ON SOME DOUBLY TRANSITIVE PERMUTATION GROUPS OF DEGREE N AND ORDER 6n $(n-1)$

SHIRO IWASAKI AND HIROSHI KIMURA ${ }^{1)}$

Dedicated to Professor K. Ono on his 60th birthday

The purpose of this paper is to prove the following result.
Theorem. Let Ω be the set of symbols $1,2, \cdots, n$. Let \mathscr{F} be a doubly transitive group on Ω of order $6 n(n-1)$ not containing a regular normal subgroup and let $\mathfrak{\Re}$ be the stabilizer of the set of symbols 1 and 2 . Assume that $\mathfrak{\Re}$ is cyclic and independent, i.e., $\Re \cap G^{-1} \mathfrak{\Re} G=1$ or $\mathfrak{\Re}$ for every element G of $(\mathfrak{s}$. Then (5) is isomorphic to either $\operatorname{PGL}(2,7)$ or $\operatorname{PSL}(2,13)$.

We use the standard notation;
$C_{\mathfrak{X}}(\mathfrak{T})$: the centralizer of a subset \mathfrak{T} in a group \mathfrak{X}
$N_{\mathfrak{X}}(\mathfrak{T})$: the normalizer of \mathfrak{I} in \mathfrak{X}
$\langle\cdots\rangle$: the subgroup generated by $\cdot \cdot$
$|\mathfrak{I}|$: the number of elements in \mathfrak{T}
[$\mathfrak{X}: \mathfrak{Y}]$: the index of a subgroup \mathfrak{V} in \mathfrak{X}
$\mathfrak{T}^{\boldsymbol{f}}: G^{-1} \mathfrak{T} G$ where $G \in \mathfrak{X}$.
Proof of Theorem

1. Let $\mathfrak{5}$ be the stabilizer of the symbol $1 . \mathfrak{R}$ is of order 6 and it is generated by a permutation K whose cyclic structure has the form (1)(2) \cdots. Since \mathscr{E} is doubly transitive on Ω, it contains an involution I with the cyclic structure (1,2) . . which is conjugate to K^{3}. Then we have the following decomposition of \mathfrak{F};
1) This work was supported by The Sakkokai Foundation.

$$
\mathfrak{F}=\mathfrak{y}+\mathfrak{y} I \mathfrak{y} .
$$

Since I is contained in $N_{\mathscr{B}}(\Re)$, it induces an automorphism of Ω and (i) $K^{I}=K$ i.e. $\langle K, I\rangle$ is abelian or (ii) $K^{I}=K^{-1}$ i.e. $\langle K, I\rangle$ is dihedral. If an element $H^{\prime} I H$ of a coset $\mathfrak{g} I H$ of \mathfrak{y} is an involution, then $I\left(H H^{\prime}\right) I=\left(H H^{\prime}\right)^{-1}$ is contained in \mathscr{R}. Hence, in case (i) the coset $\mathfrak{S} I H$ contains just two involutions, namely $H^{-1} I H$ and $H^{-1} K^{3} I H$, and, in case (ii) it contains just six involutions, namely $H^{-1} K^{\prime} I H$ for $K^{\prime} \in \Omega$. Let $g(2)$ and $h(2)$ denote the numbers of involutions in \mathscr{E} and \mathfrak{K}, respectively. Since the number of cosets of \mathfrak{F} in $\mathfrak{5} I \mathfrak{F}$ is $n-1$, we have

$$
\begin{equation*}
g(2)=h(2)+\alpha(n-1) . \tag{1}
\end{equation*}
$$

where $\alpha=2$ and 6 for cases (i) and (ii), respectively.
2. Let \Re keep $i(i \geqq 2)$ symbols of Ω, say $1,2, \cdots, i$, unchanged. By the assumption of the independence of Ω, K has neither 2 -cycle nor 3 -cycle in its cyclic decomposition, i.e., it has only 1 -cycles and 6 -cycles and $N_{\mathscr{G}} \mathfrak{R}=C_{\mathscr{G}}\left(K^{3}\right)$. Put $\mathfrak{F}=\{1,2, \cdots, i\}$. Then by a theorem of Witt ([9, Th. 9.4]), $N_{\circlearrowleft ্} \Re / \mathscr{R}$ can be considered as a doubly transitive permutation group on \mathfrak{F}. Since every permutation of $N_{\odot} \Re / \Re$ distinct from Ω leaves by the definition of Ω at most one symbol of \mathfrak{J} fixed, $N_{\mathscr{G}} \Re / \Re$ is a complete Frobenius group on \mathfrak{F}. Therefore i equals a power of a prime number, say p^{m}, and the orders of $N_{\mathscr{G}} \mathfrak{A}$ and $\mathfrak{F} \cap N_{\mathscr{6}} \mathfrak{A}$ are equal to $6 i(i-1)$ and $6(i-1)$, respectively. By the double transitivity of \mathscr{E}, any involution in \mathfrak{G} which leaves at least two symbols in Ω fixed is conjugate to K^{3} and the number of such involutions is equal to $n(n-1) / i(i-1)$. Similarly, any involution in \mathfrak{y} which leaves at least two symbols in Ω fixed is conjugate to K^{3} in \mathfrak{y} and its number is equal to $n-1 / i-1$.

At first, let us assume that n is odd. Let $h^{*}(2)$ be the number of involutions in \mathfrak{F} leaving only the symbol 1 fixed. Then from (1) and the above argument the following equality is obtained;

$$
\begin{equation*}
h^{*}(2) n+n(n-1) / i(i-1)=h^{*}(2)+(n-1) /(i-1)+\alpha(n-1) . \tag{2}
\end{equation*}
$$

Since i is less than n, it follows from (2) that $h^{*}(2)<\alpha$.
Now we shall prove that if $h^{*}(2) \neq 0$ and $K^{I}=K^{-1}$, then $h^{*}(2)=3$. Let ζ be any involution in \mathscr{G} which leaves only one symbol of Ω fixed and
assume that $C_{\mathbb{B}}(\zeta)$ contains an element Q of order 3. At first we shall show that Q leaves only one symbol of Ω fixed. If Q leaves at least two symbols of Ω fixed, then, since \mathscr{S} is doubly transitive on Ω, there exists an element G in \mathscr{E} such that $Q^{\sigma}=K^{2}$ and $\zeta^{G}=(1,2) \cdots$ is contained in $N_{ब ্}\left\langle K^{2}\right\rangle$. Since $\left\langle I, K^{2}\right\rangle$ is dihedral, $\left\langle\zeta^{a}, K^{2}\right\rangle$ must be dihedral. In fact, since n, i and $h^{*}(2)$ are dependent on only ©f and independent of the choice of $I=(1,2) \cdots$, from (2) so is α. But $\langle\zeta, Q\rangle$ is abelian, a contradiction. Thus if $\left|C_{6}(\zeta)\right|$ is divisible by 3 , then 3 is a factor of $n-1$. Therefore $\left|C_{\circlearrowleft}(\zeta)\right|$ and n are relatively prime and hence [${ }_{6}$: $\left.C_{\circledR}(\zeta)\right]$ is divisible by $3 n$. Even if $\left|C_{\mathscr{G}(\zeta)}(\zeta)\right|$ is not divisible by $3,\left|C_{\mathfrak{G}}(\zeta)\right|$ and n are relatively prime and hence the same conclusion is obtained. On the other hand, the number of involutions in (5) which leaves only one symbol of Ω fixed is equal to $h^{*}(2) \cdot n$ and $h^{*}(2)$ $<\alpha=6$, hence we obtain $h^{*}(2)=3$.

Furthermore, in the same way as in $[6,2.2] h^{*}(2) \neq 1$. (By the way, note that the core of \mathscr{E} is identy 1.) Thus there are three cases;
(A) $\alpha-h^{*}(2)=2$,
(B) $\quad \alpha-h^{*}(2)=3$ and
(C) $\alpha-h^{*}(2)=6$.

The following equalities are obtained from (2) for cases (A), (B) and (C), respectively.

$$
\begin{array}{ll}
n=i(2 i-1)=p^{m}\left(2 p^{m}-1\right) & (p: \text { odd }) \\
n=i(3 i-2)=p^{m}\left(3 p^{m}-2\right) & (p: \text { odd }) \tag{B}
\end{array}
$$

and
(C)

$$
n=i(6 i-5)=p^{m}\left(6 p^{m}-5\right) \quad(p: \text { odd })
$$

Next let us assume that n is even. Let $g^{*}(2)$ be the number of involutions in $\mathbb{C S}$ leaving no symbol of Ω fixed. Then corresponding to (2) the following equality is obtained from (1);

$$
\begin{equation*}
g^{*}(2)+n(n-1) / i(i-1)=n-1 / i-1+\alpha(n-1) . \tag{3}
\end{equation*}
$$

Let J be an involution in © leaving no symbol of Ω fixed. Assume that $\left|C_{\mathscr{G}}(J)\right|$ is divisible by a prime factor q of $n-1$. Then $C_{\mathscr{G}}(J)$ contains a permutation Q of order q and Q leaves at least two symbols of Ω fixed. Hence $q=3$ and the common prime factor of $n-1$ and $\left|C_{ß}(J)\right|$ is 3. Next assume that $\left|C_{\mathscr{B}}(J)\right|$ is divisible by 3^{2}. Let \mathfrak{P} be a Sylow 3 -subgroup of $C_{\circledR}(J)$. Since n is not divisible by 3 , \mathfrak{F} leaves just one symbol of Ω fixed.

Since J leaves no symbol of Ω fixed, this is a contradiction. Thus [$\left[\mathfrak{G}: C_{\circledast}(J)\right]$ is divisible by $n-1$ and hence $g^{*}(2)$ is so. On the other hand, it follows from (3) that $g^{*}(2)<\alpha(n-1)$. Thus we have $n=i(\beta i-\beta+1)$, where $\beta=\alpha-g^{*}(2) / n-1$. Since n is even, i must be even and $i=2^{m}$.
3. Case (A) for $p \neq 3$. Let \mathfrak{F} be a Sylow p-subgroup of $N_{\mathscr{C}} \Re$. Since the group of automorphisms of Ω is of order 2 , we may assume that \mathfrak{F} is a Sylow p-subgroup of $C_{\text {©ு }} \Re$. Then, since $N_{\mathscr{G}} \Re / \Re$ is a complete Frobenius group of degree p^{m}, \mathfrak{P} is elementary abelian and normal in $N_{\mathscr{B}} \Re$. In this case, \mathfrak{F} is also a Sylow p-subgroup of $\mathfrak{E b}$. Let the orders of $N_{\widehat{S}} \mathfrak{F}$ and $C_{\mathscr{G}} \mathfrak{F}$ be $6 p^{m}\left(p^{m}-1\right) x$ and $6 p^{m} y$, respectively. If $x=1$, then from Sylow's theorem it should hold that $\left[\mathscr{G}: N_{\mathscr{G}} \mathfrak{F}\right]=\left(2 p^{m}-1\right)\left(2 p^{m}+1\right) \equiv 1(\bmod p)$, which, since p is odd, is a contradiction. Thus x is greater than one. If $y=1$, then $C_{\mathscr{G}} \mathfrak{F}=\mathfrak{R} \times \mathfrak{F}$ and \mathfrak{R} would be normal in $N_{\mathscr{B}} \mathfrak{F}$, and this would imply that $x=1$. Thus y is greater than one. Let \mathfrak{S} be a Sylow 2 -subgroup of $C_{\mathscr{B}} \Re$. Since any permutation $(\neq 1)$ of \mathfrak{B} leaves no symbol of Ω fixed, \mathbb{S} must leave at least two symbols of Ω fixed and hence \mathbb{S} is conjugate to $\left\langle K^{3}\right\rangle$. Thus y is odd. If y is divisible by 3 , then let \Re be a Sylow 3 -subgroup of $C_{\mathscr{G}} \Re$. From the cyclic structure of $K n-i=2 i(i-1)$ is divisible by 6 and so n is not divisible by 3. Hence, as above, \Re is conjugate to $\left\langle K^{2}\right\rangle$. Thus y is relatively prime to 2,3 and p. Therefore y is a factor of n and hence of $2 p^{m}-1$. \mathfrak{F} has a normal p-complement \mathfrak{A} of order $6 y$ in $C_{\mathbb{B}} \mathfrak{B}$ and \mathfrak{R} has a normal complement \mathfrak{V} of order y in \mathfrak{X}. Then \mathfrak{V} is normal even in $N_{\mathscr{B}} \mathfrak{F}$. Any permutation $(\neq 1)$ of \mathfrak{V} does not leave any symbol of Ω fixed. Put $\mathfrak{B}=\mathfrak{y} \cap N_{\mathfrak{G}} \mathfrak{R}$. Then \mathfrak{F} is contained in $N_{\mathfrak{G}} \mathfrak{V}$. Assume that \mathfrak{F} contains a permutation V of a prime order q which is commutative with a permutation $Y(\neq 1)$ of \mathfrak{V}. Since V fixes at least two symbols of $\Omega, q=2$ or 3 . If $q=2$, then V is conjugate to K^{3}. Since $\left|C_{\mathbb{B}}\left(K^{3}\right)\right|$ and y are relatively prime, this is a contradiction. Thus $q \neq 2$. Similarly, $q \neq 3$. Thus every permutation $(\neq 1)$ of \mathfrak{B} is not commutative with any permutation $(\neq 1)$ of \mathfrak{V}. This implies that y is not less than $|\mathfrak{B}|+1=6 p^{m}-5$, which is a contradiction, for y is a factor of $2 p^{m}-1$. Thus there exists no group satisfying the conditions of the theorem in Case (A) for $p \neq 3$.
4. Case (A) for $p=3$. Let \mathfrak{F} be a Sylow 3 -subgroup of $C_{\mathscr{G}} \mathfrak{R}$ containing K^{2}. It is also a Sylow 3 -subgroup of $N_{\mathscr{C}} \mathfrak{R}$ and \mathscr{G}. Let \mathbb{Q} be a
subgroup of $N_{\mathscr{G}} \mathfrak{R}$ containing $\mathscr{\Re}$ such that Ω / \mathscr{R} is a regular normal subgroup of $N_{\mathscr{G}} \mathfrak{R} / \mathfrak{R}$. Then \mathfrak{F} is normal in $\mathfrak{Q}=\mathfrak{P} \mathfrak{R}$ and so in $N_{\mathscr{G}} \mathfrak{R}$. Clearly $N_{\mathscr{G}} \mathfrak{R} \supseteq$ $C_{\mathfrak{G}}\left(K^{2}\right) \supseteq C_{\mathscr{G}} \mathfrak{F}$. Let $3^{m \prime}\left(m^{\prime} \geqq 1\right)$ be the order of the center of $\mathfrak{P}, Z(\mathfrak{F})$. Then we shall prove that $\left|C_{\mathscr{G}} \mathfrak{F}\right|=2 \cdot 3^{m^{\prime}+m^{\prime \prime}}\left(m^{\prime \prime}>0\right)$. Since $N_{\mathscr{G}} \mathfrak{A} / \mathscr{R}$ is Frobenius group on \mathfrak{J} with Frobenius kernel $\mathfrak{Q} / \mathfrak{R}$ and a complement $\mathfrak{g} \cap N_{\mathscr{G}} \mathfrak{A} / \mathfrak{R}$, every permutation ($\neq \mathscr{R}$) of $\mathfrak{Q} / \mathfrak{R}$ is not commutative with any permutation
 in $N_{\mathscr{G}} \mathfrak{A}, C_{\mathscr{G}} \mathfrak{F} \subseteq \mathfrak{Q}$ or $C_{\mathscr{G}} \mathfrak{B} \supseteq \mathfrak{Q}$. If $C_{\mathscr{G}} \mathfrak{F} \supseteq \mathfrak{Q}, \quad\left(\mathfrak{A} \cap N_{\mathscr{G}} \mathfrak{A}\right) C_{\mathbb{G}} \mathfrak{B}=N_{\mathscr{G}} \mathfrak{R} \quad$ and $\left|C_{\mathbb{G}} \mathfrak{P} / \mathscr{R}\right|=3^{m}$. Thus we have $\left|C_{\circlearrowleft} \mathfrak{P}\right|=2 \cdot 3^{m r^{\prime \prime} m^{\prime \prime}}\left(m^{\prime \prime} \geqq 0\right)$. If $m^{\prime \prime}=0$ then $C_{\mathbb{G}} \mathfrak{F}$ is the direct product of $\left\langle K^{3}\right\rangle$ and $Z(\mathfrak{F})$ and $\left\langle K^{3}\right\rangle$ is normal in $N_{\mathbb{B}} \mathfrak{F}$. Hence $N_{G} \mathfrak{R}=N_{G}^{G} \mathfrak{G}$ and from Sylow's theorem it should hold that [\mathscr{C} : $\left.N_{G}^{G} \mathfrak{F}\right]=$ $\left(2 \cdot 3^{m}-1\right)\left(2 \cdot 3^{m}+1\right) \equiv 1(\bmod .3)$, which is a contradiction. Thus it is obtained that $\left|C_{\mathscr{G}} \mathfrak{F}\right|=2 \cdot 3^{m{ }^{\prime+m \prime \prime}}\left(m^{\prime \prime}>0\right)$. Let \mathfrak{B}^{\prime} be a Sylow 3-subgroup of $C_{\mathscr{G}} \mathfrak{F}$. Since $\mathfrak{F}^{\prime} \mathfrak{F} / \mathfrak{F}$ is isomorphic to $\mathfrak{B}^{\prime} / Z(\mathfrak{F})$, $\mathfrak{F}^{\prime} \mathfrak{F}$ is a 3 -subgroup of $N_{\mathscr{C}} \mathfrak{R}$. Further, since \mathfrak{F} is a normal Sylow 3 -subgroup of $N_{\mathscr{G}} \mathfrak{R}$, $\mathfrak{F}^{\prime} \mathfrak{B} \subseteq \mathfrak{F}$ and so $\mathfrak{P}^{\prime} \subseteq \mathfrak{F}$. Hence $\mathfrak{B}^{\prime} \subseteq C_{\mathfrak{G}} \mathfrak{F} \cap \mathfrak{F}=Z(\mathfrak{F})$, which is contradictory to those orders. Thus there exists no group satisfying the conditions of the theorem in Case (A) for $p=3$.
5. Case (B) and (C). We shall examine a Sylow 2-subgroup of $(\mathbb{S}$. Since $K^{I}=K^{-1}$ in these cases, $\left[N_{\varnothing} \mathfrak{R}: C_{\mathscr{6}} \mathscr{R}\right]=2$ and $\left|C_{6} \mathscr{R} / \mathscr{P}\right|=i(i-1) / 2$. If $\left|C_{\mathscr{G}} \mathscr{R} / \mathscr{R}\right|$ is even, then there exists an involution $\tau \mathscr{R}$ in $C_{\mathscr{G}} \mathscr{R} / \mathscr{R}$. Since $N_{\mathscr{G}} \mathscr{A} / \mathscr{R}$ is a Frobenius group of order $i(i-1)$, a Sylow 2 -subgroup of $N_{\mathscr{G}} \mathscr{A} / \mathscr{R}$ contains only one involution. Hence $\tau \Re$ is conjugate to $I \mathscr{R}$ in $N_{G} \Re / \Omega$. This contradicts that $K^{I}=K^{-1}$. Thus $\left|C_{G} \Re / \mathscr{R}\right|$ is odd and $i-1=2 \cdot$ (odd number).

In Case (B) $n-1=\{3(i-1)+4\}(i-1)=4 \cdot($ odd number $)$ and hence $|\mathscr{G}|=6 n(n-1)=8 \cdot$ (odd number). Let \mathbb{S} be a Sylow 2 -subgroup of \mathbb{G} containing $\left\langle K^{3}, I\right\rangle$. Then \mathfrak{S} is neither abelian nor quaternion since $\left|N_{\mathscr{C}} \mathfrak{A}\right|=$ $\left|C_{⿷}\left(K^{3}\right)\right|=4 \cdot$ (odd number). Thus \subseteq is dihedral. Similarly, in Case (C) $\mid \oiint(\mathbb{G} \mid=4 \cdot($ odd number $)$ and a Sylow 2 -subgroup of \mathfrak{E} is dihedral. Therefore, by [2] in both cases (B) and (C) \mathfrak{E} is isomorphic to either
a subgroup of $P \Gamma L(2, q)$ containing $P S L(2, q), q$ odd, or
the alternating group A_{7}.
But by [8, Satz 1, p. 422], in both cases (B) and (C) the former cannot happen and hence \mathscr{S} must be isomorphic to A_{7}. In Case (C) $|\mathscr{S}|=4 \cdot$ (odd number) and this is imposible. Thus there exists no group satisfying the conditions of the theorem in Case (C). Since in Case (B) $h^{*}(2)=3$, ©f has at least two conjugate classes of involutions. But all involutions of A_{7} are conjugate in A_{7}. Thus there exists no group satisfying the conditions of the theorem in Case (B).
6. Case n is even and $\langle K, I\rangle$ is dihedral. Let Ω / \mathscr{R} be a Frobenius kernel of Frobenius group $N_{\mathscr{G}} \mathfrak{R} / \mathfrak{\Re}$ on \Im. Then $C_{\mathscr{G}} \Re$ contains \mathfrak{Q} or is contained in \mathfrak{Q}. Since I is contained in \mathfrak{Q} and not contained in $C_{\mathscr{G}} \mathfrak{A}, \mathfrak{Q}$ contains $C_{\mathscr{G}} \mathfrak{A}$. Also, since $\left[N_{\mathscr{G}} \mathfrak{A}: C_{\mathscr{G}} \mathfrak{\Re}\right]=2$ and $\left[N_{\mathbb{G}} \mathfrak{I}: \mathfrak{Q}\right]=2^{m}-1$, we have $m=1$ and $i=2$. Therefore, in cases $\beta=3$ and $6 \mathbb{E}$ is a Zassenhaus group and it can be seen that \mathbb{E} is isomorphic to $P G L(2,7)$ in the case $\beta=3$ and that $\mathbb{C S}$ is isomorphic to $\operatorname{PSL}(2,13)$ in the case $\beta=6$ ([1], [3] and [10]). In the other cases, since $n-i$ must be divisible by 6 , there exists no group satisfying the conditions of the theorem.
7. Now only the case $\langle K, I\rangle$ is abelian remain. In this case we may assume that $N_{\mathscr{G}} \mathfrak{A}=C_{\mathscr{G}} \mathfrak{A}$. In fact, if $\left[N_{\mathscr{6}} \mathfrak{R}: C_{\mathscr{C}} \mathfrak{R}\right]=2$, then there exists an element in a Sylow 2-subgroup of $N_{G} \mathscr{R}$ and so in $\mathscr{D}(\mathbb{D}$ is the same meaning as in 6.) but in no $C_{\text {वு }} \mathfrak{A}$. For the same reason as in 6, \mathfrak{Q} contains $C_{6} \mathfrak{R}$, which was dealt with in 6 .

Let \mathbb{S} be a Sylow 2-subgroup of $N_{\mathscr{G}} \mathfrak{R}$ containing K^{3}. Then, since $\mathfrak{Q}=\Re \subseteq$ and $N_{\mathscr{G}} \mathfrak{R}=C_{\mathscr{G}} \mathfrak{R}$, \subseteq is a normal Hall subgroup of \mathfrak{Q} and hence normal in $N_{6} \mathfrak{R}$. Since $|\mathfrak{F}|=6(n-1)=2 \cdot$ (odd number), \mathfrak{F} contains a subgroup \mathfrak{H} of order $3(n-1)$. Hence $\mathfrak{S} \cap N_{\mathscr{G}} \mathfrak{R}$ contains a subgroup $\mathfrak{B}=\mathfrak{U} \cap N_{\mathbb{G}} \mathfrak{A}$ of order $3\left(2^{m}-1\right)$. Let \mathfrak{F} be a Sylow 3 -subgroup of \mathfrak{B} containing K^{2}. Since $N_{\mathscr{A}} \mathfrak{A} / \mathfrak{R}$ is a Frobenius group on \mathfrak{F}, all the Sylow subgroups of $\mathfrak{B} \Re / \AA$ are cyclic. Therefore $\mathfrak{P} /\left\langle K^{2}\right\rangle$ is cyclic and \mathfrak{F} is abelian.

Since every permutation ($\neq \mathscr{R}$) of $\subseteq \mathscr{\Re / \mathscr { R }}$ is not commutative with any permutation $(\neq \Re)$ of $\mathfrak{B} / \mathscr{R}$ and \mathfrak{S} contains I, any element $(\neq \mathfrak{R})$ of $\mathfrak{S} \Re / \Re$
 permutation $(\neq 1)$ of \subseteq can be represented in the form K^{3}, I^{V} or $I^{V} K^{3}$,
where V is any permutation of \mathfrak{B}. Therefore every element $(\neq 1)$ of \mathbb{S} is an involution and \mathbb{S} is elementary abelian.

From now on, we use the notations in this paragraph.
8. Case $\beta=1$ and $\langle K, I\rangle$ is abelian. Since $n-i=2^{m}\left(2^{m}-1\right)$ is divisible by 6,3 is a factor of $2^{m}-1$. Hence $|\mathfrak{F}|$ is not less than 3^{2} and \mathfrak{B} leaves only the symbol 1 fixed and $N_{\mathbb{B}} \mathfrak{F}$ is contained in \mathfrak{F}. Since $\left\langle K^{3}\right\rangle$ is a Sylow 2-subgroup of $C_{\mathscr{G}} \mathfrak{B}$, we obtain that $N_{\mathscr{G}} \mathfrak{F}=C_{\mathfrak{G}} \mathfrak{P}\left(N_{\mathfrak{G}} \mathfrak{F} \cap C_{\mathfrak{G}}\left(K^{3}\right)\right.$). Hence
 hand, since 3 is the least prime factor of $\left|\mathfrak{B} /\left\langle K^{2}\right\rangle\right|=2^{m}-1$ and a Sylow 3subgroup $\mathfrak{P} /\left\langle K^{2}\right\rangle$ of $\mathfrak{B} /\left\langle K^{2}\right\rangle$ is cyclic, $N_{\left.\mathfrak{B} /<K^{2}\right\rangle}\left(\mathfrak{F} /\left\langle K^{2}\right\rangle\right)=C_{\left.\mathfrak{B} /<K^{2}\right\rangle}\left(\mathfrak{B} /\left\langle K^{2}\right\rangle\right)$. It is easily seen that $N_{\left.\mathfrak{B} /<K^{2}\right\rangle}\left(\mathfrak{P} /\left\langle K^{2}\right\rangle\right)=N_{\mathfrak{G}} \mathfrak{F} \cap \mathfrak{B} /\left\langle K^{2}\right\rangle$. Let X be any element of $N_{\mathfrak{G}} \mathfrak{B} \cap \mathfrak{B}$. Then, X induces trivial automorphisms of $\left\langle K^{2}\right\rangle$ and $\mathfrak{F} /\left\langle K^{2}\right\rangle$. Therefore $\langle X\rangle$ must be a 3 -group and $\langle X\rangle \subseteq \mathfrak{F} \subseteq C_{\mathscr{G}} \mathfrak{F}$. Hence $N_{\mathbb{G}} \mathfrak{F} \cap \mathfrak{B} \subseteq C_{\mathbb{G}} \mathfrak{F}$ and $N_{\mathscr{G}} \mathfrak{F}=C_{G} \mathfrak{F}$. By the splitting theorem of Burnside \mathfrak{P} has a normal complement in ©5. Since all the Sylow subgroups different from Sylow 3 -subgroup of \mathfrak{B} are cyclic, in the same way as in [4, Case C], it can be shown that \mathbb{F} has the normal subgroup \mathfrak{R}, which is a complement of \mathfrak{B}. In particular, $\mathfrak{R} \cap \mathfrak{U}=\mathfrak{D}$ is a normal subgroup of \mathfrak{y}. Since $\left|C_{\mathscr{G}}\left(K^{3}\right)\right|=$ $6 \cdot 2^{m}\left(2^{m}-1\right)$ and $|\mathfrak{D}|=2^{m}+1$ are relatively prime, K^{3} induces a fixed-pointfree automorphism of \mathfrak{D} of order 2 and so \mathfrak{D} is abelian. \mathfrak{R} is the product of \mathfrak{D} and a Sylow 2 -subgroup of \mathbb{E}. Hence \mathfrak{R}, and therefore \mathscr{S} is solvable ([5]). Then ©s must contain a regular normal subgroup. Thus there exists no group satisfying the conditions of the theorem in this case.
9. Case $\beta=2$ and $\langle K, I\rangle$ is abelian. In this case \mathbb{S} is a Sylow 2subgroup of \mathbb{E} and an elementary abelian group of order $2^{m_{+1}}$. Since $g^{*}(2)=0$, every involution of $\mathfrak{F s}$ is conjugate to K^{3}.

If \mathbb{S}^{G} contains K^{3} for some $G \in \mathscr{S}$, then $\mathbb{S}^{G}=\mathbb{S}$. In fact, since \mathbb{S} is
 Thus we have

$$
\left[\mathscr{S}: C_{\Theta}\left(K^{3}\right)\right]=\left(2^{m+1}-1\right)\left[\mathscr{\circlearrowleft}: N_{\circlearrowleft} \subseteq\right],
$$

namely

$$
\left[N_{\circlearrowleft} \subseteq: N_{\circlearrowleft} \Re\right]=2^{m+1}-1 .
$$

Hence $\left|N_{\mathscr{G}} \circlearrowleft\right|=2^{m+1} \cdot 3\left(2^{m}-1\right)\left(2^{m+1}-1\right)$ and $N_{\mathscr{G}} \subseteq$ contains a subgroup \mathfrak{A} of order $3\left(2^{m}-1\right)\left(2^{m+1}-1\right)$. Put $\mathfrak{B}_{1}=\mathfrak{A} \cap \mathfrak{G}=\mathfrak{A} \cap N_{\mathscr{C}} \mathfrak{R}$. By a theorem of SchurZassenhaus \mathfrak{B} and \mathfrak{B}_{1} are conjugate in $\mathfrak{S} \mathfrak{B}$. A Sylow 3 -subgroup of \mathfrak{B}_{1} is abelian and all the other Sylow subgroups are cyclic. Therefore likewise in 8 , it can be shown that \mathfrak{A} has the normal subgroup \mathfrak{B} of order $2^{m+1}-1$. Since $2^{m+1}-1$ and $|\mathfrak{x}|=6(n-1)$ are relatively prime, every permutation ($\neq 1$) of \mathfrak{B} leaves no symbol of Ω fixed. If a permutation V of \mathfrak{B}_{1} leaves at least two symbol of Ω fixed, then V is conjugate to K^{2} and $\left|C_{\odot}(V)\right|$ is equal to $\left|N_{\mathfrak{G}} \mathfrak{R}\right|$. This implies that $C_{\mathfrak{G}}(V) \cap \mathfrak{B}=1$, for $|\mathfrak{B}|=2^{m+1}-1$ and $\left|N_{\circlearrowleft 氏} \mathscr{R}\right|=2^{m+1} \cdot 3\left(2^{m}-1\right)$ are relatively prime. Thus every permutation $(\neq 1)$ of \mathfrak{B} is not commutative with any permutation $(\neq 1)$ of \mathfrak{B}_{1}. Hence $|\mathfrak{B}|-1=$ $2^{m+1}-2 \geqq\left|\mathfrak{B}_{1}\right|=3\left(2^{m}-1\right)$, a contradiction. Thus there exists no group satisfying the conditions of the theorem in this case.

Thus Theorem is proved.

References

[1] W. Feit, On a class of doubly transitive permutation groups, Ill. J. Math., 4 (1960), 170-186.
[2] D. Gorenstein and J.H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Alg., 2 (1965), 85-151, 218-270, 334-393.
[3] N. Ito, On a class of doubly transitive permutation groups, I11. J. Math., 6 (1962), 341-352.
[4] - On doubly transitive groups of degree n and order $2(n-1) n$, Nagoya Math. J., 27 (1966), 409-417.
[5] O. Kegel, Produkte nilpotenter Gruppen, Arch. Math., 12 (1961), 90-93.
[6] H. Kimura, On doubly transitive permutation groups of degree n and order $4(n-1) n$, J. Math. Soc. Japan (to appear).
[7] On some doubly transitive permutation groups of degree n and order $2^{l}(n-1) n$, (to appear).
[8] H. Lüneburg, Charakterisierungen der endlichen desarguesschen Ebenen, Math. Z. 85 (1964), 419-450.
[9] H. Wielandt, Finite permutation groups, Academic Press, New York, 1964.
[10] H. Zassenhaus, Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Hamb. Abh., 11 (1936), 17-40.

