_{a} \div d E\right) \quad(i=1, \cdots, n ; a=1, \cdots, n-1) .
$$

Putting this into $(3.6)(3,7)$ we get the following relation.
Theorem 6. $\quad d V=\left(p_{i} H_{p_{i}}\right)^{-1} d E \wedge d V_{E}$.

4. Structure equations of dynamical systems

We consider a dynamical system with a function $H=H(x, p, t)$. Putting

$$
\begin{equation*}
\theta^{j}=d x^{i}-H_{p_{i}} d t, \quad \rho_{i}=d p_{i}+H_{x^{i}} d t \tag{4.1}
\end{equation*}
$$

we have got for $\Omega=p_{i} d x^{i}-H d t$

$$
d \Omega=\rho_{i} \wedge \theta^{i}
$$

Now we take up a coordinate transformation

$$
\begin{equation*}
\bar{x}^{i}=\varphi^{i}\left(x^{1}, \cdots, x^{n}\right) \quad(i=1, \cdots, n) . \tag{4.2}
\end{equation*}
$$

Then we get by virtue of the relation $\bar{p}_{i}=p_{j} \partial x^{j} / \partial \bar{x}^{i}$

$$
H_{x^{i}}=H_{\bar{x}^{j}} \frac{\partial \bar{x}^{j}}{\partial x^{i}}+H_{\bar{p}_{i}} p_{k} \frac{\partial}{\partial x^{i}}\left(\frac{\partial x^{k}}{\partial \bar{x}^{j}}\right), \quad H_{p_{i}}=H_{\bar{p}_{j}} \frac{\partial x^{2}}{\partial \bar{x}^{j}} .
$$

When we put $\bar{\theta}^{i}=d \bar{x}^{i}-H_{\bar{p}_{i}} d t, \bar{\rho}_{i}=d \bar{p}_{i}+H_{\bar{x}^{i}} d t$, we get

$$
\begin{equation*}
\bar{\theta}^{i}=\frac{\partial \bar{x}^{i}}{\partial x^{j}} \theta^{j}, \quad \bar{\rho}_{i}=\frac{\partial x^{j}}{\partial \bar{x}^{i}} \rho_{j}+p_{k} \frac{\partial^{2} x^{k}}{\partial \bar{x}^{i} \partial \bar{x}^{j}} \frac{\partial \bar{x}^{j}}{\partial x^{h}} \theta^{h} . \tag{4.3}
\end{equation*}
$$

Then we seek for

$$
\begin{equation*}
\mu_{i}=\rho_{i}+r_{i j} \theta^{k} \quad\left(r_{i j}=r_{j i}\right) \tag{4.4}
\end{equation*}
$$

such that

$$
\begin{equation*}
\bar{\mu}_{i}=\frac{\partial x^{j}}{\partial \bar{x}^{i}} \mu_{j} . \tag{4.5}
\end{equation*}
$$

(4.4) assures the relation $d \Omega=\mu_{i} \wedge \theta^{i}$. We put

$$
\begin{equation*}
a_{i j}=H_{x^{i} x^{j}}, \quad b_{i}^{j}=H_{x^{i} p_{j}}, \quad h^{i j}=H_{p_{i} p_{j}} . \tag{4.6}
\end{equation*}
$$

($h^{i j}$) is transformed as a tensor for the transformation (4.2). We have

$$
\begin{equation*}
d \theta^{i}=-\left(b_{j}^{i} \theta^{j}+h^{i j} \rho_{j}\right) \wedge d t, \quad d \rho_{i}=\left(a_{i j} \theta^{j}+b_{i}^{j} \rho_{j}\right) \wedge d t . \tag{4.7}
\end{equation*}
$$

By the frame transformation $\theta^{i}, \rho_{i}, d t \rightarrow \bar{\theta}^{i}, \bar{\rho}_{i}, d t$ in the dual tangent bundle of ${ }^{c} T(M) \times \tau$, where μ_{i} 's are given by (4.4) we get

$$
\begin{equation*}
d \theta^{i}=-\left(\left(b_{j}^{i}-h^{i k} r_{k j}\right) \theta^{j}+h^{i j} \mu_{j}\right) \wedge d t . \tag{4.8}
\end{equation*}
$$

Putting

$$
\begin{equation*}
d h^{i j}=u_{k}^{i j} \theta^{k}+v^{i j k} \mu_{k}+w^{i j} d t \tag{4.9}
\end{equation*}
$$

we have $\quad v^{i j k}=\frac{\partial h^{i j}}{\partial p_{k}}, \quad w^{i j}=\frac{\partial h^{i j}}{\partial t}-\frac{\partial h^{i j}}{\partial p_{k}} H_{x^{k}}+\frac{\partial h^{i j}}{\partial x^{k}} H_{p_{k}}$,

$$
\begin{equation*}
u_{k}^{i j}=\frac{\partial h^{i j}}{\partial x^{k}}-r_{k h} v^{i j h} \tag{4.11}
\end{equation*}
$$

With these preliminaries we prove
Theorem 7. For θ^{i}, ρ_{i} given by (4.1) we can uniquely find

$$
\begin{array}{ll}
\mu_{i}=\rho_{i}+r_{i j} \theta^{j} & \left(r_{i j}=r_{j i}\right) \\
\lambda_{i}^{j}=P_{i k}^{j} \theta^{k}+Q_{i}^{j k} \mu_{k}+R_{i}^{j} d t, & \tag{L}
\end{array}
$$

which satisfy the relations

$$
\begin{align*}
& d \theta^{i}=\theta^{j} \wedge \lambda_{j}^{i}+m_{j}^{i k} \theta^{j} \wedge \mu_{k}-h^{i j} \mu_{j} \wedge d t, \tag{I}\\
& d \mu_{i}=-\mu_{j} \wedge \lambda_{i}^{j}+n_{i j}^{k} \theta^{j} \wedge \mu_{k}+\frac{1}{2} z_{i j k} \theta^{j} \wedge \theta^{k}-K_{i j} \theta^{j} \wedge d t \tag{II}\\
& d h^{i j}+h^{i k} \lambda_{k}^{j}+h^{k j} \lambda_{k}^{i}=0 . \tag{III}
\end{align*}
$$

Remark. We assume $z_{i j k}=-z_{i k j}$. We have by (4.4) $d \Omega=\mu_{i} \wedge \theta^{i}$. Hence $0=d(d \Omega)=d \mu_{i} \wedge \theta^{i}-\mu_{i} \wedge d \theta^{i}$. Putting (I) (II) into this relation we get

$$
\begin{aligned}
& m_{j}^{i k}=m_{j}^{k_{j}}, \quad n_{i j}^{k}=n_{j i}^{k}, \quad K_{i j}=K_{j i}, \\
& z_{i j k}+z_{j k i}+z_{k i j}=0 .
\end{aligned}
$$

proof of theorem 7. We will find such μ_{i}, λ_{i}^{j}. Considering the terms in (III) containing $d t$ we get by (4.9) (L)

$$
w^{i j}+h^{i k} R_{k}^{j}+h^{k j} R_{k}^{i}=0 .
$$

Putting (L) into (I) we get

$$
\begin{equation*}
d \theta^{i}=\theta^{j} \wedge\left(P_{j_{k}}^{i} \theta^{k}+Q_{j}^{i k} \mu_{k}+R_{j}^{i} d t\right)+m_{j}^{i k} \theta^{j} \wedge \mu_{k}-h^{i j} \mu_{j} \wedge d t . \tag{4.13}
\end{equation*}
$$

We compare this with (4. 8). Firstly

$$
\begin{equation*}
R_{j}^{i}=-b_{j}^{i}+h^{i k} r_{k j} \tag{B}
\end{equation*}
$$

and then we get

$$
\begin{equation*}
h^{i k} h^{j h} r_{k h}=\frac{1}{2}\left(h^{i k} b_{k}^{j}+h^{j k} b_{k}^{i}-w^{i j}\right) . \tag{A}
\end{equation*}
$$

Next we get by (4.13) (4.8)

$$
\begin{equation*}
P_{j k}^{i}=P_{k j}^{i}, \quad Q_{j}^{i k}=-m_{j}^{i k} . \tag{4.14}
\end{equation*}
$$

We get by (4.9) (L)

$$
\begin{equation*}
u_{h}^{i j}+h^{i k} P_{k h}^{j}+h^{k j} P_{k h}^{i}=0, \quad v^{i j h}+h^{i k} Q_{k}^{j h}+h^{k j} Q_{k}^{i h}=0 . \tag{4.15}
\end{equation*}
$$

By (M) (4.7) $d \mu_{i}$ does not contain terms $\mu_{j} \wedge \mu_{k}$ for the base $\theta^{i}, \mu_{i}, d t$.
Hence

$$
\begin{equation*}
Q_{i}^{j h}=Q_{i}^{h j} . \tag{4.16}
\end{equation*}
$$

We put $A^{i l j}=h^{i k} h^{i h} P_{k h}^{j}$ and $B^{i j h}=h^{i k} Q_{k}^{j h}$. Then we have by (4. 14) (4. 15) (4. 16)

$$
\begin{array}{ll}
A^{i l j}+A^{j l i}=-h^{2 k} u_{k}^{i j}, & A^{i l j}=A^{l i j}, \\
B^{i j h}+B^{j i h}=-v^{i j h}, & B^{i j h}=B^{i h j} .
\end{array}
$$

From these relations we get $A^{i j l}$ and $B^{i j h}$. Hence

$$
\begin{align*}
& h^{i k} h^{j h} P_{k h}^{l}=-\frac{1}{2}\left(h^{i k} u_{k}^{l j}+h^{j k} u_{k}^{l i}-h^{l k} u_{k}^{i j}\right) \tag{C}\\
& h^{i k} Q_{k}^{j h}=-\frac{1}{2}\left(v^{i h j}+v^{i j h}-v^{j h i}\right) . \tag{D}
\end{align*}
$$

Putting $\left(h_{i j}\right)=\left(h^{i j}\right)^{-1}$ we can resume (A) (B) (C) (D) as follows, where $v^{i j k}$, $w^{i j}$ are given by (4.10) and $u_{k}^{i j}$ by (4.11).

$$
\begin{align*}
& r_{i j}=\frac{1}{2}\left(h_{k j} b_{i}^{k}+h_{i k} b_{j}^{k}-h_{i k} h_{j h} w^{k h}\right), \\
& R_{j}^{i}=h^{i k} r_{k j}-b_{j}^{i}, \\
& P_{i j}^{k}=-\frac{1}{2}\left(h_{l j} u_{i}^{k l}+h_{i l} u_{j}^{k l}-h^{k n} h_{i l} h_{j m} u_{n}^{l m}\right) \\
& Q_{k}^{i j}=-m_{k}^{i j}=-\frac{1}{2} h_{k l}\left(v^{l i j}+v^{l j i}-v^{i j l}\right) .
\end{align*}
$$

Now we will verify that (M) (L) with (A^{\prime}) ($\left.\mathrm{B}^{\prime}\right)\left(\mathrm{C}^{\prime}\right)\left(\mathrm{D}^{\prime}\right)$ satisfy (I) (II) (III). By (4.9) (4.15) we get (III). By (4.13) (4.14) (B) (4.8) we get (I). As to (II) we proceed as follows. We put

$$
d r_{i j}=s_{i j k} \theta^{k}+s_{i j}^{k} \mu_{k}+s_{i j} d t
$$

Then we have by (4.1) (4.4)

$$
\left.\begin{array}{l}
s_{i j}^{k}=\frac{\partial r_{i j}}{\partial p_{k}}, \quad s_{i j k}=\frac{\partial r_{i j}}{\partial x^{k}}-r_{k h} s_{i j}^{h} \tag{4.17}\\
s_{i j}=\frac{\partial r_{i j}}{\partial t}+\frac{\partial r_{i j}}{\partial x^{k}} H_{p_{k}}-\frac{\partial r_{i j}}{\partial p_{k}} H_{x^{k}}
\end{array}\right\}
$$

We express $d \mu_{i}+\mu_{j} \wedge \lambda_{i}^{j}$ in $\theta^{i}, \mu_{i}, d t$ by (4. 4) (4.7) (L). We have

$$
\begin{aligned}
& d \mu_{i}+\mu_{j} \wedge \lambda_{i}^{j}=d\left(\rho_{i}+r_{i j} \theta^{i}\right)+\mu_{j} \wedge\left(P_{i k}^{j} \theta^{k}+Q_{i}^{j k} \mu_{k}+R_{i}^{j} d t\right) \\
& \quad=\left(a_{i j} \theta^{j}+b_{i}^{j}\left(\mu_{j}-r_{j k} \theta^{k}\right)\right) \wedge d t+\left(s_{i j k} \theta^{k}+s_{i j}^{k} \mu_{k}+s_{i j} d t\right) \wedge \theta^{j} \\
& \quad-r_{i j}\left(b_{k}^{j} \theta^{k}+h^{j k}\left(\mu_{k}-r_{k h} \theta^{h}\right)\right) \wedge d t+\mu_{j} \wedge\left(P_{i k}^{j} \theta^{k}+R_{i}^{j} d t\right) .
\end{aligned}
$$

These reduce to (II) when we put

$$
\left.\begin{array}{l}
n_{i j}^{k}=-P_{i j}^{k}-s_{i j}^{k}, \quad z_{i j k}=s_{i j k}-s_{i k j} \tag{E}\\
K_{i j}=-a_{i j}+r_{j k} b_{i}^{k}+r_{i k} b_{j}^{k}-h^{k h} r_{k i} r_{h j}+s_{i j} .
\end{array}\right\}
$$

Thus we have proved theorem 7.
As a consequence we get the desired relation (4.5), namely
Theorem 8. For the coordinate transformation $\bar{x}^{i}=\varphi^{i}(x)(i=1, \cdots, n) \theta^{i}$ and μ_{i} are transformed as

$$
\bar{\theta}^{i}=\frac{\partial \bar{x}^{i}}{\partial x^{j}} \theta^{j}, \cdots \quad \bar{\mu}_{i}=\frac{\partial x^{j}}{\partial \bar{x}^{i}} \mu_{j}
$$

Proof. For the coordinate transformation in question θ^{i} is transformed as in (4.3). We take $\bar{\lambda}_{i}^{j}$ which is transformed as connection forms from λ_{i}^{j}. Then $d \theta^{i}-\theta^{j} \wedge \lambda_{j}^{i}$ is transformed into $d \bar{\theta}^{i}-\bar{\theta}^{j} \wedge \bar{\lambda}_{j}^{i}$ as a vector. Therefore, if we take $\bar{m}_{j}^{i k}, \bar{h}^{i j}, \bar{n}_{i j}^{k}, \bar{K}_{i j}, \bar{z}_{i j k}$ which are transformed from $m_{j}^{i k}, h^{i j}$ etc as tensors and $\tilde{\mu}_{i}=\mu_{j} \partial x^{j} / \partial \bar{x}^{i}$, the relations (I) (II) (III) hold good for $\bar{\theta}^{i}, \tilde{\mu}_{i}$, $\bar{\lambda}_{j}^{i}, \bar{h}^{i j}$ etc.

Now by $\tilde{\mu}_{i}=\left(\rho_{j}+r_{j k} \theta^{k}\right) \partial x^{j} / \partial \bar{x}^{i}$ and (4.3) we have $\tilde{\mu}_{i}=\bar{\rho}_{i}+t_{i j} \bar{\theta}^{j}$. On the other hand we have $d \Omega=\mu_{i} \wedge \theta^{i}=\tilde{\mu}_{i} \wedge \bar{\theta}^{i}$ and $d \Omega=\bar{\rho}_{i} \wedge \bar{\theta}^{i}$. Hence we get $t_{i j}=t_{j i}$. By theorem $7 \bar{\lambda}_{i}^{j}$ and $\bar{\mu}_{i}=\bar{\rho}_{i}+\bar{r}_{i j} \bar{\theta}^{j}\left(\bar{r}_{i j}=\bar{r}_{j i}\right)$ are determined uniquely from $\bar{\theta}^{i}, \bar{\rho}_{i}$ so as to satisfy (I) (II) (III). Hence $\tilde{\mu}_{i}$ coincides with $\bar{\mu}_{i}$ determined from corresponding $\bar{\theta}^{i}$ and $\bar{\rho}_{i}$. Q.E.D.

Next we take up the fundamental case

$$
H=\frac{1}{2} g^{i j}(x, t)\left(p_{i}-c_{i}(x, t)\right)\left(p_{j}-c_{j}(x, t)\right)+U(x, t) .
$$

Then we have

$$
\begin{aligned}
& h^{i j}=H_{p_{i} p_{j}}=g^{i j}, \quad v^{i j k}=0, \quad u_{k}^{i j}=\frac{\partial g^{i j}}{\partial x^{k}} \\
& b_{j}^{i}=H_{x^{i} p_{i}}=\frac{\partial}{\partial x^{j}}\left(g^{i k}\left(p_{k}-c_{k}\right)\right)=\frac{\partial g^{i k}}{\partial x^{j}}\left(p_{k}-c_{k}\right)-g^{i k} \frac{\partial c_{k}}{\partial x^{j}} \\
& w^{i j}=\frac{\partial h^{i j}}{\partial t}+u_{k}^{i j} H_{p_{k}}=\frac{\partial g^{i j}}{\partial t}+\frac{\partial g^{i j}}{\partial x^{k}} g^{k l}\left(p_{l}-c_{l}\right) .
\end{aligned}
$$

We put $\left(g_{i j}\right)=\left(g^{i j}\right)^{-1}$ and

$$
\Gamma_{i j}^{k}=\frac{1}{2} g^{k l}\left(\frac{\partial g_{i l}}{\partial x^{j}}+\frac{\partial g_{l j}}{\partial x^{i}}-\frac{\partial g_{i j}}{\partial x^{l}}\right)
$$

We get from (A^{\prime}) ($\left.\mathrm{B}^{\prime}\right)\left(\mathrm{C}^{\prime}\right)$

$$
\begin{aligned}
& P_{i j}^{k}=\Gamma_{i j}^{k}, \quad Q_{k}^{i j}=0, \quad m_{k}^{i j}=0, \\
& r_{i j}=-\Gamma_{i j}^{k}\left(p_{k}-c_{k}\right)-\frac{1}{2}\left(\frac{\partial c_{i}}{\partial x^{j}}+\frac{\partial c_{j}}{\partial x^{i}}\right)+\frac{1}{2} \\
& R_{j}^{i}=g^{h k} \Gamma_{j h}^{i}\left(p_{k}-c_{k}\right)+\frac{1}{2} g^{i h}\left(\frac{\partial c_{h}}{\partial x^{j}}-\frac{\partial c_{j}}{\partial x^{h}}+\frac{\hat{\partial} g_{h j}}{\partial t}\right) .
\end{aligned}
$$

Hence by (E) and (4. 17) $\quad n_{i j}^{k}=0$.
Next we take up the simpler case

$$
H=\frac{1}{2} g^{i j}(x) p_{i} p_{j}+U(x) .
$$

Then we have $P_{i j}^{k}=\Gamma_{i j}^{k}, r_{i j}=-\Gamma_{i j}^{k} p_{k}, R_{j}^{i}=g^{k h} \Gamma_{j h}^{i} p_{k}$ and

$$
\theta^{i}=d x^{i}-g^{i j} p_{j} d t, \quad \mu_{i}=d p_{i}-\Gamma_{i j}^{k} p_{k} d x^{j}+U_{x^{i}} d t .
$$

We put $\quad U_{i j}=\frac{\partial^{2} U}{\partial x^{i} \partial x^{j}}-\Gamma_{i j}^{k} \frac{\partial U}{\partial x^{k}}, R_{j k l}^{i}=\frac{\partial \Gamma_{j k}^{i}}{\partial x^{l}}-\frac{\partial \Gamma_{j l}^{i}}{\partial x^{k}}+\Gamma_{h l}^{i} \Gamma_{j k}^{h}-\Gamma_{k h}^{i} \Gamma_{j l}^{k}$.
Then we get

$$
z_{i j k}=\frac{1}{2} R_{i j k}^{l} p_{l}, \quad K_{i j}=-\left(g^{k m} R_{i j k}^{l} p_{l} p_{m}+U_{i j}\right) .
$$

5. Product structures and connections

By the preceding consideration we can naturally construct a product structure on ${ }^{c} T(M) \times \tau$ when we decompose the dual tangent space of ${ }^{c} T(M)$
$\times \tau$ into S_{1} spanned by $\theta^{1}, \cdots, \theta^{n}, S_{2}$ spanned by μ_{1}, \cdots, μ_{n} and T spanned by $d t$. If we put

$$
P=\left(\begin{array}{ccc}
\left(\frac{\partial \bar{x}^{i}}{\partial x^{j}}\right) & 0 & 0 \\
0 & \left(\frac{\partial x^{i}}{\partial \bar{x}^{j}}\right) & 0 \\
0 & 0 & 1
\end{array}\right), \quad \Lambda=\left(\begin{array}{ccc}
\left(\lambda_{i}^{j}\right) & 0 & 0 \\
0 & -\left(\lambda_{j}^{i}\right) & 0 \\
0 & 0 & 0
\end{array}\right)
$$

P constitutes the structure group and Λ gives an affine connection on ${ }^{c} T(M) \times \tau$. Moreover we have

Theorem 8. The quadratic forms $h_{i j} \theta^{i} \theta^{j}, h^{i j} \mu_{i} \mu_{j}, \theta^{i} \mu_{i}$ are intrinsic forms on ${ }^{c} T(M) \times \tau$.
For an autonomous case $H=H(x, p)$ we have $d x^{i}, \sigma_{i}=d p_{i}+r_{i j} d x^{j}$ from θ^{i}, μ_{i} when we put $t=$ const. A product structure can be defined on ${ }^{\mathrm{c}} T(M)$ when we decompose the dual tangent spaces into S_{1} spanned by $d x^{1}$, $\cdots, d x^{n}$ and S_{2} spanned by $\sigma_{1}, \cdots, \sigma_{n}$. The fundamental quadradratic forms $h_{i j} d x^{i} d x^{j}, h^{i j} \sigma_{i} \sigma_{j}, d x^{i} \sigma_{i}$ are given on ${ }^{c} T(M)$, and an affine connection is also defined.

6. Mapping by the fiow

We shift each point (x, p) of ${ }^{c} T(M)$ along the path, namely the solution curve of $\theta^{i}=0$ and $\rho_{i}=0$ (hence $\mu_{i}=0$). We fix a time interval t and we get a mapping of $(x, p) \rightarrow\left(x^{\prime}, p^{\prime}\right)$ of ${ }^{c} T(M)$ into itself which we call a flow. We will show how the tangent spaces are mapped by the flow.

We take a vector field $T=\partial / \partial t$ along the flow. Then we get

$$
\theta^{i}(T)=0, \quad \mu_{i}(T)=0
$$

Let X be a vector field which commutes with T. Then we get from (I) (II) in 4

$$
\begin{aligned}
& T\left(\theta^{i}(X)\right)=-\lambda_{j}^{i}(T) \theta^{j}(X)+h^{i j} \mu_{j}(X), \\
& T\left(\mu_{i}(X)\right)=\lambda_{i}^{j}(T) \mu_{j}(X)+K_{i j} \theta^{j}(X),
\end{aligned}
$$

and $\lambda_{i}^{j}(T)=R_{i}^{j}$. We put $X=u^{i} \frac{\partial}{\partial x^{i}}+v_{i} \frac{\partial}{\partial p_{i}}$ and we get

$$
\theta^{i}(X)=u^{i}, \quad \mu_{i}(X)=\left(\rho_{i}+r_{i j} \theta^{i}\right)(X)=v_{i}+r_{i j} u^{j} .
$$

Putting $z_{i}=\mu_{i}(X)$ we get

$$
\begin{equation*}
\frac{d u^{i}}{d t}=-R_{j}^{i} u^{j}+h^{i j} z_{j}, \quad \frac{d z_{i}}{d t}=K_{i j} u^{j}+R_{i}^{j} z_{j} . \tag{6.1}
\end{equation*}
$$

Here we have by (III)

$$
\begin{equation*}
\frac{d h^{i j}}{d t}=-h^{i k} R_{k}^{j}-h^{k j} R_{k}^{i} . \tag{6.2}
\end{equation*}
$$

The equations (6.1) (6.2) are fundamental and correspond to the Jacobi's equations in the calculus of variation. The invariance of the volume element (3.6) can be seen from the vanishing of the trace of the matrix.

$$
\left(\begin{array}{ll}
\left(-R_{j}^{i}\right) & \left(h^{i j}\right) \\
\left(K_{i j}\right) & \left(R_{i}^{j}\right)
\end{array}\right)
$$

We have from (6.1) (6.2)

$$
\begin{aligned}
\frac{d}{d t}\left(u^{i} z_{i}\right)= & h^{i j} z_{i} z_{j}+K_{i j} u^{i} u^{j}, \quad \frac{d}{d t}\left(h^{i j} z_{i} z_{j}\right)=2 h^{i} K_{l j} u^{j} z_{i}, \\
& \frac{d}{d t}\left(h_{i j} u^{i} u^{j}\right)=2 u^{i} z_{i},
\end{aligned}
$$

which wait for future applications.

References

[1] E. Cartan, Leçons sur les invariants intégraux. Hermann Fils, Paris. 1922.
[2] C. Caratheodory, Variationsrechnung und partielle Differentialgleichungen erster Ordnung. B.G. Teubner, Leibzig und Berlin. 1935.
[3] C. Caratheodory, Geometrische Optik. Verlag von Julius Springer, Berlin. 1937.
[4] M. Kurita, On the dilatation in Finsler spaces. Osaka Math. J., 15 (1963), 87-97.
[5] M. Kurita, Theory of Finsler spaces based on the contact structure. J. Math. Soc. Japan, 18 (1966), 119-134.

[^0]: Received March 5, 1969

