ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF PARABOLIC EQUATIONS WITH UNBOUNDED COEFFICIENTS

TADASHI KURODA

Dedicated to Professor Katuzi Ono on his 60th birthday

1. Let R^{n} be the n-dimensional Euclidean space, each point of which is denoted by its coordinate $x=\left(x_{1}, \cdots, x_{n}\right)$. The variable t is in the real half line $[0, \infty)$. We consider a differential operator

$$
\begin{equation*}
L=\sum_{i, j=1}^{n} a_{i j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} b_{i} \frac{\partial}{\partial x_{i}}+c-\frac{\partial}{\partial t} \tag{1}
\end{equation*}
$$

in the $(n+1)$-dimensional Euclidean half space $R^{n} \times(0, \infty)$ and assume that the matrix $\left(a_{i j}\right)$ is positive definite in $R^{n} \times(0, \infty)$. Suppose that for coefficients of L there exist constants $K_{1}(>0), K_{2}(\geqq 0), K_{3}(>0)$ and $\lambda \in[0,1]$ such that

$$
\begin{array}{ll}
\left|a_{i j}\right| \leqq K_{1}\left(|x|^{2}+1\right)^{1-2}, & 1 \leqq i, j \leqq n, \\
\left|b_{i}\right| \leqq K_{2}\left(|x|^{2}+1\right)^{1 / 2}, & 1 \leqq i \leqq n, \\
|c| \leqq K_{3}\left(|x|^{2}+1\right)^{2} . &
\end{array}
$$

Besala and Fife [1] investigated the asymptotic behavior of solutions of the Cauchy problem for such a parabolic differential operator L under a non-negative Cauchy data not identically equal to zero.

One of their result is as follows:
Let a continuous function $u(x, t)$ in $R^{n} \times[0, \infty)$ have the following properties;
i) $L u \leqq 0$ in $R^{n} \times(0, \infty)$ in the usual sense,
ii) $u(x, 0)$ is non-negative and not identically equal to zero
and
iii) there exist positive constants μ and ν such that

[^0]\[

u(x, t) \geqq $$
\begin{cases}-\mu e^{\nu\left(|x|^{2}+1\right)^{\lambda}}, & \lambda \in(0,1], \\ -\mu\left(|x|^{2}+1\right)^{\nu}, & \lambda=0\end{cases}
$$
\]

in $R^{n} \times(0, \infty)$.
If there exist a sufficiently large constant α and a positive β satisfying

$$
\begin{gathered}
4 \alpha^{2} \lambda^{2}\left(|x|^{2}+1\right)^{2 \lambda-2} \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}-4 \alpha \lambda(\lambda-1)\left(|x|^{2}+1\right)^{\lambda-2} \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} \\
-2 \alpha \lambda\left(|x|^{2}+1\right)^{\lambda-1} \sum_{i=1}^{n}\left(a_{i i}+b_{i} x_{i}\right)+c \geqq \beta
\end{gathered}
$$

in $R^{n} \times(0, \infty)$, then $u(x, t)$ grows exponentially as t tends to ∞ and this exponential growth of $u(x, t)$ is uniform with respect to $x \in R^{n}$.

In their proof of this result, the condition that α is sufficiently large, is essential. In this note we shall give a rather simple condition than that of Besala-Fife under a somewhat different condition for coefficients of the operator L.
2. In the following we assume that coefficients of the operator L in (1) satisfy the following condition in $R^{n} \times(0, \infty)$ for some $\lambda \in(0,1]$:

$$
\left\{\begin{array}{l}
k_{1}\left(|x|^{2}+1\right)^{1-2}|\xi|^{2} \leqq \sum_{i, j=1}^{n} a_{i j} \xi_{i} \xi_{j} \leqq K_{1}\left(|x|^{2}+1\right)^{1-2}|\xi|^{2} \tag{2}\\
\\
\quad \text { for any real vector } \xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \\
\left|b_{i}\right| \leqq K_{2}\left(|x|^{2}+1\right)^{1 / 2}, \quad 1 \leqq i \leqq n \\
-k_{3}\left(|x|^{2}+1\right)^{2}+k_{3}^{\prime} \leqq c \leqq K_{3}\left(|x|^{2}+1\right)^{2}
\end{array}\right.
$$

where $k_{1}(>0), K_{1}, K_{2}(\geqq 0), k_{3}(>0), k_{3}^{\prime}(\geqq 0)$ and $K_{3}(>0)$ are constants.
First we construct a function of the form $H(x, t)=\exp \left\{-\alpha(t)\left(|x|^{2}+1\right)^{2}\right.$ $+\beta(t)\}$ satisfying $L H \geqq 0$ in $R^{n} \times(0, \infty)$, where $\alpha(t)$ and $\beta(t)$ are positive and differentiable once in ($0, \infty$).

Obviously the condition (2) implies

$$
\begin{aligned}
\frac{L H}{H} & \geqq 4 \alpha^{2}(t) \lambda^{2} k_{1}\left(|x|^{2}+1\right)^{\lambda-1}|x|^{2}-2 \alpha(t) \lambda n K_{1} \\
& -2 \alpha(t) \lambda n K_{2}\left(|x|^{2}+1\right)^{2}-k_{3}\left(|x|^{2}+1\right)^{\lambda}+k_{3}^{\prime} \\
& +\alpha^{\prime}(t)\left(|x|^{2}+1\right)^{2}-\beta^{\prime}(t) \\
\geqq & \left(|x|^{2}+1\right)^{2}\left[4 \alpha^{2}(t) \lambda^{2} k_{1}-2 \alpha(t) \lambda n K_{2}-k_{3}+\alpha^{\prime}(t)\right] \\
& -2 \alpha(t) \lambda n K_{1}+k_{3}^{\prime}-4 \alpha^{2}(t) \lambda^{2} k_{1}-\beta^{\prime}(t) .
\end{aligned}
$$

We can easily verify that the function

$$
\alpha(t)=\frac{r_{0}}{\lambda \sqrt{k_{1}}} \frac{1}{e^{4 \tau_{0} \lambda \sqrt{k_{1}} t}-1}+\frac{r_{0}}{2 \lambda \sqrt{ } \sqrt{k_{1}}}+\frac{n K_{2}}{4 \lambda k_{1}}, \quad r_{0}=\left(k_{3}+\frac{n^{2} K_{2}^{2}}{4 k_{1}}\right)^{1 / 2}
$$

is a solution of the differential equation

$$
4 \alpha^{2}(t) \lambda^{2} k_{1}-2 \alpha(t) \lambda n K_{2}-k_{3}+\alpha^{\prime}(t)=0
$$

of the Riccati type in $(0, \infty)$ and that for this $\alpha(t)$ the function

$$
\begin{aligned}
\beta(t)=\{ & \left.\frac{n \gamma_{0}}{\sqrt{k_{1}}}\left(K_{1}+K_{2}\right)-\frac{n^{2} K_{2}}{2 k_{1}}\left(K_{1}+K_{2}\right)-k_{3}+k_{3}^{\prime}\right\} t \\
& -\frac{n\left(K_{1}+K_{2}\right)}{2 \lambda \sqrt{k_{1}}} \log \left(e^{4 \gamma_{0} \lambda \sqrt{k_{1}} t}-1\right)+\frac{r_{0}}{\lambda_{\sqrt{ }} \sqrt{k_{1}}} \frac{1}{e^{4 \gamma \gamma_{0} \lambda \sqrt{k_{1}} t}-1}
\end{aligned}
$$

satisfies

$$
-2 \alpha(t) \lambda n K_{1}+k_{3}^{\prime}-4 \alpha^{2}(t) \lambda^{2} k_{1}-\beta^{\prime}(t)=0
$$

in $(0, \infty)$. Hence we see $L H \geqq 0$ in $R^{n} \times(0, \infty)$ for the function

$$
H(x, t)=\left(e^{4 r_{0} \lambda \sqrt{k_{1}} t}-1\right)^{-\frac{n\left(K_{1}+K_{2}\right)}{2 \lambda k_{1}}} \exp \left\{\frac{\gamma_{0}}{\lambda \sqrt{\overline{k_{1}}}} \frac{1}{e^{4 \gamma_{0} \lambda \sqrt{k_{1}} t}-1}\right\} \times
$$

$$
\begin{align*}
& \times \exp \left\{-\left(\frac{r_{0}}{\lambda_{0} \sqrt{k_{1}}} \frac{1}{e^{4 \tau 0 \lambda \sqrt{k_{1}} t}-1}+\frac{r_{0}}{2 \lambda_{\sqrt{ }} \sqrt{k_{1}}}+\frac{n K_{2}}{4 \lambda k_{1}}\right)\left(|x|^{2}+1\right)^{\lambda}\right. \tag{3}\\
& \left.+\left[\frac{n r_{0}}{\sqrt{k_{1}}}\left(K_{1}+K_{2}\right)-\frac{n^{2} K_{2}}{2 k_{1}}\left(K_{1}+K_{2}\right)-k_{3}+k_{3}^{\prime}\right] t\right\},
\end{align*}
$$

where $\quad r_{0}=\left(k_{3}+\frac{n^{2} K_{2}^{2}}{4 k_{1}}\right)^{1 / 2}$. Since

$$
\frac{r_{0}}{2 \lambda_{\sqrt{ } / k_{1}}}+\frac{n K_{2}}{4 \lambda k_{1}}>0 \quad \text { and } \frac{r_{0}}{\lambda_{\sqrt{ }} \sqrt{k_{1}}}\left\{1-\left(|x|^{2}+1\right)^{\lambda}\right\}<0, \quad x \neq 0,
$$

it holds that

$$
\begin{equation*}
\lim _{t \downarrow 0} H(x, t)=0 \quad \text { for } x \neq 0 \tag{4}
\end{equation*}
$$

3. Suppose that the function $u(x, t)$ non-negative and continuous in $R^{n} \times[0, \infty)$ has the following property:

> i) $\quad L u \leqq 0$ in $R^{n} \times(0, \infty)$ in the usual sense,
> ii) $u(x, 0)(\geqq 0)$ is not identically equal to zero.

Here L is a differential operator of the form (1) with coefficients satisfying (2) and
(6) $-2\left(\frac{\gamma_{0}}{2 \lambda \sqrt{k_{1}}}+\frac{n K_{2}}{4 \lambda k_{1}}\right) \lambda K_{1} n-4\left(\frac{r_{0}}{2 \lambda \sqrt{k_{1}}}+\frac{n K_{2}}{4 \lambda k_{1}}\right)^{2} \lambda^{2} k_{1}+k_{3}^{\prime}>0$,

$$
\gamma_{0}=\left(k_{3}+\frac{n^{2} K_{2}^{2}}{4 k_{1}}\right)^{1 / 2} .
$$

We can find a positive number ε so small that

$$
\begin{equation*}
-2\left(\varepsilon+\frac{r_{0}}{2 \lambda \sqrt{k_{1}}}+\frac{n K_{2}}{4 \lambda k_{1}}\right) \lambda K_{1} n-4\left(\varepsilon+\frac{r_{0}}{2 \lambda \sqrt{k_{1}}}+\frac{n K_{2}}{4 \lambda k_{1}}\right)^{2} \lambda^{2} k_{1}+k_{3}^{\prime}>0 . \tag{7}
\end{equation*}
$$

Let T be a positive number such that

$$
0<\frac{\gamma_{0}}{\lambda \sqrt{k_{1}}} \frac{1}{e^{2 r_{0} \lambda \sqrt{\overline{k_{1}} T}}-1}<\varepsilon .
$$

From the assumption for $u(x, t)$ we see by the strong maximum principle due to Nirenberg [5] that $u(x, t)>0$ in $R^{n} \times(0, \infty)$. So the value $m=\min _{\substack{|x|=r \\ t \in[\delta, T]}} u(x, t)$ is positive for an arbitrary $r(>0)$ and for any $\delta(>0)$ fixed sufficiently small. We may assume that $\frac{T}{2}<T-\delta$. For these r and δ, clearly $0<M_{1}=\max _{\substack{|x|=\gamma \\ t \in[\hat{\delta}, T]}} H(x, t-\delta)<\infty$, where H is the function given by (3). Put

$$
w(x, t)=\frac{m}{M_{1}} H(x, t-\delta)-u(x, t) .
$$

Evidently we have $L w \geqq 0$ in $\Omega \times(\hat{\delta}, T)$, where Ω is the set of all points $x \in R^{n}$ such that $r<|x|$. Moreover, $w(x, t)$ is continuous on $\bar{\Omega} \times[\delta, T]$, $w(x, \delta) \leqq 0$ for $|x| \geqq r$ and $w(x, t) \leqq 0$ for $|x|=r$ and $t \in[\delta, T]$. Bodanko's maximum principle [2] implies that $w(x, t) \leqq 0$ in $\bar{\Omega} \times[\hat{\delta}, T]$. Therefore we get

$$
\frac{m}{M_{1}} H(x, T-\delta) \leqq u(x, T)
$$

for $|x| \geqq r(>0)$. As is seen easily, there is a positive constant M_{2} such that $M_{2} H(x, T-\delta) \leqq u(x, T)$ in $|x| \leqq r$. Hence by putting $M_{3}=\min \left(\frac{m}{M_{1}}, M_{2}\right)$ we have $M_{3} H(x, T-\delta) \leqq u(x, T)$ at every point $x \in R^{n}$. Since $\frac{T}{2}<T-\delta$, we obtain

$$
\begin{aligned}
u(x, T) & \geqq M_{3} H(x, T-\delta) \\
& \geqq M_{4} \exp \left\{-\left(\varepsilon+\frac{r_{0}}{2 \lambda \sqrt{k_{1}}}+\frac{n K_{2}}{4 \lambda k_{1}}\right)\left(|x|^{2}+1\right)^{2}\right\}
\end{aligned}
$$

in R^{n} for some positive constant M_{4}.
4. Now we can prove the following theorem.

Theorem 1. Let L be a parabolic differential operator of the form (1) with coefficients satisfying (2) and (6). Assume that the function $u(x, t)$ continuous in $R^{n} \times[0, \infty)$ satisfies (5) and $u(x, t) \geqq-\mu e^{\nu\left(|x|^{2}+1\right)^{\lambda}}$ for some positive constants μ and ν. Then $u(x, t)$ grows to infinity exponentially as t tends to ∞ and this exponential growth of $u(x, t)$ is uniform in any compact subset of R^{n}.

Proof. Bodanko's maximum principle shows that $u(x, t) \geqq 0$ in $R^{n} \times[0, \infty)$. As was shown in $\S 3$, for a positive number ε satisfying (7) there exist a positive number T and a positive constant M_{4} such that

$$
\begin{aligned}
u(x, T) & \geqq M_{4} \exp \left\{-\left(\varepsilon+\frac{r_{0}}{2 \lambda \sqrt{ } \overline{k_{1}}}+\frac{n K_{2}}{4 \lambda k_{1}}\right)\left(|x|^{2}+1\right)^{2}\right\} \\
& \equiv M_{4} H_{0}(x), \quad \text { say. }
\end{aligned}
$$

From (7) we can take a positive number β_{0} which satisfies

$$
-2\left(\varepsilon+\frac{\gamma_{0}}{2 \lambda \sqrt{k_{1}}}+\frac{n K_{2}}{4 \lambda k_{1}}\right) \lambda K_{1} n-4\left(\varepsilon+\frac{\gamma_{0}}{2 \lambda \sqrt{k} k_{1}}+\frac{n K_{2}}{4 \lambda k_{1}}\right)^{2} \lambda^{2} k_{1}+k_{3}^{\prime}-\beta_{0}>0 .
$$

Putting

$$
h(x, t)=M_{4} H_{0}(x) e^{\beta_{0}(t-T)}
$$

and $v(x, t)=u(x, t)-h(x, t)$ in $R^{n} \times(T, \infty)$, we see

$$
\begin{aligned}
L v \leqq & -L h \\
= & -h\left[4 \alpha_{0}^{2} \lambda^{2}\left(|x|^{2}+1\right)^{2 \lambda-2} \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}\right. \\
& -4 \alpha_{0} \lambda(\lambda-1)\left(|x|^{2}+1\right)^{\lambda-2} \sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} \\
& \left.-2 \alpha_{0} \lambda\left(|x|^{2}+1\right)^{\lambda-1} \sum_{i=1}^{n}\left(a_{i i}+b_{i} x_{i}\right)+c-\beta_{0}\right]
\end{aligned}
$$

in $R^{n} \times(T, \infty)$, where $\alpha_{0}=\varepsilon+\frac{r_{0}}{2 \lambda \sqrt{k_{1}}}+\frac{n K_{2}}{4 \lambda k_{1}}$. Hence it follows from (2) that

$$
\begin{aligned}
L v \leqq & -h\left[\left(|x|^{2}+1\right)^{\lambda}\left\{4 \alpha_{0}^{2} \lambda^{2} k_{1}-2 \alpha_{0} \lambda K_{2} n-k_{3}\right\}\right. \\
& \left.-2 \alpha_{0} \lambda K_{1} n-4 \alpha_{0}^{2} \lambda^{2} k_{1}+k_{3}^{\prime}-\beta_{0}\right] .
\end{aligned}
$$

Evidently α_{0} and β_{0} satisfy

$$
4 \alpha_{0}^{2} \lambda^{2} k_{1}-2 \alpha_{0} \lambda K_{2} n-k_{3}>0 \text { and }-2 \alpha_{0} \lambda K_{1} n-4 \alpha_{0}^{2} \lambda^{2} k_{1}+k_{3}^{\prime}-\beta_{0}>0 .
$$

Therefore we have $L v \leqq 0$ in $R^{n} \times(T, \infty)$. Further, we see $v(x, T)=u(x, T)$ $-M_{4} H_{0}(x) \geqq 0$. Applying Bodanko's maximum principle again, we can see $v(x, t) \geqq 0$ in $R^{n} \times[T, \infty)$, so

$$
M_{4} H_{0}(x) e^{\beta_{0}(t-T)} \leqq u(x, t) \text { in } R^{n} \times[T, \infty) .
$$

From this we get the assertion of Theorem 1.
Example. Consider an operator

$$
\begin{equation*}
L_{0}=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}+\left(-k^{2}|x|^{2}+l\right)-\frac{\partial}{\partial t} \tag{8}
\end{equation*}
$$

in $R^{n} \times(0, \infty)$. Let $u(x, t)$ continuous in $R^{n} \times[0, \infty)$ satisfy $L_{0} u \leqq 0$ and $u(x, t) \geqq-\mu e^{\nu|x|^{2}}$ in $R^{n} \times(0, \infty)$ for some positive μ, ν and let $u(x, 0)$ be nonnegative and not identically equal to zero. The condition (2) is satisfied for $\lambda=1, k_{1}=K_{1}=1, K_{2}=0, k_{3}=k^{2}$ and $k_{3}^{\prime}=k^{2}+l$. Theorem 1 implies that, if the condition $l>k n$ corresponding to (6) is fulfilled, then $u(x, t)$ grows exponentially to infinity as t tends to infinity. This fact was essentially proved by Szybiak [6] although his theorem is false as Besala and Fife pointed out. Szybiak missed the condition $l>k n$ out of the statement of his theorem.
5. Assume $l<k n$ in (8). In this case, Krzyżański [4] proved the following by constructing the fundamental solution of the Cauchy problem for the equation $L_{0} u=0$: Let u be the solution of the Cauchy problem

$$
\begin{aligned}
& L_{0} u=0 \text { in } R^{n} \times(0, \infty), \\
& u(x, 0)=f(x)
\end{aligned}
$$

for the Cauchy data $f(x)$ bounded in R^{n}. Then $u(x, t)$ tends to zero uniformly in $x \in R^{n}$ as t tends to infinity.

Recently Chen [3] treated an analogous problem for an operator of a general form and proved the following fact.

Let the differential operator L in (1) satisfy the condition

$$
\left\{\begin{array}{l}
k_{1}\left(|x|^{2}+1\right)^{1-\lambda}|\xi|^{2} \leqq \sum_{i, j=1}^{n} a_{i j} \xi_{i} \xi_{j} \leqq K_{1}\left(|x|^{2}+1\right)^{1-\lambda}|\xi|^{2} \text { for real vector } \xi \tag{9}\\
\left|b_{i}\right| \leqq K_{2}\left(|x|^{2}+1\right)^{1 / 2}, \quad 1 \leqq i \leqq n \\
c \leqq-k_{3}\left(|x|^{2}+1\right)^{2}+k_{3}^{\prime}
\end{array}\right.
$$

for some $\lambda \in(0,1], k_{1}(>0), K_{1}, K_{2}(\geqq 0), k_{3}(>0)$ and k_{3}^{\prime}. Further, let $u(x, t)$ be a solution of the Cauchy problem $L u=0$ in $R^{n} \times(0, \infty), u(x, 0)=f(x)$ in R^{n} and satisfy $|u(x, t)| \leqq \mu e^{\nu\left(|x|^{2}+1\right)^{\lambda}}$ for some constants μ and ν positive. If $f(x)$ is bounded in R^{n} and if

$$
\frac{1}{2 K_{1}}\left[2 K_{1}(1-\lambda)-k_{1} n\right]\left(\sqrt{n^{2} K_{2}^{2}+4 K_{1} k_{3}}-n K_{2}\right)+k_{3}^{\prime}<0,
$$

then $u(x, t)$ tends to zero uniformly in $x \in R^{n}$ as t tends to infinity.
6. Here we shall discuss the case when $\lambda \in[1, \infty)$ in Chen's theorem. Let L be an operator of the form (1) with coefficients satisfying (9) for $\lambda \in[1, \infty)$. For $H(x, t)=\exp \left\{-\alpha(t)\left(|x|^{2}+1\right)^{\lambda}+\beta(t)\right\}$ with $\alpha(t)(>0)$ and $\beta(t)$ differentiable once in $(0, \infty)$ we have

$$
\begin{aligned}
\frac{L H}{H} & \leqq\left(|x|^{2}+1\right)^{2}\left[4 \lambda^{2} K_{1} \alpha^{2}(t)+2 \lambda n K_{2} \alpha(t)-k_{3}+\alpha^{\prime}(t)\right] \\
& -2 \lambda k_{1} n \alpha(t)+k_{3}^{\prime}-4 \lambda^{2} K_{1} \alpha^{2}(t)-\beta^{\prime}(t)
\end{aligned}
$$

Hence, if we take

$$
\begin{equation*}
\alpha(t)=\gamma \tanh 4 \lambda^{2} K_{1} \gamma t \tag{10}
\end{equation*}
$$

and

$$
\beta(t)=\left[-2 \lambda k_{1} n \gamma-4 \lambda^{2} K_{1} \gamma^{2}+k_{3}^{\prime}\right] t+\frac{k_{1} n}{2 \lambda K_{1}} \log \frac{e^{8 \lambda^{2} K_{1} \gamma t}}{e^{8 \lambda^{2} K_{1} \tau t}+1}-\frac{2 \gamma}{e^{8 \lambda^{2} K_{1} r t}+1}
$$

for the positive root γ of the quadratic equation $4 \lambda^{2} K_{1} X^{2}+2 \lambda n K_{2} X-k_{3}=0$, then we get $L H \leqq 0$ in $R^{n} \times(0, \infty)$. Clearly $H(x, 0)=e^{\beta(0)}=e^{-\gamma-\frac{k_{1} n}{2 \lambda} K_{1} \log 2}$. Putting $w_{ \pm}(x)=M e^{-\beta(0)} H(x, t) \pm u(x, t)$ for $M=\sup _{x \in R^{n}}|f(x)|$, where $u(x, t)$ is a solution of the Cauchy problem $L u=0$ in $R^{n} \times(0, \infty), u(x, 0)=f(x)$ for the bounded Cauchy data $f(x)$ and satisfies $|u(x, t)| \leqq \mu e^{\nu\left(|x|^{2}+1\right)^{\lambda}}$ for some positive μ and ν, we have $L w_{ \pm} \leqq 0$ in $R^{n} \times(0, \infty)$ and $w_{ \pm}(x, 0) \geqq 0$. From Bodanko's maximum principle in the case of $\lambda \in[1, \infty)$ we get $w_{ \pm}(x, t) \geqq 0$ in $R^{n} \times[0, \infty)$, so

$$
\begin{aligned}
|u(x, t)| & \leqq M e^{-\beta(0)} H(x, t) \\
& \leqq M e^{-\beta(0)} e^{\beta(t)} \leqq M e^{-\beta(0)} e^{\left(-2 \lambda k_{1} n r-4 \lambda^{2} K_{1} \tau^{2}+k_{s^{\prime}}\right) t}
\end{aligned}
$$

in $R^{n} \times[0, \infty)$. Therefore, if

$$
\begin{equation*}
-2 \lambda k_{1} n \gamma-4 \lambda^{2} K_{1} \gamma^{2}+k_{3}^{\prime}<0, \tag{11}
\end{equation*}
$$

then $u(x, t)$ decays to zero exponentially as t tends to infinity. Thus we have the following

Theorem 2. Let L be a differential operator of the form (1) with coefficients satisfying (9) for some $\lambda \in[1, \infty)$ and let $u(x, t)$ be a solution of the Cauchy problem

$$
\begin{aligned}
& L u=0 \quad \text { in } R^{n} \times(0, \infty), \\
& u(x, 0)=f(x) \quad \text { in } R^{n}
\end{aligned}
$$

for a bounded continuous Cauchy data $f(x)$ in R^{n}. Assume that there exist positive constants μ and ν such that $|u(x, t)| \leqq \mu e^{\nu\left(|x|^{2}+1\right)^{\lambda}}$ in $R^{n} \times[0, \infty)$. If the condition (11) is valid, then $u(x, t)$ decays to zero exponentially as t tends to infinity and this decay of $u(x, t)$ is uniform in R^{n}.
7. We apply Theorem 2 to the operator (8). In this case we may take $\lambda=1, k_{1}=K_{1}=1, K_{2}=0, k_{3}=k^{2}, k_{3}^{\prime}=k^{2}+l$ and γ in (10) equal to $\frac{k}{2}$. So (11) reduces to $k n>l$. This is nothing but the result of Krzyżański stated in $\$ 5$.

References

[1] P. Besala-P. Fife, The unbounded growth of solutions of linear parabolic differential equations, Ann. Scoula Norm. Sup. Pisa III, 20 (1966), 719-732.
[2] W. Bodanko, Sur le problème de Cauchy et les problèmes de Fourier pour les equations paraboliques dans un domaine non borné, Ann. Polo. Math., 18 (1966), 79-94.
[3] L.S. Chen, Note on the behavior of solutions of parabolic equations with unbounded coefficients, Nagoya Math. Journ., 37 (1969), 1~4.
[4] M. Krzyżański, Evaluations des solutions de l'equation lineaire de type paraboliques à coefficients non-borné, Ann. Polo. Math., 11 (1961-62), 253-260.
[5] L. Nirenberg, A strong maximum principle for parabolic equations, Comm. Pure Appl. Math., 6 (1953), 167-177.
[6] A. Szybiak, On the asymptotic behavior of the solutions of the equation $\Delta u-\frac{\partial u}{\partial t}+$ $c(x) u=0$, Bull. Acad. Polo. Sci., 7 (1959), 183-186.

Mathematical Institute,

Tohoku University,
Sendai, Japan.

[^0]: Received December 18, 1968

