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GREEN'S FUNCTIONS FOR GENERALIZED

SCHROEDINGER EQUATIONS*

JOHN A. BEEKMAN

I. Introduction. The purpose of this paper is to discuss functions defined

on the continuous sample paths of Gaussian Markov processes which serve

as Green's functions for pairs of generalized Schroedinger equations. The

results extend the author's earlier paper [2] to a forward time version, and

consider different boundary conditions.

The approach is similar to another paper, "Feynman-Cameron Integrals,"

[4]. The restrictions on the potential V[y, t~\ needed to prove existence

theorems are so strict as to rule out most practical potentials. Hence, the

first few theorems are designed to lead the reader to an expression which

in many cases can be shown to satisfy the equations and boundary condi-

tions.

A sequential approach is used for theoretical reasons, and because it

would lead naturally into finite-dimensional approximations similar to those

of [4]. It also may serve as background for numerical analysis work similar

to that done for the conditional Wiener integral by L.D. Fosdίck, [9]. It

also reveals interesting facts about the conditional Wiener and Gaussian Markov

processes. In particular, we will calculate the mean function for the con-

ditioned Gaussian Markov process, and the covariance function for the con-

ditioned Wiener process.

The wave function for the forced harmonic oscillator is calculated. This

is one of the few time-dependent potentials considered in the numerous func-

tion space integral papers on this subject. It should be mentioned that Feyn-

man and Hibbs [8] consider this example in a different manner. Itό [10]

considered the regular harmonic oscillator. Donsker and Lions considered

time-dependent potentials in [7].
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134 JOHN A. BEEKMAN

Let {X{τ), s^τ^Lt} be a Gaussian Markov process with transition

density function

(1. 1) p(x, s;y,t)= - ^ - P[X(t) < y | X(s) = x\

)\ expj

where

(1. 2) Λ(s, t) =

(1.3) u{τ)^09 v{τ)>09 s^τ^t

(1.4) u"(τ), v"{τ) are continuous, st

\J- Oj \JV\T)M \T) ~~~ Zl\T)v \T')J ̂ ~ Uj o f^-~ T '<~~ T

In [5], a complex variance parameter λ was used to consider an analy-

tic Feynman integral. We will now introduce a parameter λ which serves

essentially the same purpose. For the moment, λ > 0.

Let *u{τ) = u(τ)l-]/λ , *y(r) = f(τ)//Λ , S:<τ^iL These functions satisfy

(1. 3), (1. 4), and (1. 5). Let A*(s9t) = A(s,t)lλ.

So the *M and *υ functions serve for another Gaussian-Markov process.

Let its transition density function be

,Γ.,_ υ{t)
vis)

2A(s, t)

It too will have X(s)=x9 X(t) = y with probability one since lim

x(s)- x~\- h y>%
Ms)- x]~ o, y<x.

Condition (1. 4) insures the continuity of almost all sample functions. De-

note the expected value of a functional F\X] for this process by £*

Assume that 0 < g < v(τ) ^ G, 5 ̂  τ :< t.

II. Sequential integrals

To allow λ to be complex, we now wish to relate E*\F[X~\\X{s) = x,

χ(t) = y\ and E\F[X]\X{S) = x,X(t) = y\ by using sequential Gaussian Mar-
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kov integrals. The sequential concept will be useful for other reasons also.

Let τ = [τl9 , τn] be a variable vector of a variable number of

dimensions whose components form a subdivision of [s, t~\ so that

r f l = K r 1 < T 2 < < τn = t.

Let ||τ|| = maxi=1> .. .,Λ(τ, — r ^ ) . Let ξ == [flf , £n_J denote an unrestricted

real vector, where n is determined by τ, let ζQ= x, and ξn = y.

Let Ψτtξ{τi) = ξi9 i = 0, 1, , n and ^ T > i be linear on fo-^rj.

Then we define the sequential Gaussian Markov integral

(2.1) E\{Flχ-\\X(s) = x, X(t) = y]

= lim L Gλ(τ,ξ)F(ΨTtξ)dξ
||r||_>0J#»-l

where

(2- 2) G,(τ,fl = ^ l -^yΠyW,. , ; ίo^

Let C[x,s; y,t] denote the space of continuous functions with x and y

endpoints. For x e C[x,s; y, t], let \\X\\ = sup |X(τ)|. Let Cp[x,s;y,t]

denote the set of all polygonal functions in C[x,s; y,t~\.

A subset S of C[x9s; y,t] is a Borel set if it is a member of the smal-

lest (7-ring containing the quasi-intervals

C[x,s; y,t]: a, <X{τt)<βl9 i = 1,2, ,

where τ ranges over all subdivision vectors of [5, t] and ai9 β.t range over

the extended reals. F[X] is a Borel functional if it is measurable with

respect to the <τ-ring of Borel measurable subsets of C[x,s; y,t].

THEOREM 1. Let F[X] be Borel measurable over C[x,s; y,t] and continuous

in the uniform topology almost everywhere {in the Gaussian sense) on the space

C[x9s; y,t].

Let φ{w) be a positive monotone increasing function such that

w+ \x\-^—j exp [—w2l2] is integrable on [0, 00).
y

Then if \F{X)\^ψ(\\X\\) on Cp[x9s; y,t], the sequential Gaussian Markov

integral of F exists for 2 = 1 and equals the Gaussian Markov integral

(2. 3) EUF{X1\X{s) = x,X(t) = y) = E\F[X]\X(S) = x9X(t) = y
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Proof. Let τ be a subdivision vector of [s, t~\. Let Xτ denote the

polygonal function which has the same values as X for τ = τ0, τ19 , τn

and is linear in between. Then F(XT) depends on X{zx), , X{τn) only

and hence

(2. 4) E{F(XT)\X(S) = x, X(t) = y) = \^_G(T,z)F(Wr,a)dz.

By the continuity of F and of X, we have for almost all I G C[X,S; y,t],

(2.5) lim F(Xτ) =
norm r-»0

Moreover \F(Xτ)\ ^φ(\\XT\\)^φ(\\X\\).

Now by Lemma 2 of [2], and the triangle inequality,

E[Φ(\\X\\)\X(S) = x]^E[φ (\\X\\ + lx\-γ) \X(s) = o]

Y υ{ •)
u(t)
v(t)

u(s)
v(s)
u(s)
v(s)

:+\χ\- dwX

where the latter is a Wiener integral. Denote it by I.

In general, we have by well-known results for the Wiener process,

for 0^a;<oo),

—i

X(t)]dwX^ 1 ]

ί
Then

But

/2π Jo
v{t) v{s)

< co.

E[Φ(\\X\\)\X(S) = x]= ,s; y,t)dy.

Hence, E\ φ{\\X\\)\X{s) = x, X(t) = y\< oo except possibly for a y set of

measure zero. But this finiteness holds everywhere in y by continuity in y.
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Hence (2. 3) follows from (2. 1), (2. 4), (2. 5), and the above finiteness

by dominated convergence.

EXAMPLE. For s^θ^t,

(2.6)

Proof. By Theorem 1

= El[x(β)\X(s) = x,X(t) =

= lim [ G(τ,ξ)Ψτ,ίdξ where
| | r | | - » 0 J ^n-i

ψτ,ξ(θ) = e i.1 + (ί - T,.

By repeated application of the Chapman-Kolmogorov equation, both

before and after /,

f G(τ,ζ)Ψτ,ξdξ

= Γ Γ pi*,*; ζj-
J-oJ-o- "

Now consider

j oo

By completing the square, one can show

β
I— P(gfc-l>Tfc-l5 gfc+i,TΛ+1)

a

where

β = (̂̂ fc) fA_l24(Tjfc, TA.+ ) + _^fe*+ii_ ξk+1A{τk-19 τk) and α =

Using this fact, we get

G{τ,ζ)ΨT,ξdζ= Ti~θ ft(τ<-i)+ ^ ~ r ^ - 1 A(7<)
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where

v{τk) A(τk9τk+ί) , χ v(τk+1) A(s9 τk) v(τk+ί) A{τk+l9 t)
v{s) A{s,τk+ί) v{τk) A{s,τM) v(s) A{s,t)

, v(t) A(s,τk)
v{τk) A{s,t)

Since the u and υ functions are continuous and v is bounded away

from 0, for ε > 0, there exists £ > 0 such that ||τ|| < δ implies that i (β) — ε

< h{τk) < i{0) + ε, k — i — 1, i, where i{0) = x-

Hence, for that δ9

- f t n

Ί I " T?-1 Γ ' ί ύ\ Ί

~ εJ -j *_!_ [ι{0) — ε]

], or

ι(ί) - β < ( G(τ,$)Ψτ,$dζ < W + ζ.

Letting s -> 0 gives the desired result.

Remark. In order that the reader won't be delayed from the body of

the paper, the second example of this theorem will be presented as an Appendix.

III. Conditioned Integrals

THEOREM 2. Subject to the hypotheses of Theorem 1,

(3.1)

Proof. Express the left hand side as a sequential integral by Theorem

1.

= χ,X(t) =

n-l

)(x, s ξj, rx) _Π p(f<-!, Ti-! fί,
= lim F(?ΓΓ

, s ; y , t )
dξι
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Let wi = ξi - x υ ^ , i = 1,2, , n - 1. Then

... : —

n 1 v(τn-\) n 1 v{s)

wt + x vγ*; , i = 1,2, , w - l

0 , ί = o

" = n.
v{s) '

The Jacobian is one. Hence, the preceding equals

tt-l

lim \R F(Ψτ,w) ' i==2 ι lf ' u

, s ; y , t )

dwι

Since p(x,s; y,t) = φ(θ,s; y — x vyl , t), the above equals the right hand

side of (3. 1).

THEOREM 3. For λ>0,

Erγ[X] \X(s) = x, X(t) =y) p*(x,s; y, t)

(3-2) - - < ® H
\X(s)=θ\dμ.

Proof. By Theorem 2,

ErγίX]\X(s) = x,X(t) = y\ p*(x,s;y,t)

since p*(z,s; y,t) = p*(θ,s; y -x-^yi).

Since the resulting process not subject to the condition on X(t) has a

zero mean function, we can apply Donsker and Lions, [7], pages 150 and

154, and M. Kac [11], p. 172, to obtain
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Er*\F[X]\X(s) = x,X(t) = y}φ*(x,s; y,t)

Now apply the Cameron Donsker reference, [6], p. 23.

= θjdμ.

Remark. This method of calculating function space integrals conditioned

at both time extremities has the advantage of using all known results for integrals

conditioned at the first time only.

THEOREM 4. Assume V(y,τ) and Vy(y,τ) are bounded and continuous complex

valued functions for O^T^T < oo, y e {(—oo, oo) — E] where E is a finite set of

points. Assume λ>0. Then r*(x,s; y, t) = £* |exp [-f jV[X(τ), τ] rfr] I X{s) =

x, X(t) = y\v*(%,s; y,t) uniquely satisfies the pair of equations

(3 3) -ψ- ^r ~ Bit) -jfr ίyr*] - iV(y, t)r* =

and

(3.4) JψJ^-^

where

(3. 5) A{f) = Mt)u'(t) - u(t)v'(t)]l2, Q^t^T,

(3.6) B{t) =At)lv(t), O^t^T.

It also satisfies the boundary conditions

(3. 7) lim I g{x)r*{x,s; y,t)dx = g{y) for every bounded continuous g,

and

ίoo

g{y)r*{x, s; y, t)dy = g(x) for every bounded continuous g, lim r* = 0,
|y|-»α>

lim r* = 0 and the continuity properties dr*jdy, d2r*ldy2, dr*/dt continuous for
|α|-»oo

^ s < t < T, y e (-oo, oo) - E and dr*/dx, d2r*/dx2, dr*/ds continuous for

0 < 5 < t < T , x e (—oo, oo) — E and dr*/dy continuous for y e E, dr*/dx con-

tinuous for x e E.

Proof Use Theorem 1 of [3] with coefficients A*(t), B*(t). Then
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Remark. We now wish to let λ = — i. Before verifying the partial

differential equations and conditions, one first of all has to decide on the

meaning of r* with a complex variance. As shown by Cameron, [5], the

Wiener kernel with nonreal variance cannot be used to generate a countably

additive measure. The same applies to the Gaussian Markov kernel. But

as in [5], one can use it to define a sequential integral. For the uncondi-

tioned process, this was done in [1], Looking ahead to (4. 1), one can

show that the parameter λ can be "transferred" to the functional, and

that for appropriate functίonals, (4. 1) holds for complex λ. See [1] for an

analogous theorem. For a restricted class of functionals, [5] used a formula

similar to (4. 1) to verify the Schroedinger equation.

IV. Approximation of Conditioned Integrals

The following theorem was motivated by a paper of L.D.Fosdίck [9].

It derives an approximation formula for the conditioned Wiener integral

which could be used in electronic computer work. Assuming equality for

complex λ, one could split the right hand side functional into real and

imaginary parts and approximate the resulting integrals.

THEOREM 5. For λ>0,

(A -n LE«JFΓv( ) τίA{s,t) χ( v\t) A(s,
{ * 1 } " I L v(t) / Γ V ^ F ί ~A(^t

A( ,t) , y V(t) ^(S, O

e

where = means if one side exists so does the other and they are equal.

Proof. Assume that the left hand side exists.

By (2. 6) and a calculation such as in Example 2, [3], page 33,

I^Er*\F[X]\X(s) = χ,X(t) =
l/2πA{s, t)

v{s) A{s,t) v{ ) A(s,t)
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X(s) = oj dμ by Theorem 3. Then

*A{s't] X\ v\ )A{s,t))+ v(s)
JΛΓΓW Xf i χ

v{t) *A{s't] X\ v\ )A{s,t))+ v(s) A(s,t)

by Doob and Cuthill (See Lemma 2 of [2]).

Next

- JLΓ
- 2π J-» A{s, t)

by Cameron-Donsker, [6], p. 23, where the covariance multiplier of A(s, t)jλ

is indicated by £™. Then

« ( ) A( ,ί) .
v(s) A(s t) + v)A(s, t))+ v(s) A(s, t) + v v{

, )Ί
, ί) J

by Theorem 3 again. The result follows by using reference [6] again, and

dividing by -Jλ li/2πA{s, t).

The reverse implication follows easily.

Remark. The parameter indicated by (•) will vary from 5 to t. Since

A(s, s) = 0 , the sample function will proceed from X(0) to X{1).

V. Example. Forced Harmonic Oscillator

Consider V(x, t) = x2 — f(t)x as per Feynman and Hibbs, [8], p. 64, 70.

From p. 233, [8], we assume /(0) = 0 and f{T) = 0, 0^s<t<T. From

[6], Lemma 2, we ask /(τ) e L2[0,T]. We assume, for simplicity, that

h = 1 and mass is equal to 1. The following is motivated by Lemma 2,

[6].

Let x(z) = Σ aic,—— —, s^z^t where the {αj are independent normal

variates with zero means and unit variances, {pk} and {̂ (̂s)} are eigenvalues
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and normalized eigenfunctions associated with the integral equation

S t
r{τ, x) u{x) dx = u(τ). See Kac and Siegert [13]. From Mercer's theo-

s

rem and the definition of the reciprocal kernel, Rr(s, f, μ) and the Fred-

holm determinant,

Dr(μ),r(a,b) =
uk{a)uk{b)

% , and

Following [4], assume (t — s) < π//8 . Use Theorem 3, with λ > 0.

k=l

by the representation and ParsevaΓs Theorem, and where

Then the preceding equals

Uk{τ)dτ — aj/λ μuk{t)]/pkjdaj

by the independence of {αj.

Let Ck =

equals

g(t) Π ΓΓ —L=^-«2

VPk
Then the preceding
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by the following

LEMMA. For Re σ > 0,

—JL=-Γ expji tx--±--(χ~~2

μΫ )dx = expίi tμ-^-σH
l/2π <τJ-~ ^ 2 σ2 I r I 2

Proof, From Wilks, [14], p. 157, we know it is true for σ > 0. Both

sides are analytic for Re σ>0. Hence it is true for Re σ>0 by analytic

continuation. It is also true for complex μ and complex £.

So the preceding quantity

oo ( h{τ)uk{τ)dτ\ h(x)uk{x)dx-2μuk{t)\ h(τ)uk{τ)dτ+μ2u2

k{t)

~ S J ί ^ J'

h 2t + λio* l j 2 έΊ 2*

Let B = — -

and θ=—-=-Rr(t,t\ ~~-̂ r-) Then

7? β 2
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The first part is independent of μ.

This used the fact that Re θ >0. The preceding equals

S o f r o m T h e o r e m 3, r*{x9 s ; y , t )

1 20

^ ( ^ 6; --ψ)h(a)h(b)dadbj.

Now to verify the partial differential equations, one must pick a specific

process, let λ = —i, and try it as a solution.

Subcase 1. Wiener process.

ZU2) = cos/2~(/ - s ) .

(«, 6; 2) = S

— cos/2 (t — b) sin/2 (g — 5)
τ/2 cos-)/2(t - s)

-cos/2^ {t—a)_ sinτ/2" (b - s)
1/2 cos/2 {t - s)

= -iRw(t,t; 2) = - ^ - t a n / 2 (f - 5).

= exp{-/α?2(ί - 5) + ix
v.

/?(τ) = 2a; - f(τ), s^τ^t.

B= -iΫRv{τ,t\ 2) [2*-/(*)]*•

a f ί j]sin/2~(τ -
= —xi+

cos/2" {t - s) /2" cos/T (t — s)

r*(x,s; y,t) = n
τ/2πi sin/2 (t — s)



146 JOHN A. BEEKMAN

exp {--L-lBi - (as - y)f - ix*(t - s) + ix \'f{r)dτ

^Γ[\Rω(a,b; 2)h{a)h{b)dadb\.
2 Jsh J

One can show that

τ/2 sin/2 (t—s) L̂ 2

*sm]/2~{τ-s)f{τ)dτ}/cos1/2Γ(t-s)
s Λl

Jry2cos)/T{t-s)-2xy+ ]fY y[tsm1/Y(τ-s)f(τ)dτ\. Also

\ [ cosi/2~(t-b) sin1/2Γ(a-s)dadb-h[ [ cos^2~(t-a) siW2~(b-s)dadb
__ J g J g JsJb

-/2"cos/2 {t-s)

t — s _ tan/2~~« — s) .
2 2/2~ " '

2

So ίTi? w (α,6; 2)h(a)h(b)dadb
JJ

- s) - i/2~x2tan)/2~(t - s) -

cos/2 (t—s)

T h e n r * ( x 9 s 9 y 9 t ) =

(β,ft; 2)fWΦ)dadb.

/2τrfsirn/2 (ί —s)

eχp{ , ί-— ~\\x*cos^(t -S) +

s/2"(^ - 5) + y2 cos/2~(if - s)

-2xy +i/2~ y[ sin/2~(τ - s)f(τ)dτ\
Js J

ί—S) 2

Using several trigonometric identities,

r*{x,s; y,t) = ~ - = £ 4 = . .
V2πi sin/2 (ί — s)
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e x P I /7r /V/ r
t y2 sm/2 (ί — s)

W2"(ί -b)db + i/2"

(tf ~ s) sini/2~(ί - b)f{a)f(b)dadb

> - 5) sin/2~U - β) f{a)f(b)dadb

Since the last term equals the next to last term, this agrees with Feynman

and Hibbs, [8], p. 64, {with w - /2~, m = 1, h = 1, tb = f, fα = s, &̂ = 2/>

and ίcα = α;}. This also eliminates the need to verify the forward partial

differential equation. It is easy to verify that the expression for —^ equals

that for ~^γ with the roles of x and y, and 5 and t interchanged, and the

expression for -4r— equals that for — - ^ — with the roles of x and y, and

s and t interchanged. Thus the backwards partial differential equation

also holds.

Unfortunately, lim \r*\=— ^ _ - — > not 0. The same applies
l»l-"» /2πsin/2 (t - s)

to the x limit. From Feynman and Hibbs, [8], pages 81, 34, 60, and 64,

we know that (3. 7) and (3. 8) hold. Thus as [8] states on p. 82, r*{x,s;y,t)

"is a kind of Green's function for the Schroedinger equation."

The special case / ( r ) = 0 , O ^ r ^ T , was considered through a function

space integral approach by K. Itό, [10].

Subcase 2. Ornstein-Uhlenbeck process.

Since r{a,b) = e~\h~a\ the eigenvalues and normalized eigenfunctions for

this process for the interval [0,T] are contained in the article [12], pages

66, 7 by M. Kac. Probably one could adjust these for the different time

period, [s,t"\. However, they are too complicated to use in Dr(2), and

Rr(a,b; 2).

An alternate procedure is to use Theorem 5 and numerically approxi-

mate the right hand side of (4. 1) as in [9], One could thus obtain a grid of

values of the integral for various x, y, s and t values. It would be

impossible to verify the partial differential equations with such a set of

discrete values, but the author conjectures that these values multiplied by



148 JOHN A. BEEKMAN

p*{x,s; y,t) would satisfy the finite difference analogues of the Schroedinger

equations.

For the Ornstein-Uhlenbeck process, v(τ) = e~τ, u(τ) = eT, Λ(a, b) =

l—e-2(b-a)9 Hence the generalized Schroedinger equation would be (in the

forward case) i ^ ~ + -j^-lvr*] - i[y2 - f(t)yV= -$£-. The right hand

side of Theorem 5 becomes

E {F [ « - « • > - < > [ 1 - e - v - ( ^ Z S

where

F[X] = exp [- i \\x2M ~ f(τ)X(τ)]dτ] .

Repeating an earlier remark, the parameter indicated by ( ) varies from

5 to /. Since A{s,s)=0, the sample function will proceed from X{0) to

X{1). This integral must be multiplied by j>*{x,s;y,t)

/ 2 e

VI. Appendix. As an interesting by-product of Theorem 1, we will

prove the following theorem.

THEOREM 6. The Wiener process, conditioned by X{s) = x, X{t) = y, is

Gaussian Markov with mean function.

(6. 1) m(θ) = E\x(θ)\X(s) = x,X(t) = y I = χ+±Z±-{y-x)

and covariance function

E \[X(a) - m(an \_X(b) - m(b)] \X(s) = x, X(t) = y

<6 2 ) it-s)

Proof. Since u{τ) = τ, t;(τ) = 1 for the regular Wiener process, (6. 1) is

obtained easily from (2. 6).
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To verify (6. 2) first assume that s < a< b < t. (The case s <b < a< t

is identical.) Then by Theorem i, .

E[x(a)X(b)\X(s) = x, X(t) = y] = El [x(a)X(b)\X(s) = x, X(t) = y

lim [ G(τ,ξ)F(Ψτ ξ)dζ where

Ψτtξ(a) = f<_1 + (β - τ ^

Ψτtξ(b) = ί,., + (6 - n-

a n d F[x] = X(a)X(b).

With « < ^ , for sufficiently small ||τ||, τi < r ^ .

By repeated application of the Chapman-Kolmogorov equation, both

before /, between i and k — 1, and after &,

t,Tt; ί/, ί)

where A = ^ ~ a ,B= a ~ τ ^ , C = τ"~b ,D= ft

— Tfc-1

It is easy to verify that Λ, B, C, and D each approach 1/2 as ||τ||-> 0.

One also makes the preliminary calculations

Soo Ω

^bp(a9τ1; b,τ2)v(b,τ2; c,τz)db = -^-p(a,τί; c,

Soo

^b2p{a,τx\ b,τ2)v{b,τ2; c,τz)db

where α = τ3 — τj and jS = a(τz — τ2) + c(r2 — r^.

Using these results, the term with AC, as is true of the AD, BC, and BD

terms, produces (in the limit, as ||r||->0)

1 y (b-a) [x(t-b) + y(b-s)] 1 (as) J (b-s)(t-b) , [y(ft-5)+a?(/-Z>)]2}
4 (ft-s) /-s ^ 4 (b-s) I t-s "*" (ί-s) 2 /*

The relation
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E \[X(a) - m(a)] [X(b) - m(b)] \X(s) = x, X(t) = y]

EΪX(a)X(b)lX(s) = x,X{t) = y) - m(a)m(b) gives (6. 2).

The fact that the finite dimensional distributions are Gaussian and that

the covariance is factorable (see [2]) completes the proof.
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