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ON THE UNIQUENESS IN CAUCHY'S PROBLEM

FOR ELLIPTIC SYSTEMS WITH DOUBLE

CHARACTERISTICS
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Dedicated to Professor Katuzi Ono on his 60th birthday

1. We consider in the 2 dimensional space with the coordinate {x,y)

Let Γ be a segment of the i/-axis containing the origin in its interior and

let Ω be a domain whose boundary contains Γ. We treat the solutions up

{p = 1, , m) of the elliptic system

where ap,q e Cι{Ω), bp,q e LΓ(Ω) and &p e C\Ω). The system (1. 1) is written

in the form

(1. 2) Ux + iltf,, + S£/ = 0,

where U = («j, , wp), A = (aPtq) and ^ = (bPtQ). The characteristics of

this system are said to have multiplicities not greater than two in Ω, if the

following condition is satisfied: There is a non-singular matrix T whose

elements belong to C\Ω) such that the matrix

A' = T-XAT

has the direct sum

\0

of one- or two-rowed square blocks of the type

or
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λ k μk

\o

respectively.

Douglis [3] showed in 1960 that if the characteristics of the system (1. 2)

are complex and of multiplicities not greater than two in Ω, then any solu-

tion of (1. 2), which is zero on Γ, is identically zero in Ω.

If the direct sum Ar consists of only one-rowed blocks, that is, the

characteristics are distinct, then this theorem was proved by Carleman [2].

On the other hand uniqueness for elliptic equations, in any number of

dimensions, whose characteristics are at most double was shown by several

mathematiciens (see c.f. [5], [6], [10], [11], [12], [13],).

In this note we shall try to prove uniqueness in Cauchy's problem for

the elliptic system (1. 2) under weaker assumptions. That is the following

M A I N THEOREM. Assume that the characteristics of the system (1. 2) are

complex [elliptic) and of multiplicities not greater than two in Ω. Then there is a

positive constant δ such that if the solutions up of (1. 2) are in Cι{Ω) and satisfy

up = o (exp {-y-2d)) {y -> 0, p = 1, , m)

along Γ, then u = 0 in Ω.

For single elliptic equations of second order with real coefficients this

theorem was proved in any dimension by Mergelyan [9], Landis \T\ and

Lavrentέv [8]. When characteristics of (1. 2) are distinct, this statement was

shown by the author [4]. Thus we proceed as in [4]. The method used

in this note consists in establishing an energy integral estimates developed

by Calderόn [1] and Mizohata [10].

2. In this section we assume that Ω is a domain which contains the

origin 0. We consider in Ω the first order elliptic system

Ulx + λUly + μu2y = flf

(2.1)

^2x ~r -Λ 2̂2/ : = J %*

where u, λ e O{Ω). We set

U=[ , F = and A =

W W \0
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Then the system (2. 1) is written in the form

(2. 2) LU=Ux + ΛUy = F.

We put \U\ = l^il + \u2\. Let us prepare a mean value property for

solutions of (2. 2).

PROPOSITION 1. For solutions of (2. 2), it holds that if 1 < p < 2 and

i - λ l - J L

(2.3) \Um^CRW*-*[§\^R\U\*dxdy) Ύ + ( J ( ^ \F\*dxdy) Ύ) ,

where C is a constant independent of R and depends only on the values of U, A

and F in Ω.

Proof. We denote simply by C the constants independent of R. We

take a C°° function such that

Φ(r) =
1 in r < R/2

0 in r > R

and \φj, \φy\<CR-K Set V = φU. Then we see

(2. 4) LV = Z^t/ + 0F,

where

0\
)) Φy[

0 1/ \0 λ

Let £(#, 2/) be the fundamental solutions of the following elliptic system

with constant coefficients

Lo = - | - + 40) #
dy

It is well known that

(2.5) E(x,y) = O(r-ί)

Since F has compact carrier and Vx + 40)7^ = iV + (40) — A) Vy9 we have

from the property of E

(2. 6) £7(0) = \\r^RE(x9y) {LV + (40) - A)Vv]dxdy.
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We see by (2. 4) and (2. 5)

(2.7) Iff ^^E(x,y)LV dxdy

By Green's formula we have

E(x, y) (Λ(0) - Λ)VV dxdy

, y) (40) - Λ)yVdxdy

Hence we get from (2. 5)

(2.8) Iff ^j?E(x,y)(Λ(O)-Λ)Vydxdy

Combining (2. 6), (2. 7) and (2. 8), we obtain

(2. 9) I£7(0)I <C R

Put m = max|£7|. Then we see by Holder's inequality

where p"1 + g"1 = 1. Since g > 2 and m" 1 !^!^!* it holds

ff r-ιnrι\U\dxdy
J J r^R

Thus we get

(2.10)

1/9
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Similarly we have

Combining (2. 9), (2. 10) and (2. 11) we have obtained the inequality (2. 3).

3. Let us denote by Sd an open disk with the center {dl2,0) and with

the radius dj2. We put Ωh = {0 < x < h] Π S19 Γh = {0 ^ x < h} Π dSί9 lh =

{x = h}r\Sx and \\U(x, )ll2 = [ \U(x,y)\2dy. In this section we see how the

local behavior of the solutions of (1. 2) are controled by the Cauchy data.

We shall apply the method developped by Mizohata [10].

LEMMA 1 ([4]). Let u^C\Ωa) and u = o(exp(—r~2d~s)) (r->0) along Γa

for some positive numbers δ, ε. Then there is a function υ such that

(3. 1) υ <= C°(i2α)nC1(ί?α - {0}) and v = u on Γa,

(3. 2) \\v{h)\\\ \\vx(hW and \\vy(hψ

= o{eχ p{-h-δ)) (Λ->0).

The details of the proof are omitted (see [4]). Here we show only how

the function is constructed. Let φ be a C°° function on real line such that

SCO

φ(x)dx = 1 a n d t h e carr ier of φa{\x\<l}.

Then we define v in the form

u{x, —Jx—x2) fKx)n{y+)/x—x2) for y<0,

where k{x) = exp (-α;-δ- ( ε / 3 )) and fs{x)= Γ^2/((^ - y)ls)s~1ds.

LEMMA 2 (Mizohata [10]). Zέtf ^ e C ^ β J <2wrf w e CQ(Ωa) Π C^^α — {0}).

We assume that the imaginary part of λψ§ in Ωa and w = 0 on Γa and \\w(ε)\\,

ll̂ a?(δ)ll> 11̂ 2/(̂ )11 ->0 (ε-» 0). 7% «̂ ίΛ r̂̂  are positive constants h0, n0 and c depending

only on λ and w such that if 0 < h < h0, n> n09 it holds

ΨΪ\\WX + λWy\\2dx + cφl(h)

1 /fΛ 2 Γ71

= ( \ ^n ||w|| rfίc + \ ^11^2^2/11 c

An \Jo Jo
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where φn(x) = (x + n~1)"n and λ = λx + iλ2.

The proof is omitted (see [10]).

Now we consider in Ωa the nonlinear elliptic system

Uix + *U\y + μu2y = F^x, y, u19 u2)9
(3.3)

u2x + λuzv = Fz(x, y, u19 u2),

where λ, μ e C^fiα) a n d the imaginary part of λ Φ 0 in Oα. We assume

that

(3.4) |Fi(»,y,«if«2)J <C(\ux\ + \uz\) ( ι = l , 2).

We prepare the following

PROPOSITION 2. Z^ί #!, ί/2 έ^ in Cι(Ωa) and solutions of (3. 3) in Ωa> If

for some ε > 0, δ>l,

ul9 u2 = o{exp{-r-2δ~s)) (r->0) on Γα,

= o{exp{-h-δ)) {h -> 0, t = 1, 2).

/1 From Lemma 1 there are functions i^ {i = 1,2) such that

(3. 5) ^ e C°(^α)ΠC1(i?α - {0}) and υ% = ut on Γα,

(3. 6) IkWII2, lkβ(A)||2 and ||t;l

We put wi = uί — vi. Then the equations (3.3) are reduced to

Wla. + ^«Ίy + Pw2y = G^fl?, 2/, «!, U2, Vίx, V2x, V2y),

Mix + λw2v = G 2 (α, 2/, uί9 u2, v2x9 v 2 y ) .

We easily see

(3. 7) \Gt\ ^CduA + lu.l + lv^l + lv.J + lυ.yl) i = 1, 2.

From now on we denote simply by c the constants independent of n

and A. We have by Lemma 2 for /z < h09 n > w0,

(3. 8) Γ pϋllG, - Aiw2v||
2rfα? + cφl{h)

Jo
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and

(3. 9) Γ φl\\G2\\2dx + cφ*(h)
Jo

^ —h-(\ φ'n
z\\w2\\2dχ + \ φl \\^2wzy\\2dx).

Afl \ J O JO /

Multiplying both sides of (3. 9) by AnM for large M, we add (3. 9) to (3. 8).

Then it holds

( 95(2||G1||
2 + 4nM\\G2\\2)dx + ncφl{h)

Jo

^ M (* f>;2lk2||
2Ja; + - ^ - f ?;*!!«»,

JO 4 W Jθ

+ (M- c) \h Ψl\\λzwlυψdx.

Jo

Let us fix M such that M — c > 0 . Then we obtain

f IIG2"
2

We substitute Wj = Wj — «< and (3. 7) into this inequality. Then we have

{j* φliWuW + | |M 2 | | 2 + Hz .JI 2 + \\v2x\\* + \\υt,\\*)dx + φl(h)\

+ 4 - Γ ^'(iiwiii2 + ιι»«ιi2)rf*
λZ J o

nc {j

nc { j

If /ί + — is sufficiently small, we see

{ j * ψ\ (IIP^H* + |b 2 j | 2 + ||ϋ2,||2)

-^- Γ ί>;" (lit;,!!8 + !lt;«l|*)rf*
Ύl Jo

(\M\* + \M\2)dχ.
Ύl Jθ

Combining (3. 6) and (3. 10), we obtain
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n*c (JL + ±.yn+2 (»2-exp(-A-*-c«/») + (A + -L

Let us take h + — sufficiently small and nh sufficiently large. As an

easy computation shows, in order to prove

(3. 11) Jo

ft/Ίl«*H2Λ? = 0 ( e x p ( - ( - A ) 5 ) ) ( A _><)),

it is sufficient to show that we can choose n in such a way that

(3. 12) n*^ ^ exp

and

where βi is a given number and ε' will be determined later. If there is a

positive number ε such that

(3. 14) „«*

then (3. 12) holds. Since nh is sufficiently large, if we show that

then (3. 13) holds. Let us take positive numbers ε', ε such that

δ + εf<(δ + e1)ll + e.

Noting that 1 < 2 log (-q-) 9 we can take n in such a way that

It is easily seen that the inequality (3. 16) implies (3. 14), (3. 15) and that

nh-+co. Thus we have proved (3. 11).

We consider the following elliptic system in Ωa.

(3.17) Ux + ΛUy
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where U = {uί9 , um)9 F = (Fl9 , Fn) and

We assume that ak e C\Ωa) and αΛ is one- or two-rowed square blocks of the

type

or

respectively. Further let us assume that

(3. 18) \Fk(x,y,u19 . . . , um)\ ^C(\ux\ + + \um\).

Then we can prove the following in a quite similar manner as in Proposi-

tion 2.

COROLLARY 1. Let U be in Cι(Ωa) and a solution of (3. 17) in Ωa. If for

some ε > 0 , d>l.

U =

«;̂  have

S h
\\Ui\\2dx = o(exp(—A"5)) (A->0, t = 1, , m).

0

Now we can prove the following

THEOREM 1. Let U be a solution of the elliptic system (3. 17) in Ωa and U

be in Cι(ϊ)a). Then if for some ε > 0 , δ>l,

U = o(exp(-r- 2 3" e)) (r->0) on Γa9

we have

U = o(exp(-r-*)) (r->0) in- S1 / 2n^α.

Proί?/. We set -23 - ε = - 2 ^ + - |-) - - | - . We regard δ + - | - as new

δ and - | - as ε in Theorem 1. Then by Corollary 1 we have
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(3. 19) £ Wu.ψdx = o(exp (-ft- '-r)) (A -*0, i = 1, , m)

For the point (# ( 0 ), yw) in S1/2 we denote by ^ ( x ^ , 2/(0)) the radius of a

circle tangent to S whose center is (# ( 0 ), yw). I t is easily seen that

(3. 20) rx{x^\ 2/(0)) ~ α ( 0 ) (α<°> -> 0).

Let us apply Proposition 1 for the disk with center (# ( 0 ), 2/(0)) and with

radius rλ(x^\ 2/(0)). Putting φ = 3/2 in (2. 3) we have for (α(0>, 2/(0>) e S1/2

where r 0 = /(a; — xi0))2 + {y — yw)2 and C is a constant independent of

2/(0)). Combining (3. 18) and (3. 21), we see

^ C Γi (aj(0), 2/W)"2/3 ( Σ
L Jo i = l

By Corollary 1 and (3. 20), we obtain

Thus we have proved the theorem.

4. We consider the next transformation from (x, t/)-ρlane to (0, p)-pla,ne

as in [4].

(4. 1) p = r2lx, Θ = tan-^y/oj).

Put R1/2 = {(0, |θ)| |^ |<π/2, 0 < |ί> < 1/2}. We eliminate the part 9 = 1/2 from

the boundary of i?1/2 and denote the remainder by dR1/2* And let us put

Ra = R<ι + dRd Then the transformation (4. 1) maps S1/2 onto R1/2 in one-

to-one way. And we see that this transformation and its inverse are C°°.

we have
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\Pχ Pyl \l — tan20 2tan#/

For the function u(x, y) in S1/2 we define a function u{θ, p) ;n R1/2 by

u(θ, P) for {β, P) e i?1 / 2

«(0,0) for (θ, P) (Ξ dR1/2.

From now on we denote u[θ, p) simply by u. It is easily seen that if

u(x, y) e OiSui) then «(^, /o) e C 1 ^ ^ ) .

We consider the next equation in S1/2

(4.3) ux + λuy=H,

where u e C^S^), ^ e C^S^g) and the imaginary part of λ i= 0 in S1/2. We

set /(/?, p) = I p^ + ^ y | 2 cos 4 0 a nd ^ = ^x + iλ2. Then by (4. 2) the equation

(4. 3) is transformed into

(4. 4) up + — (0 + «P)αΛ = Jϊ,

where

and

- cos2θ)

LEMMA 3 ([4]). The function f{θ9 p) is in Cι{Rm) and there is a positive

constant m such that f>m in R1/2. And QPJP is continuous in R1/2.

The proof is omitted (see [4]).

From now on we denote by || || a U norm with respect to θ (|#|<τr/2).

And we put

φn{p) = expinp-*) {δ>0, n>0).

We denote φn simply by φ. Then we have



48 KAZUNARI HAYASHIDA

PROPOSITION 4 ([4]). If u e C1(S1/2) and satisfies for some positive numbers

u = o(exp(— in S1/Z9

then we have

(4.6)
o P

o P

— φiPUa — φ u dp 9

where M = max PΘQ and c is a constant independent of n, h and δ.

Since the proposition was shown in detail in [4], we omit the proof.

We consider the elliptic system (3. 3) in S1 / 2. Then we have the fol-

lowing

PROPOSITION 5. Let u19 uz be in Cι{Sι/z) and solutions of the elliptic system

(3. 3) in S1/2. If it holds for δ > max (2, M — 1) (Af is the constant in (4. 6))

^ = o{exp{-r~δ)) (r->0, i = 1,2) in S1/2,

/Âw %i vanish identically in a neighborhood of the origin.

Proof We denote simply by c the positive constant independent of n.

We assume u & 0 in p < h. And we shall show that u = 0 in p < /z/2.

Then we see by (4. 6)

(4.8)

Jo P
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φiPuθ-p2φ'u\\2dp.

We set

0

Pill =

Then (4. 8) becomes

Hence we have

(4.9)

We consider the first equation of the elliptic system. That is

(4. 10) Ulx + λuly + μu2y = Fx

Then this equation is transformed into

JL JL
I Px + λpy\2{p 2 U l ) p + (θa + λθy)(Pχ + λpy)(P 2 U l ) θ

= (Px + ΐPy)P 2 Ft - μ(px + λpy)

P 2 (u2βρy + ι ι 2 f l ^ ) + -γ\px + λρy\
2 pz ux.

By Lemma 3 we see

I Px + *Py 12 = cos~Aθf(Θ, p) {/>rn> 0 in Rί/2)

and

I /°̂  + î°2/1 ̂  const. cos-2#.

Thus (4. 10) becomes
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-y (Q + ί

(4.11)

where P and Q are of the type (4. 5). Let us regard p 2 nx in (4. 11) as u

in (4. 9). Then we have from (4. 9)

φ2\\uι\\2dp

0

Jo

(4. 12)

o

it AΛ S

-jfcrHpT
o y

Now we consider the second equation of the elliptic system. Then we

have from (4. 4) and (4. 5)

(4. 13) \u2p\ < \F2\ +cp~1cosθ\u2θ\.

By (4. 12) and (4. 13), we see

c | - | - φ\h) + J^fllPJ* + \\F,ψ)dp

(4.14) +Ϋ φmpΊΓ^cos^θu^dp
Jo

S h φ2 11 -A

0 ^ + 2

On the other hand we have from (3. 3), (4. 5) and (4. 9)

en \—τ~ φ2(h)+ \ ^2 | |F2 | |
2J/o|

(4.15)

^ ί \\p Ύ-ιφiPuΐβψdp + \h \\pΊrφ'u2\\*dι
Jo Jo

Let us note that \P\ ̂ ccos20(c>0). Then (4. 15) becomes

eh
(4. 16) en {-i- ί>2(/ί) + j
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Jo Jo P

Multiplying both sides of (4. 16) by a large constant, we add (4. 16) to (4. 14).

Then we obtain

c {-\ Φ2(h) + j φ2(\\F^ + \\F2\\ηdp
(4.17)

Combining (3. 4) and (4. 17), we have for sufficiently small h

Hence

'^(IWI'+IM 2 )^ .

Let n tend to zero. Then ux = u2 = 0 in p < h/2. Thus we have completed

the proof.

We consider the elliptic system (3. 17) in S1/2. Then we can prove the

following in a quite similar manner as in Proposition 5

COROLLARY 2. Let U be in Cι{S1/2) and a solution of the elliptic system

(3. 17) in S1/2. If it holds for δ > max (2,M—1)

U = o(exp(-r-*)) (r->0) in S1/2,

/ to £/ fltfmjΛ identically.

Combining Theorem 1 and Corollary 2, we obtain

THEOREM 2. Z^ί U be a solution of the elliptic system (3. 17) in Ωa and U

be in Cι(Ωa). Then there is a positive number δ such that if for δ' > δ

U = o(exp(-r-<Π) (r -> 0) on Γα,

ί^w U = 0 in a neighborhood of the origin.

Theorem 2 means our Main Theorem by an adequate coordinate trans-

formation.
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