Kazunari Hayashida
Nagoya Math. J.
Vol. 36 (1969), 99-115

ON BOUNDARY VALUE PROBLEMS FOR ELLIPTIC EQUATIONS IN A SINGULAR DOMAIN

KAZUNARI HAYASHIDA

1. Let Ω be a bounded domain in the plane and denotes its closure and boundary by $\bar{\Omega}$ and $\partial \Omega$, respectively. We shall say that the domain Ω is regular, if every point $P \in \partial \Omega$ has an 2-dimensional neighborhood U such that $\partial \Omega \cap U$ can be mapped in a one-to-one way onto a portion of the tangent line through P by a mapping T which together with its inverse is infinitely differentiable. Let L be an elliptic operator of order $2 m$ defined in $\bar{\Omega}$ and let $\left\{B_{j}\right\}_{j=1}^{m}$ be a normal set of boundary operators of orders $m_{j}<2 m$. If f is a given function in Ω, the boundary value problem $\Pi\left(L, f, B_{j}\right)$ will be to find a solution u of

$$
L u=f \text { in } \Omega
$$

satisfying

$$
B_{j} u=0 \quad \text { on } \quad \partial \Omega, \quad j=1, \cdots, m .
$$

Schechter [8] proved the following: If the set $\left\{B_{j}\right\}_{j=1}^{m}$ is normal and covers L, there is another normal set $\left\{B_{j}^{\prime}\right\}_{j=1}^{m}$ such that a solution of the problem $\Pi\left(L, f, B_{j}\right)$ exists if and only if the only solution of $\Pi\left(L^{*}, 0, B_{j}^{\prime}\right)$ is. $u=0$. Here L^{*} denotes the formal adjoint of L.

We consider the problem $\Pi\left(L, f, B_{j}\right)$ when Ω is not regular in our sense. When Ω is a domain in the plane, we shall call it singular if $\partial \Omega$ consists of a set $\left\{\Gamma_{i}\right\}_{i=1}^{N}$ of boundary portions which are sufficiently smooth and satisfy the following conditions.
(i) Each boundary portion Γ_{i} is a slit in $\bar{\Omega}$ or is contained in the outer boundary of Ω. When Γ_{i} is a slit, we distinguish between both sides.
(ii) If Γ_{i} and $\Gamma_{i^{\prime}}$ are contained in the outer boundary and adjoining at
S, they are tangent at S of infinite order from the interior. More precisely, some neighborhood of S in Ω can be mapped in a one-to-one C^{∞} way into an open disk which has an incision.

In this note we consider general boundary value problems for elliptic partial differential equations when Ω is singular in our sense.

Let $\left\{B_{i j}\right\}_{j=1}^{m}$ be a set of partial differential operators on each Γ_{i}. The problem we consider is the following: Given a function f in Ω, find the solution u such that

$$
\begin{gathered}
L u=f \text { in } \Omega \\
B_{i j} u=0 \quad \text { on } \Gamma_{i}, \\
i=1, \cdots, N, \quad j=1, \cdots, m .
\end{gathered}
$$

Our method employs coerceiveness inequalities specially adapted to the probelm. In neighborhood of points of the inner part of Γ_{i}, no new inequalities are needed (c.f. $[1,8]$). For the endpoint of Γ_{i} we obtain special inequalities which are reduced to the mixed boundary value problems.

Mixed boundary value problems in a planar domain were studied quite extensively by Peetre [7] and Shamir [12]. They used some properties of the Hilbert transform on the half line which were given in [5], [11], and [15]. For arbitrary dimension, Schechter [9] treated the mixed boundary problems under a rather complicated compatibility condition. In this note our proof relies upon mainly the results of Schechter [9] and Shamir [12].
2. Let R^{n} be the n-dimensional Euclidean space. Throughout this note we consider only the case $n=1$ or 2 . Points in R^{2} are denoted by $P=(x, t)$ and $|P|^{2}=|x|^{2}+|t|^{2}$. The half space $t>0(<0)$ is denoted by $R_{+}^{2}\left(R_{-}^{2}\right)$. Let $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ be a multi-index of non-negative integers with length $|\alpha|=\alpha_{1}+\alpha_{2}$. We shall write

$$
D=\left(D_{x}, D_{t}\right), \quad D^{\alpha}=D_{x}^{\alpha_{1}} D_{t}^{\alpha_{2}} \quad\left(D_{x}=\partial / \partial x, \quad D_{t}=\partial / \partial t\right) .
$$

We consider an elliptic differential operator of the form

$$
\begin{equation*}
L(D)=\sum_{|\alpha|=2 m} a_{\star} D^{\alpha}, \tag{2.1}
\end{equation*}
$$

where the coefficients a_{s} are complex numbers and $2 m$ is the order of $L(D)$. The characteristic polynomial corresponding to $L(D)$ is

$$
L(\xi, \eta)=\sum_{|\alpha|=2 m} a_{\perp} \xi^{\alpha_{1}} \eta^{\alpha_{2}} .
$$

We set
(2. 2)

$$
L_{1}(\xi, \tau)=L(\xi, \tau), \quad L_{2}(\xi, \tau)=L(\xi,-\tau)
$$

and

$$
\begin{equation*}
B_{1 j}^{-}(D)=D_{t}^{j-1}, \quad B_{2 j}^{-}(D)=(-1)^{j} D_{t}^{j-1}, \quad j=1, \cdots, 2 m \tag{2.3}
\end{equation*}
$$

In this section we shall mainly describe Agmon-Douglis-Nirenberg's results for the boundary value problem of the elliptic system:

$$
\begin{align*}
& L_{1}(D) u_{1}=f_{1}, \quad L_{2}(D)=f_{2}, \quad t>0, \tag{2.4}\\
& B_{1 j}^{-} u_{1}+B_{2 j}^{-} u_{2}=\varphi_{j}, \quad t=0, \quad j=1, \cdots, 2 m .
\end{align*}
$$

Denote by $\tau_{i, k}^{+}(\xi)$ (or $\left.\tau_{i, k}^{-}(\xi)\right), k=1, \cdots, m$ the roots of $L_{i}(\xi, \tau)=0$ with positive (or negative) imaginary parts, and set

$$
\begin{aligned}
& L_{i}^{ \pm}(\xi, \tau)=\prod_{1}^{m}\left(\tau-\tau_{i, k}^{ \pm}(\xi)\right), \\
& M^{+}(\xi, \tau)=L_{1}^{+}(\xi, \tau) L_{2}^{ \pm}(\xi, \tau), \quad \xi \neq 0 .
\end{aligned}
$$

Then we have
Lemma 2.1. The boundary value problem (2.4) satisfies the Complementing Condition in the sense of [2]. That is, for each real $\xi \neq 0$ the relations

$$
\begin{equation*}
\sum_{j=1}^{2 m} \lambda_{j} B_{1 j}^{-}(\tau) L_{2}(\xi, \tau)=U_{1}(\tau) M^{+}(\xi, \tau) \tag{2.5}
\end{equation*}
$$

$$
\sum_{j=1}^{2 m} \lambda_{j} B_{2 j}^{-}(\tau) L_{1}(\xi, \tau)=U_{2}(\tau) M^{+}(\xi, \tau)
$$

imply that $U_{1}(\tau), U_{2}(\tau)$ and the λ_{j} all vanish, where the λ_{j} are complex constants and the $U_{i}(\tau)$ are polynomials.

Proof. We note that (2.5) are equivalent to

$$
\sum_{j=1}^{2 m} \lambda_{j} B_{1 j}^{-}(\tau)=U_{1}^{\prime}(\tau) L_{1}^{+}(\xi, \tau),
$$

$$
\begin{equation*}
\sum_{j=1}^{2 m} \lambda_{j} B_{2 j}^{-}(\tau)=U_{2}^{\prime}(\tau) L_{2}^{+}(\xi, \tau), \tag{2.6}
\end{equation*}
$$

where $U_{i}^{\prime}(\tau)$ are other polynomials. From (2.2) we have $L_{2}^{+}(\xi, \tau)=L^{+}(-\xi, \tau)$. Hence the relations (2.6) imply that

$$
\begin{aligned}
& \sum_{j=1}^{2 m} \lambda_{j} \tau^{j-1}=U_{1}^{\prime}(\tau) L^{+}(\xi, \tau), \\
& \sum_{j=1}^{2 m} \lambda_{j}(-1)^{j} \tau^{j-1}=U_{2}^{\prime}(\tau) L^{+}(-\xi, \tau) .
\end{aligned}
$$

Thus it follows that

$$
-U_{1}^{\prime}(-\tau) L^{+}(\xi,-\tau)=U_{2}^{\prime}(\tau) L^{+}(-\xi, \tau)
$$

Noting that $L^{+}(\xi,-\tau)=(-1)^{m} L^{-}(-\xi, \tau)$, we see

$$
\begin{equation*}
(-1)^{m-1} U_{1}^{\prime}(-\tau) L^{-}(-\xi, \tau)=U_{2}^{\prime}(\tau) L^{+}(-\xi, \tau) . \tag{2.7}
\end{equation*}
$$

Since $U_{i}^{\prime}(\tau)$ are of degree at most $m-1$, the relation (2.7) means that every $U_{i}^{\prime}(\tau)$ vanishes. Hence all λ_{j} vanish. This completes the proof.

We first consider the problem (2.4) in the case $f_{1}=f_{2}=0$ and $\varphi_{1}(x)$, $\varphi_{2}(x) \in C_{0}^{\infty}(R)^{1)}$. This problem can be solved by the formula

$$
\begin{equation*}
u_{i}(x, t)=\sum_{j=1}^{2 m} \int K_{i j}(x-y, t) \varphi_{j}(y) d y, \quad i=1,2, \tag{2.8}
\end{equation*}
$$

where $K_{i j}(x, t)$ are Poisson kernels of class C^{∞} for $t>0$ except at the origin. We set

$$
G(z, M)=-(2 \pi i M)^{-1} z^{M}\left(\log (z / i)-\sum_{k=1}^{M} 1 / k\right) .
$$

Then we have for odd $q>0$

$$
\begin{gather*}
K_{i j}(x, t)=\left(\frac{\partial}{\partial x}\right)^{(1+q) / 2} \sum_{ \pm}\left(\pm \frac{\partial}{\partial x}\right)^{2 m-1-m-} R_{i j}(x, t ; \pm 1) \tag{2.9}\\
\left(m_{j}^{-}=\operatorname{deg} . B_{j}^{-}=j-1\right)
\end{gather*}
$$

and

$$
\begin{align*}
R_{i j}(x, t, \pm 1) & =(2 \pi i)^{-1} \sum_{ \pm} \int_{r} L_{i}(\pm 1, \tau) \times \\
& \times G(\pm x+t \tau, q+2 m-1) \tag{2.10}\\
& \times \sum_{l=0}^{2 m-1} c_{i \imath j}^{ \pm} \frac{M_{2 m-l-1}(\pm 1, \tau)}{M^{+}(\pm 1, \tau)} d \tau
\end{align*}
$$

where γ is a closed curve in $\operatorname{Im} \tau>0$ enclosing all the zeros of $M^{+}(\pm 1, \tau)$ and $c_{i l j}^{\ddagger}$ are constants depending on L_{1} and L_{2}.

The functions $M_{2 m-l-1}$ in (2.10) are polynomials such that

$$
\begin{array}{r}
(2 \pi i)^{-1} \int_{\tau} \frac{M_{2 m-1-1}(\pm 1, \tau)}{M(\pm 1, \tau)} \tau^{k} d \tau=\delta_{l k}, \\
0 \leqq j, k \leqq 2 m-1 .
\end{array}
$$

1) We denote R^{1} by R.

It is seen that $K_{i j}(x, t)$ are of class C^{∞} for $t \geqq 0$, except at the origin, and satisfy

$$
\begin{equation*}
\left|D^{\alpha} K_{i j}\right| \leqq C\left(x^{2}+t^{2}\right)^{\left(m_{j}^{-}-|\alpha|-1\right) / 2}\left(1+\left|\log \left(x^{2}+t^{2}\right)\right|\right) . \tag{2.11}
\end{equation*}
$$

We now consider the problem (2.4) for $f_{1}, f_{2} \in C_{0}^{\infty}\left(\bar{R}_{+}^{2}\right)$. For this purpose we extend f_{i} to the whole plane R^{2} as functions with compact support of class C^{N} (see [1, p. 519]). Let $f_{i}^{(N)}(x, t)$ be the extended functions. Having chosen some large N, we set

$$
\begin{equation*}
v_{i}(P)=\int \Gamma_{i}(P-Q) f_{i}^{(N)}(Q) d Q, \tag{2.12}
\end{equation*}
$$

where $\Gamma_{i}(P)$ is a fundamental solution of the equation $L_{i} u=0$. The function v_{i} satisfies $L_{i} v_{i}=f_{i}^{(N)}$ and it is known that

$$
\begin{equation*}
D^{\alpha} v_{i}(P)=O\left(|P|^{2 m-2-|\alpha|}(1+|\log | P \|), \quad P \rightarrow \infty .\right. \tag{2.13}
\end{equation*}
$$

In addition, we see that for β such that $|\beta|=2 m$

$$
\begin{equation*}
D^{\beta} v_{i}=\int D^{\beta} \Gamma(P-Q) f_{i}^{(N)}(Q) d Q \tag{2.14}
\end{equation*}
$$

and that $D^{\beta} \Gamma$ is a homogeneous kernel of degree -2 to which CalderonZygmund's results on singular integrals can be applied.

Proposition 2. ${ }^{11}$. Let u_{i} be C^{∞} solutions with compact support in $t \geqq 0$ of the problem (2.4). Then it holds

$$
\begin{gather*}
D^{\alpha} u_{i}=D^{\alpha} v_{i}+\sum_{j=1}^{2 m} D^{\alpha} K_{i j}(x-y, t) \cdot\left(\varphi_{j}(y)-\psi_{j}(y)\right) d y, \tag{2.15}\\
(|\alpha| \geqq 2 m-1)
\end{gather*}
$$

where $\psi_{j}(y)=B_{1 j}^{-} v_{1}(y, 0)+B_{2 j}^{-} v_{2}(y, 0)$.
This was proved in detail in [1] and [2] for $|\alpha| \geqq 2 m$ and we easily verify it for $|\alpha|=2 m-1$.

For an integral $r \geqq 0$ we use the norm

$$
\|u, \Omega\|_{r}=\sum_{|\alpha| \leq \underline{ }}\left(\int_{\Omega}\left|D^{\alpha} u\right|^{2} d x\right)^{1 / 2}
$$

where $\Omega=R^{n}$ or $R_{+}^{n}(n=1,2)$. For a real $s \geqq 0$ we define the seminorms

[^0]\[

$$
\begin{aligned}
& {[u, \Omega]_{s}=\left(\int_{\Omega} \int_{\Omega} \frac{|u(x)-u(y)|^{2}}{|x-y|^{n+2 s}} d x d y\right)^{1 / 2}, \quad 0<s<1,} \\
& {[u, \Omega]_{s}=\sum_{|\Omega|=s}\left[D^{\alpha} u, \Omega\right]_{s-[s], \quad 1 \leqq s}}
\end{aligned}
$$
\]

Let $W^{s}(\Omega)$ be the completion of $C^{\infty}(\bar{\Omega})$ with respect to the norm

$$
\|u, \Omega\|_{s}=\|u, \Omega\|[s]+[u, \Omega]_{s} .
$$

Then we have from (2.14) (c.f. [1])

$$
\begin{equation*}
\left\|v_{i}, R_{+}^{2}\right\|_{2 m} \leqq C\left\|f_{i}^{(N)}, R^{2}\right\|_{0} \leqq C\left\|L_{j} u_{i}, R_{+}^{2}\right\|_{0} . \tag{2.16}
\end{equation*}
$$

Proposition 2.2. (c.f. [2]) Assume that $u_{i}(x, t)$ belong to $C_{0}^{\infty}\left(\bar{R}_{+}^{2}\right)$ and $l \geqq 2 m$. Then there is a constant C such that

$$
\begin{align*}
& \left\|u_{1}, R_{+}^{2}\right\|_{l}+\left\|u_{2}, R_{+}^{2}\right\|_{l} \leqq C\left(\left\|L_{1} u_{1}, R_{+}^{2}\right\|_{l-2 m}\right. \tag{2.17}\\
& \quad+\left\|L_{2} u_{2}, R_{+}^{2}\right\|_{l-2 m}+\sum_{j=1}^{2 m}\left\|B_{1 j}^{-} u_{1}+B_{2 j}^{-} u_{2}, R\right\|_{l-m-\bar{j}-\frac{1}{2}} \\
& \left.\quad+\left\|u_{1}, R_{+}^{2}\right\|_{0}+\left\|u_{2}, R_{+}^{2}\right\|_{0}\right) .
\end{align*}
$$

This was proved in [1], [2] under potential theoretic considerations.
3. Let $\left\{B_{j}^{+}\right\}_{j=1}^{m}$ be a set of boundary operators with constant coefficients. We assume that B_{j}^{+}is homogeneous of degree $m_{j}^{+}(<2 m)$ and that the Complementing Condition on $\left\{B_{j}^{+}\right\}$is satisfied. In this section we shall give a proof of the following mixed a priori estimates for $u_{i} \in C_{0}^{\infty}\left(\bar{R}_{+}^{2}\right)$,

$$
\begin{align*}
\left\|u_{1}, R_{+}^{2}\right\|_{2 m} & +\left\|u_{2}, R_{+}^{2}\right\|_{2 m} \leqq C\left(\left\|L_{1} u_{1}, R_{+}^{2}\right\|_{0}+\left\|L_{2} u_{2}, R_{+}^{2}\right\|_{0}\right. \\
& +\sum_{j=1}^{2 m}\left\|B_{1 j}^{-} u_{1}+B_{2 j}^{--} u_{2}, R_{-}\right\|_{2 m-m_{j}^{-}} \tag{3.1}\\
& +\sum_{j=1}^{2 m}\left\|B_{1 j}^{+} u_{1}+B_{2 j}^{+} u_{2}, R_{+}\right\|_{2 m-m_{j}^{+}} \\
& \left.+\left\|u_{1}, R_{+}^{2}\right\|_{0}+\left\|u_{2}, R_{+}^{2}\right\|_{0}\right) .
\end{align*}
$$

The proof of (3.1) is obtained in a similar manner to the method developed by Shamir for single equations (c.f. [11]).

We consider now the Hilbert transform on R defined by

$$
\left(\mathscr{H}^{ \pm} f\right)(x)=\lim _{\varepsilon \downarrow 0}(2 \pi i)^{-1} \int_{-\infty}^{\infty} \frac{f(y)}{x+\frac{i \varepsilon}{i}-y} d y .
$$

Put $\mathscr{A} \varphi=\left(C \mathscr{H}^{+}+D \mathscr{H}^{-}\right) \varphi$, where φ is a $2 m$ dimensional vector function and C and D are $2 m \times 2 m$ matrices with constant coefficients.

Proposition 3.1. If C and D are non singular and if the eigenvalues of $C^{-1} D$ do not lie on the negative real axis, then for $\phi \in W^{\frac{1}{2}}(R)$

$$
\begin{equation*}
[\phi, R]_{\frac{1}{2}} \leqq C\left(\left[\phi, R_{-}\right]_{\frac{1}{2}}+\left[\mathscr{A} \phi, R_{+}\right]_{\frac{1}{2}}\right)^{1)} . \tag{3.2}
\end{equation*}
$$

The inequality (3.2) was established by several authors (c.f.e.g., Koppelman-Pincus [5], J. Schwartz [14], Widom [15], Shamir [11] and for any dimensional case Shamir [13]). Now we set $u_{i}-v_{i}=w_{i}, \varphi_{j}-\psi_{j}=$ $B_{1 j}^{-} w_{1}+\left.B_{2 j}^{-} w_{2}\right|_{t=0}=\omega_{j}$ in the representation formulas (2.15). Then it follows from Proposition 2.1 that

$$
\begin{equation*}
D^{\alpha} w_{i}(x, t)=\sum_{j=1}^{2 m} \int D^{\alpha} K_{i j}(x-y, t) \omega_{j}(y) d y, \quad|\alpha| \geqq 2 m-1 . \tag{3.3}
\end{equation*}
$$

Put $l_{j}^{ \pm}=2 m-1-m_{j}^{ \pm}$. Then we obtain from (3.3) by integration by parts

$$
\begin{align*}
& D_{x}^{\iota \hbar}\left(B_{1 k}^{+} w_{1}+B_{2 k}^{+} w_{2}\right)(x, t) \\
&= \sum_{j=1}^{2 m} \int_{-\infty}^{\infty}\left\{D_{x}^{\iota}{ }^{\iota}\left[B_{1 k}^{+} K_{1 j}+B_{2 k}^{+} K_{2 j}\right](x-y, t)\right\} \cdot \tag{3.4}\\
& D_{x}^{l-}\left(B_{1 j}^{-} w_{1}+B_{2 j}^{-} w_{2}\right)(y, 0) d y .
\end{align*}
$$

Let t tend to zero in both sides of (3.4). Then we have

$$
\begin{align*}
& D_{x}^{l}{ }^{\downarrow}\left(B_{1 k}^{+} w_{1}+B_{2 k}^{+} w_{2}\right)(x, 0) \\
& =\int_{-\infty}^{\infty} \sum_{j=1}^{2 m}\left(c_{k j} \mathscr{H}^{+}+d_{k j} \mathscr{H}^{-}\right) . \tag{3.5}\\
& \\
& \quad D_{x}^{l} \frac{\bar{\zeta}}{}\left[B_{1 j}^{-} w_{1}+B_{2 j}^{-} w_{2}\right](y, 0) d y
\end{align*}
$$

where $\left\{c_{k j}\right\},\left\{d_{k j}\right\}$ are two matrices with constant coefficients. Put $C=\left\{c_{k j}\right\}$ and $D=\left\{d_{k j}\right\}$. We make the following assumption.

Assumption 3.1. Two matrices C, D are non singular and eigenvalues of $C^{-1} D$ do not lie on the negative real axis.

Then we have
Theorem 3.1. Under Assumption 3. 1, the mixed a priori estimates (3.1) holds.

[^1]Proof. We set

$$
\begin{aligned}
& \varphi_{j}(x)=D_{x}^{l-\bar{j}}\left(B_{1 j}^{-} w_{1}+B_{2 j}^{-} w_{2}\right)(x, 0), \\
& \psi_{k}(x)=D_{x}^{l+}\left(B_{1 k}^{+} w_{1}+B_{2 k}^{+} w_{2}\right)(x, 0)
\end{aligned}
$$

and

$$
\varphi=\left(\varphi_{1}, \cdots, \varphi_{2 m}\right), \quad \psi=\left(\psi_{1}, \cdots, \psi_{2 m}\right) .
$$

We have by (3.5)

$$
\begin{equation*}
\psi=\left(C \mathscr{H}^{+}+D \mathscr{H}^{-}\right) \varphi . \tag{3.6}
\end{equation*}
$$

Since $\varphi \in W^{\frac{1}{2}}(R)$ from (2.13), Proposition 3.1 is applicable to the equation (3. 6). Hence it follows that

$$
\begin{align*}
& \sum_{j}\left\|B_{1 j}^{-} w_{1}+B_{2 j}^{-} w_{2}, R\right\|_{2 m-m_{j}-\frac{1}{2}} \tag{3.7}\\
& \quad \leqq C \sum_{j, \pm}\left\|B_{1 j}^{+} w_{1}+B_{2 j}^{+} w_{2}, R_{+}\right\|_{2 m-m_{j}^{-}-\frac{1}{2}} .
\end{align*}
$$

Since $w_{i}=u_{i}-v_{i}$, we see

$$
\begin{align*}
& \left\|B_{1 j}^{ \pm} w_{1}+B_{2 j}^{ \pm} w_{2}, R_{ \pm}\right\|_{2 m-m_{j}^{ \pm}-\frac{1}{2}} \\
& \quad \leqq\left\|B_{1 j}^{ \pm} u_{1}+B_{2 j}^{ \pm} u_{2}, R_{ \pm}\right\|_{2 m-m_{j}^{ \pm}-\frac{1}{2}} \tag{3.8}\\
& \quad \quad+\left\|B_{1 j}^{ \pm} v_{1}+B_{2 j}^{ \pm} v_{2}, R_{ \pm}\right\|_{2 m-m-m-\frac{1}{2}}
\end{align*}
$$

According to the well known result (c.f.e.g. [1], [8]) there exists a constant C depending only on $k(\geqq 0)$ such that the following inequality holds:

$$
\begin{equation*}
\|f, R\|_{k} \leqq C\left\|f, R_{+}^{2}\right\|_{k+\frac{1}{2}} \tag{3.9}
\end{equation*}
$$

for all $f \in C^{\infty}\left(\bar{R}_{+}^{2}\right)$.
Thus we see from (3.9)

$$
\begin{aligned}
\| B_{1 j}^{ \pm} v_{1} & +B_{2 j}^{ \pm} v_{2}, R_{ \pm} \|_{2 m-m-m-\frac{1}{2}} \\
& \leqq\left\|B_{1 j}^{ \pm} v_{1}+B_{2 j}^{ \pm} v_{2}, R\right\|_{2 m-m_{j}^{ \pm}-\frac{1}{2}} \\
& \leqq\left\|B_{1 j}^{ \pm} v_{1}+B_{2}^{ \pm} v_{2}, R_{ \pm}^{2}\right\|_{2 m-m_{j}^{ \pm}} \\
& \leqq C\left(\left\|v_{1}, R_{+}^{2}\right\|_{2 m}+\left\|v_{2}, R_{+}^{2}\right\|_{2 m}\right) .
\end{aligned}
$$

Using the inequalities (2.16) and (3.9), we have

$$
\begin{align*}
& \left\|B_{1 j}^{ \pm} v_{1}+B_{2 j}^{ \pm} v_{2}, R_{ \pm}\right\|_{2 m-m \frac{m}{j}-\frac{1}{2}} \tag{3.10}\\
& \quad \leqq C\left(\left\|L_{1} u_{1}, R_{+}^{2}\right\|_{0}+\left\|L_{2} u_{2}, R_{+}^{2}\right\|_{0}\right) .
\end{align*}
$$

On the other hand it follows from Proposition 2.2 that
(3. 11)

$$
\begin{aligned}
\left\|u_{1}, R_{+}^{2}\right\|_{2 m} & +\left\|u_{2}, R_{+}^{2}\right\|_{2 m} \leqq C\left(\left\|L_{1} u_{1}, R_{+}^{2}\right\|_{0}\right. \\
& +\left\|L_{2} u_{2}, R_{+}^{2}\right\|_{0} \\
& +\sum_{j=1}^{2 m}\left\|B_{1 j}^{-} v_{1}+B_{2 j}^{-} v_{2}, R\right\|_{2 m-m_{j}^{-}} \\
& +\sum_{j=1}^{2 m}\left\|B_{1 j}^{-} w_{1}+B_{2 j}^{-} w_{2}, R\right\|_{2 m-m_{j}^{-}} \\
& \left.+\left\|u_{1}, R_{+}^{2}\right\|_{0}+\left\|u_{2}, R_{+}^{2}\right\|_{0}\right) .
\end{aligned}
$$

Combining (3.7), (3.8), (3.10) and (3.11), we obtain the proof of the theorem.
4. In this section we shall prove coerceive inequalities for a singular domain. Let \mathscr{D} be an open disk with the center O and radius r which has an incision along the positive x axis. We denote by Γ_{1}, Γ_{2} the upper and lower boundary portions of the incision respectively. Let $\tilde{\mathscr{D}}$ be the closure of the subspace \mathscr{D} in a manifold which distinguish between Γ_{1} and Γ_{2}. Put $\tilde{C}_{0}^{\infty}(\mathscr{D})=\left\{u \in C^{\infty}(\tilde{\mathscr{D}}) \mid u=0\right.$ in a neighborhood of $|x|=0$ and $|x|=r\}$.

Let us consider an elliptic differential operator $L(D)$ of the form (2.1) and let $\left\{\widetilde{B}_{i j}\right\}_{j=1}^{m}$ be a set of boundary operators on Γ_{i} such that $\widetilde{B}_{i j}$ is homogeneous of degree $m_{j}(<2 m)$.
Set
(4. 1)

$$
\begin{aligned}
& L_{1}(D)=L(D), \quad L_{2}(D)=L\left(D_{x},-D_{t}\right), \\
& B_{1 j}^{+}(D)=\tilde{B}_{1 j}(D), \quad B_{2 j}^{+}(D)=\tilde{B}_{2 j}\left(D_{x},-D_{t}\right) \\
& B_{1 j}^{-}(D)=D_{t}^{j-1}, \quad B_{2 j}^{-}(D)=(-1)^{j} D_{t}^{j-1}, \\
& \quad j=1, \cdots, m .
\end{aligned}
$$

Then we can prove the following
Theorem 4.1. If $\left\{L_{i}(D), B_{i j}^{ \pm}(D)\right\}$ of type (4.1) satisfies Assumption 3.1 and if $\left\{L_{i}(D), B_{i j}^{+}(D)\right\}$ satisfies the Complementing Condition, then there exists a constant C such that
(4. 2)

$$
\begin{aligned}
\|u, \mathscr{D}\|_{2 m} \leqq & C\left(\|L u, \mathscr{D}\|_{0}+\sum_{j=1}^{m}\left\|\tilde{B}_{1 j} u, \Gamma_{1}\right\|_{2 m-m_{j}-\frac{3}{2}}\right. \\
& +\sum_{j=1}^{m}\left\|\tilde{B}_{2 j} u, \Gamma_{2}\right\|_{2 m-m_{j}-\frac{1}{2}} \\
& \left.+\|u, \mathscr{D}\|_{0}\right)
\end{aligned}
$$

for all $u \in \tilde{C}_{0}^{\infty}(\mathscr{D})$.
Proof. Put

$$
u_{1}(x, t)=u(x, t), \quad u_{2}(x, t)=u(x,-t), \quad t>0 .
$$

Then we easily see

$$
\begin{aligned}
& B_{1 j}^{-} u_{1}+B_{2 j}^{-} u_{2}=0, \quad t=0, \\
& \left.\tilde{B}_{1 j} u\right|_{\Gamma_{1}}=\left.B_{1 j}^{+} u_{1}\right|_{t=0}
\end{aligned}
$$

and

$$
\left.\tilde{B}_{2 j} u\right|_{\Gamma_{2}}=\left.B_{2 j}^{+} u_{2}\right|_{t=0} .
$$

Thus it is sufficient to prove that

$$
\begin{aligned}
\left\|u_{1}, R_{+}^{2}\right\|_{2 m} & +\left\|u_{2}, R_{+}^{2}\right\|_{2 m} \leqq C\left(\left\|L_{1} u_{1}, R_{+}^{2}\right\|_{0}+\left\|L_{2} u_{2}, R_{+}^{2}\right\|_{0}\right. \\
& +\sum_{j=1}^{2 m}\left\|B_{1 j}^{-} u_{1}+B_{2 j}^{-} u, R_{-}\right\|_{2 m-m_{j}}^{-} \\
& +\sum_{j=1}^{2 m}\left\|B_{1 j}^{+} u_{1}+B_{2 j}^{+} u_{2}, R_{+}\right\|_{2 m-m_{j}^{+}} \\
& \left.+\left\|u_{1}, R_{+}^{2}\right\|_{0}+\left\|u_{2}, R_{+}^{2}\right\|_{0}\right) .
\end{aligned}
$$

This inequality follows from Theorem 3.1. So, the proof of Theorem 4. 1 is obtained.

Let Ω be a singular domain in our sense. Denote by $\tilde{C}^{\infty}(\bar{\Omega})$ a set of functions which are C^{∞} in $\bar{\Omega}$ and vanish near the endpoints of each boundary portion. We consider an elliptic operator of order $2 m$ in the form
(4. 3)

$$
L(P, D)=\sum_{|\alpha| \leqq 2 m} a_{\star}(x, t) D_{x}^{\alpha_{1}} D_{t}^{\alpha_{2}}, \quad a_{\alpha}(x, t) \in C^{\infty}(\bar{\Omega}) .
$$

On each boundary portion Γ_{i} there are defined m partial differential operators

$$
\begin{equation*}
B_{i j}(P, D)=\sum_{|\alpha| \leqq m_{i j}} b_{i j_{\alpha}}(x, t) D_{x}^{x_{1}} D_{t}^{\alpha_{2}}, \quad j=1, \cdots, m, \tag{4.4}
\end{equation*}
$$

where $m_{i j}<2 m$ and the coefficients are in $C^{\infty}\left(\Gamma_{i}\right)$.
We make the following assumption.
Assumption 4.1. We assume that the boundary set $\left\{B_{i j}(P, D)\right\}_{j=1}^{m}$ is normal in the sense of [8] and satisfies the Complementing Condition.

Let P_{0} be an endpoint of a boundary portion Γ_{i}. For a real vector τ tangent to Γ_{i} at P_{0} and a real vector ν normal to Γ_{i} at P_{0}, we rewrite the operators $L\left(P_{0}, D\right), B_{i j}\left(P_{0}, D\right)$ of type (4.3), (4.4) in the form

$$
\begin{align*}
L\left(P_{0}, D\right) & =L\left(P_{0}, D_{x}, D_{t}\right) \\
& =\widetilde{L}\left(P_{0}, D_{\tau}, D_{\nu}\right)=\tilde{L}\left(P_{0}, \tilde{D}\right), \\
B_{i j}\left(P_{0}, D\right) & =B_{i j}\left(P_{0}, D_{x}, D_{t}\right) \tag{4.5}\\
& =\tilde{B}_{i j}\left(P_{0}, D_{\tau}, D_{\nu}\right)=\tilde{B}_{i j}\left(P_{0}, \tilde{D}\right), \\
& 1 \leqq j \leqq m,
\end{align*}
$$

where $D_{\tau}=\frac{\partial}{\partial \tau}$ and $D_{\nu}=\frac{\partial}{\partial \nu}$. Then we have the following
Theorem 4. 2. Under Assumption 4. 1, consider operators $L(P, D), B_{i j}(P, D)$ of type (4.3), (4.4) in a singular domain Ω. Suppose that $\tilde{L}\left(P_{0}, \tilde{D}\right), \tilde{B}_{i j}\left(P_{0}, \tilde{D}\right)$ of the form (4.5) satisfy Assumption 3.1 for each endpoint P_{0} of boundary portions. Then there is a constant C depending only on $L(P, D), B_{i j}(P, D)$ and such that

$$
\begin{align*}
&\|u, \Omega\|_{2 m} \leqq C\left(\|L(P, D) u, \Omega\|_{0}\right. \tag{4.6}\\
&+\sum_{i, j}\left\|B_{i j}(P, D) u, \Gamma_{i}\right\|_{2 m-m_{j}-\frac{1}{2}} \\
&\left.+\|u, \Omega\|_{0}\right)
\end{align*}
$$

for all $u \in \tilde{C}^{\infty}(\bar{\Omega})$.
Proof. The passage from the equations with constant coefficients in a half space to the estimate (4.6) is performed in a familiar method based on a partition of unity (c.f.e.g. [4, 8, 9, 10]). Thus we shall show (4.6) only in a neighborhood of the endpoints of each Γ_{i}.

Let P_{0} be an endpoint of Γ_{i}. From our definition of singular domains, we can take a sufficiently small neighborhood $U\left(P_{0}\right)$ of P_{0} such that $U\left(P_{0}\right)$ can be mapped in a one-to-one C^{∞} way into an open disk \mathscr{D} which has an incision along the positive x axis. By applying Theorem 3.1, it follows that

$$
\begin{align*}
&\left\|u, U\left(P_{0}\right)_{n} \Omega\right\|_{2 m} \leqq C\left(\left\|L\left(P_{0}, D\right) u, U\left(P_{0}\right)_{\cap} \Omega\right\|_{0}\right. \\
&+\sum_{j}\left\|B_{i_{1} j}\left(P_{0}, D\right) u, \Gamma_{i_{1}}\right\|_{2 m-m_{j}-\frac{1}{2}} \tag{4.7}\\
& \quad+\sum_{j}\left\|B_{i_{2} j}\left(P_{0}, D\right) u, \Gamma_{i_{2}}\right\|_{2 m-m_{j}-\frac{1}{2}}+\left\|u, U\left(P_{0}\right)_{n} \Omega\right\|_{0}
\end{align*}
$$

for all $u \in \tilde{C}_{0}^{\infty}\left(U\left(P_{0}\right)_{n} \Omega\right)$. Here $\tilde{C}_{0}^{\infty}\left(U\left(P_{0}\right)_{n} \Omega\right)=\left\{u \in C^{\infty}\left(U\left(P_{0}\right)_{n} \Omega\right) \mid u=0\right.$ in a neighborhood of P_{0} and $\partial U\left(P_{0}\right)$ \}. We see from (4.7)
(4. 8)

$$
\begin{aligned}
& \left\|u, U\left(P_{0}\right)_{\cap} \Omega\right\|_{2 m} \leqq C\left(\left\|L(P, D) u, U\left(P_{0}\right)_{n} \Omega\right\|_{0}\right. \\
& \quad+\sum_{j}\left\|B_{i_{1} j}(P, D) u, \Gamma_{i_{1}}\right\|_{2 m-m_{j}-\frac{1}{2}} \\
& \quad+\sum_{j}\left\|B_{i_{2} j}(P, D) u, \Gamma_{i_{2}}\right\|_{2 m-m_{j}-\frac{1}{2}} \\
& \quad+\left\|\left(L\left(P_{0}, D\right)-L(P, D)\right) u, U\left(P_{0}\right)_{n} \Omega\right\|_{0} \\
& \quad+\sum_{j}\left\|\left(B_{i_{1} j}\left(P_{0}, D\right)-B_{i_{1} j}(P, D)\right) u, \Gamma_{i_{1}}\right\|_{2 m-m_{j}-\frac{1}{2}} \\
& \quad+\sum_{j}\left\|\left(B_{i_{2} j}\left(P_{0}, D\right)-B_{i_{2} j}(P, D)\right) u, \Gamma_{i_{2}}\right\|_{2 m-m_{j}-\frac{1}{2}} \\
& \left.\quad+\left\|u, U\left(P_{0}\right)_{\cap} \Omega\right\|_{0}\right) .
\end{aligned}
$$

By the well known interpolation method, we find a neighborhood $U\left(P_{0}\right)$ for a given $\varepsilon>0$ such that

$$
\begin{align*}
& \left\|\left(L\left(P_{0}, D\right)-L(P, D)\right) u, U\left(P_{0}\right)_{n} \Omega\right\|_{0} \\
& \quad \leqq \varepsilon\left\|u, U\left(P_{0}\right)_{n} \Omega\right\|_{2 m} \\
& \quad+C(\varepsilon)\left\|u, U\left(P_{0}\right)_{n} \Omega\right\|_{0}, \tag{4.9}\\
& \sum_{j}\left\|\left(B_{i_{k} j}\left(P_{0}, D\right)-B_{i_{k} j}(P, D)\right) u, \Gamma_{i_{k}}\right\|_{2 m-m_{j}-\frac{1}{2}} \\
& \leqq \varepsilon\left\|u, \Gamma_{i_{k}}\right\|_{2 m-\frac{1}{2}}+C(\varepsilon)\left\|u, \Gamma_{i_{k}}\right\|-\frac{1}{2} \\
& \quad k=1,2 .
\end{align*}
$$

By (3. 9) we see

$$
\begin{align*}
& \sum_{k, j}\left\|\left(B_{i_{k} j}\left(P_{0}, D\right)-B_{i_{k} j}(P, D)\right) u, \Gamma_{i_{k}}\right\|_{2 m-m_{j}-\frac{1}{2}} \\
& \quad \leqq C\left(\varepsilon\left\|u, U\left(P_{0}\right)_{\cap} \Omega\right\|_{2 m}+C(\varepsilon)\left\|u, U\left(P_{0}\right)_{n} \Omega\right\|_{0}\right) .
\end{align*}
$$

Combining (4.8), (4.9) and (4.10), we can find $U\left(P_{0}\right)$ such that

$$
\begin{aligned}
& \left\|u, U\left(P_{0}\right)_{n} \Omega\right\|_{2 m} \leqq C\left(\left\|L(P, D) u, U\left(P_{0}\right)_{n} \Omega\right\|_{0}\right. \\
& \quad+\sum_{j}\left\|B_{i_{1} j}(P, D) u, \Gamma_{i_{1}}\right\|_{2 m-m_{j}-\frac{1}{2}} \\
& \quad+\sum_{j}\left\|B_{i_{2} j}(P, D) u, \Gamma_{i_{2}}\right\|_{2 m-m_{j}-\frac{1}{2}} \\
& \left.\quad+\left\|u, U\left(P_{0}\right)_{n} \Omega\right\|_{0}\right)
\end{aligned}
$$

for all $u \in \tilde{C}_{0}^{\infty}\left(U\left(P_{0}\right)_{n} \Omega\right)$. This inequality means that (4.6) holds in a neighborhood of the endpoints of Γ_{i}. The proof is thus complete.
5. Let us consider a set of partial differential operators $\{L(P, D)$, $\left.B_{i j}(P, D)\right\}$ of type (4.3), (4.4) in a singular domain Ω. Throughout this section we assume that the set of boundary operators $\left\{B_{i j}(P, D)\right\}$ satisfies Assumption 4.1. In this section we shall prove the alternative theorem
for elliptic boundary value problems $\Pi\left(L, f, B_{i j}\right)$ in a singular domain. Our method is essentially along the lines of Schechter [8,9,10]. We denote by $\{S\}$ a set of all endpoints of boundary portion Γ_{i}.

Lemma 5. 1. There exists another boundary set $\left\{B_{i j}^{\prime}(P, D)\right\}$ satisfying Assumption 4. 1 such that if $u \in C^{\infty}(\bar{\Omega}-\{S\})$ and if

$$
\left(u, L^{*} v\right)=(L u, v)
$$

for all $v \in \tilde{C}^{\infty}(\bar{\Omega})$ satisfying $B_{i j}^{\prime} v=0$ on Γ_{i}, then $B_{i j} u=0$ on Γ_{i}.
The set $\left\{B_{i j}^{\prime}\right\}$ is called adjoint to $\left\{B_{i j}\right\}$ relative to L. The proof of Lemma 5.1 can be obtained in a quite similar manner to the proof developed by Aronszajn-Milgram [3] and Schechter [8] for regular domains. By a solution of the problem $\Pi\left(L, f, B_{i j}\right)$ we shall mean a function u such that $u \in C^{\infty}(\bar{\Omega}-\{S\})_{n} L^{2}(\Omega)$ and such that

$$
L u=f \text { in } \Omega, \quad B_{i j} u=0 \text { on } \Gamma_{i}, \quad j=1, \cdots, m_{i j} .
$$

Theorem 5.1. Let $\left\{L(P, D), B_{i j}(P, D)\right\}$ be a set of operators of type (4.3), (4.4) in a singular domain Ω. Assume that the set of adjoint operators $\left\{L^{*}\left(P_{0}, D\right)\right.$, $\left.B_{i j}^{\prime}\left(P_{0}, D\right)\right\}$ satisfies Assumption 3.1 for each endpoint P_{0} of boundary portions. Then the boundary value problem $\Pi\left(L, f, B_{i j}\right)$ has a solution if the only solution of $\Pi\left(L^{*}, 0, B_{i j}^{\prime}\right)$ is $u=0$.

In the last section we shall give some example for Theorem 5.1.
Proof. We proceed essentially the lines of Schechter [9,10]. Let $\tilde{H}(\Omega)$ be the completion of $\tilde{C}^{\infty}(\bar{\Omega})$ with respect to the norm

$$
\|u\|^{2}=\|u, \Omega\|_{2 m}^{2}+\sum_{i, j}\left\|B_{i j} u, \Gamma_{i}\right\|_{2 m-m}^{2} .
$$

It is easily verified that $\tilde{H}(\Omega)$ is a Hilbert space and is a subspace of $W^{2 m}(\Omega)$. We also set

$$
[u, v]=\iint_{\Omega} L^{*} u \overline{L^{*}} v d x d t+\sum_{i, j}\left(B_{i j}^{\prime} u, B_{i j}^{\prime} v\right)_{2 m-m_{i j}, \Gamma_{i}}
$$

for all $u, v \in \tilde{C}^{\infty}(\Omega)^{11}$. Then we can see from Theorem 4. 2 that $[u, v]$ is defined for $u, v \in \tilde{H}(\Omega)$ and that there is a positive constant c such that

$$
\begin{equation*}
c^{-1}\|u\|_{2 m}^{2} \leqq[u, u]+\|u\|_{0}^{2} \leqq c\|u\|_{2 m}^{2} \tag{5.1}
\end{equation*}
$$

for all $u \in \tilde{H}(\Omega)$. For simplicity we denote $\|u, \Omega\|_{k}$ by $\|u\|_{k}$.

[^2]Now we can prove that there is a positive constant c such that

$$
\begin{equation*}
c^{-1}\|u\|_{2 m}^{2} \leqq[u, u] \leqq c\|u\|_{2 m}^{2} \tag{5.2}
\end{equation*}
$$

for all $u \in \tilde{H}(\Omega)$. Assume that the estimate (5.2) does not hold. Then there is a sequence $\left\{u_{n}\right\}$ belonging to $\tilde{H}(\Omega)$ such that $n^{-1}\left\|u_{n}\right\|_{2 m}^{2} \geqq\left[u_{n}, u_{n}\right]$.

If we put $v_{n}=u_{n} /\left\|u_{n}\right\|_{2 m}$, it follows that

$$
\begin{equation*}
\left\|v_{n}\right\|_{2 m}=1, \quad v_{n} \in \tilde{H}(\Omega) \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[v_{n}, v_{n}\right] \rightarrow 0 \quad(n \rightarrow \infty) \tag{5,4}
\end{equation*}
$$

Applying Rellich's lemma to (5.3), we have a subsequence (which is also denoted by $\left\{v_{n}\right\}$ for the brevity) such that

$$
\begin{equation*}
\left\|v_{n}-v\right\|_{0} \rightarrow 0 \quad(n \rightarrow \infty) \tag{5.5}
\end{equation*}
$$

Now it follows from (5.1) that

$$
\begin{align*}
& c^{-1}\left\|v_{n}-v_{n^{\prime}}\right\|_{2 m}^{2} \leqq\left[v_{n}-v_{n \prime}, v_{n}-v_{n^{\prime}}\right]+\left\|v_{n}-v_{n^{\prime}}\right\|_{0}^{2} \\
& \quad \leqq\left[v_{n}, v_{n}\right]+\left[v_{n \prime}, v_{n^{\prime}}\right]-\left[v_{n}, v_{n}\right] \tag{5.6}\\
& \quad-\left[v_{n^{\prime}}, v_{n}\right]+\left\|v_{n}-v_{n,}\right\|_{0}^{2} .
\end{align*}
$$

By Schwarz inequality

$$
\begin{equation*}
\left[v_{n}, v_{n}\right] \leqq\left[v_{n}, v_{n}\right]^{\frac{1}{1}}\left[v_{n}, v_{n}\right]^{\frac{1}{2}} . \tag{5.7}
\end{equation*}
$$

Combining (5.4)~(5.7), we see

$$
v_{n} \rightarrow v \text { in } W^{2 m}(\Omega)
$$

Hence $[v, v]=\lim \left[v_{n}, v_{n}\right]=0$. This implies that $L^{*} v=0$ in Ω and $B_{i j}^{\prime} v=0$ on Γ_{i} in the weak sense. Applying the regularity theorem, we see that $v \in C^{\infty}(\bar{\Omega}-\{S\})_{n} L^{2}(\Omega)$. From our assumptions this means that $v=0$ in Ω. On the other hand $\|v\|_{0}=\lim _{n \rightarrow \infty}\left\|v_{n}\right\|=1$. It is a contradiction. Thus (5.2) holds. That is, there is a constant $c>0$ such that

$$
\begin{aligned}
& |[u, v]| \leqq c\|u\|_{2 m}\|v\|_{2 m}, \\
& |[u, u]| \geqq c^{-1}\|u\|_{2 m}^{2}
\end{aligned}
$$

for all $u, v \in \tilde{H}(\Omega)$. For a given function $f \in C^{\infty}(\bar{\Omega})$, the L^{2} inner product (f, v) is a bounded linear functional in $W^{2 m}(\Omega)$. Hence there is a function $g \in \tilde{H}(\Omega)$ such that
(5. 8)

$$
[g, v]=(f, v)
$$

for all $v \in \tilde{H}(\Omega)$ (c.f. [6]). If $v \in C_{0}^{\infty}(\Omega)$, (5. 8) implies

$$
\left(L^{*} g, L^{*} v\right)=(f, v)
$$

Putting $L^{*} g=u$, we see

$$
\left(u, L^{*} v\right)=(f, v), \quad v \in C_{0}^{\infty}(\Omega) .
$$

Hence, $L u=f$ in Ω and $u \in C^{\infty}(\Omega)$. If we choose v such as $v \in \tilde{C}^{\infty}(\bar{\Omega})$ and $B_{i j}^{\prime} v=0$ on Γ_{i}, then we see $u \in C^{\infty}(\bar{\Omega}-\{S\})$ by the regularity theorem. Thus we obtain the proof by Lemma 5.1

Remark. When each Γ_{i} is a closed smooth curve, N. Ikebe [4] has given the existence of solutions $C^{2 m+\alpha}(\bar{\Omega})(\alpha>0)$.
6. In this section we shall give some example for Theorem 5.1. It is sufficient to give some example such that Assumption 3.1 holds. Let \mathscr{D} be the disk defined in the beginning of section 4 . We consider the Laplace operator $L(D)=\Delta$. Then the operators defined in (4.1) are of the form

$$
\begin{gather*}
L_{1}(D)=L_{2}(D)=\Delta \\
\left(\begin{array}{cc}
B_{11}^{-}(D) & B_{21}^{-}(D) \\
B_{12}^{-}(D) & B_{22}^{-}(D)
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
\frac{\partial}{\partial t} & \frac{\partial}{\partial t}
\end{array}\right) . \tag{6.1}
\end{gather*}
$$

Let us consider the boundary value problem (2.4) in $t \geqq 0$. That is,

$$
\begin{aligned}
& \Delta u_{1}=0, \quad \Delta u_{2}=0, \quad t \geqq 0, \\
& B_{11}^{-} u_{1}+B_{21}^{-} u_{2}=\varphi_{1}, \\
& B_{12}^{-} u_{1}+B_{22}^{-} u_{2}=\varphi_{2}, \quad t=0 .
\end{aligned}
$$

Then we see by direct calculation that the kernels in (2.10) are of the form

$$
\begin{aligned}
& \left(\begin{array}{lr}
R_{11}^{-}(x, t, \pm 1) & R_{21}^{-}(x, t, \pm 1) \\
R_{12}^{-}(x, t, \pm 1) & R_{22}^{-}(x, t, \pm 1)
\end{array}\right) \\
& \quad=\left(\begin{array}{rr}
-2 G^{(2)}(\pm x+i t) & 2 G^{(2)}(\pm x+i t) \\
2 i G^{(2)}(\pm x+i t) & 2 i G^{(2)}(\pm x+i t)
\end{array}\right)
\end{aligned}
$$

Hence by (2.9), the Poisson kernels for the problem (6.1) are of the following form:

$$
\left(\begin{array}{ll}
K_{11} & K_{21} \\
K_{12} & K_{22}
\end{array}\right)=\left(\begin{array}{cc}
c_{1}\left(z^{-1}-\bar{z}^{-1}\right) & c_{1}\left(z^{-1}-\bar{z}^{-1}\right) \\
c_{2}\left(\log z^{-1}+\log \left(-\bar{z}^{-1}\right)\right) & c_{2}\left(\log z+\log \left(-\bar{z}^{-1}\right)\right)
\end{array}\right)
$$

where $z=x+i y$ and c_{i} are constants.
(I) Consider the boundary operators on the incision of \mathscr{D} such as

$$
\begin{equation*}
B_{1}(D) \equiv 1 \text { on } \Gamma_{1}, \quad B_{2}(D) \equiv-D_{t}+a D_{x} \text { on } \Gamma_{2} \tag{6.2}
\end{equation*}
$$

Then from (4.1)

$$
\left(\begin{array}{ll}
B_{11}^{+}(D) & B_{21}^{+}(D) \\
B_{12}^{+}(D) & B_{22}^{+}(D)
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & \tau+a \xi
\end{array}\right)
$$

Thus by calculation of (3.4), the integral equation (3.6) is of the form

$$
\binom{\psi_{1}}{\psi_{1}}=\left(\begin{array}{cc}
-H^{+}+H^{-} & i H^{+}+i H^{-} \\
(i+a) H^{+}+(i-a) H^{-} & (a i-1) H^{+}+(a i+1) H^{-}
\end{array}\right)\binom{\varphi_{1}}{\varphi_{2}}
$$

that is, the matrices C, D in Assumption 3.1 are

$$
C=\left(\begin{array}{cc}
-1 & i \\
i+a & a i-1
\end{array}\right), \quad D=\left(\begin{array}{cc}
1 & i \\
i-a & a i+1
\end{array}\right)
$$

Hence we see

$$
C^{-1} D=\frac{i}{1-a i}\left(\begin{array}{cc}
a i-1 & -1 \\
-(i+a) & -1
\end{array}\right)
$$

Thus we conclude that if $a_{\text {. is }}$ real, the boundary operators (6.2) satisfies Assumption 3. 1.
(II) Secondly we consider the boundary operators

$$
\begin{aligned}
& B_{1}(D) \equiv D_{t}+a D_{x} \text { on } \Gamma_{1}, \\
& B_{2}(D) \equiv-D_{t}+a D_{x} \text { on } \Gamma_{2} .
\end{aligned}
$$

Then proceeding similarly as in I), we see

$$
C^{-1} D=\left(\begin{array}{cc}
i+a & 1-a i \\
-(i+a) & 1-a i
\end{array}\right)^{-1}\left(\begin{array}{cc}
a-i & a i+1 \\
i-a & a i+1
\end{array}\right) \frac{i-a}{i+a}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

If $a \neq 0$ and a is not pure imaginary, we see that Assumption 3.1 is satisfied.

When $a=0$, our assumption is not satisfied. But it is seen that the mixed a priori estimates (3.1) hold from the relations

$$
I=\mathscr{H}^{+}-\mathscr{H}^{-}, \quad 2 \mathscr{H}=\mathscr{H}^{+}+\mathscr{H}^{-},
$$

where \mathscr{H} denotes Hilbert transform on the whole real line.

Bibliography

[1] Agmon, S., Douglis, A., and Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math., 12, 1959, pp. 623-727.
[2] —_, II, ibid. 17, 1964, pp. 35-92.
[3] Aronszajn, N., and Milgram, A.N., Differential operators on Riemannian manifolds, Rend. Circ. Mat. Parlermo, Ser. 2, 2, pp. 1-61.
[4] Ikebe, N., On elliptic boundary value problems with discontinuous coefficients, Memoirs of the Fac. Sci. Kyushu Univ., Ser. A, 21, 1967, pp. 167-184.
[5] Koppelman, W., and Pincus, J.V., Spectral representations of finite Hilbert transformations, Math. Z., 71, 1959, pp. 399-407.
[6] Lax, P.D., and Milgram, A., Parabolic equations, Contributions to the Theory of Partial Differential Equations, Ann. of Math. Studies, Princeton University Press, 1954, pp. 167-190.
[7] Peetre, J., Mixed problems for higher order elliptic equations in two variables (I), Annali di Pisa, 15, 1961, pp. 337-353.
[8] Schechter, M., General boundary value problems for elliptic partial differential equations, Comm. Pure Appl. Math., 12, 1959, pp. 451-485.
[9] Schechter, M., Mixed boundary problems for general elliptic equations, Comm. Pure Appl. Math., 13, 1960, pp. 407-425.
[10] Schechter, M., A generalization of the problem of transmission, Annali della Scoula Norm. Sup. Pisa., Ser. 3, 13, 1960, pp. 207-236.
[11] Shamir, E., Reduced Hilbert transforms and singular integral equations, J. D'analyse Math., 12, 1964, pp. 277-305.
[12] Shamir, E., Mixed boundary value problems for elliptic equations in the plane. The L^{p} theory, Annali di Pisa, 17, 1963, pp. 117-139.
[13] Shamir, E., Elliptic systems of singular integral operators. I. The half-space case, Trans. Amer. Math. Soc., 124, 1967, pp. 107-124.
[14] Schwartz, J., Some results on the spectra and spectral resolutions of a class of singular integral operators, Comm. Pure Appl. Math., 15, 1962, pp. 75-90.
[15] Widom, H., Singular integral equations in L^{p}, Trans. Amer. Math. Soc., 97, 1960, pp. 131-159.

Nagoya University

[^0]: 1) For single equations this was verified in [12].
[^1]: ${ }^{1)}$ If $\phi=\left(\phi_{1}, \cdots, \phi_{2 m}\right)$, we set $\|\phi, \Omega\|_{s}=\Sigma\left\|\phi_{i}, \Omega\right\|_{s}$ and $[\phi, \Omega]_{s}=\Sigma\left[\phi_{i}, \Omega\right]_{s}$.

[^2]: 1) Boundary inner products are defined by a partition of unity and Fourier transformation (see e.g. [8]).
