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GALOIS THEORY

WITH INFINITELY MANY IDEMPOTENTSx)

O.E. VILLAMAYOR AND D. ZELINSKY

1. Introduction.

In 1942 Artin proved the linear independence, over a field S, of dis-

tinct automorphism of S; in other words if G is a finite group of automor-

phisms of S and R is the fixed field, then HomΛ(S, S) is a free S-module

with G as basis. Since then, this last condition ("S is G-Galois") or its

equivalents have been used as a postulate in all the Galois theories of rings

that are not fields, for example by Dieudonne, Jacobson, Azumaya and

Nakayama for noncommutative rings and then in [AG, Appendix] and [CUR]

for commutative rings. When S has no idempotents but 0 and 1, [CHR]

proves that the ordinary fundamental theorem of Galois theory holds with

no real change from the classical, field case.

If the rings have finitely many idempotents, the G-Galois condition

prevents the "Galois group" G from being the full automorphism group,

but [CHR] provides a Galois theory pairing all subgroups of G with certain

separable subalgebras. In a sense this is a study of the group G as a

transformation group on a commutative ring 5. In [VZ] we presented a

different Galois theory, oriented toward the rings rather than the groups,

pairing all separable i?-subalgebras of S with some subgroups of the full

automorphism group of S over R. The present paper contains the same

Galois theory, with no hypotheses at all on idempotents. The technique

uses Pierce's representation [P] of the ground ring R as the global cross

sections of a sheaf of rings that have no nontrivial idempotents, so that at

each point x of the base space we have a ring extension of Rx to which

[VZ] applies.

In order to carry out this program, the G-Galois condition is too res-

trictive. Our hypothesis, besides the natural finite generation, projectivity,
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and separability of S over R, can be phrased in three equivalent ways: R

is the fixed ring of some finite set (equivalently, group) of automorphisms

of S; the S-module Hom^S, S) is generated (not necessarily freely) by auto-

morphisms of S; R is a finite product URi of rings such that the corres-

ponding direct factor of S is G-Galois over Rt for each i. The last hypo-

thesis was called to our attention by H. F. Kreimer after this manuscript

was prepared; he used it to prove theorems similar to ours [K]. Using

our techniques, we have appended a proof that it is equivalent to the other

two, at the end of section 3.

2. The Boolean spectrum.

Pierce [P] defined, for each commutative ring R, a sheaf of rings &

over a totally disconnected compact Hausdorff space X in such a way that

R is the ring of global cross sections of &. We recast his definition slightly

in the next few pages. Let B(R) = the Boolean ring consisting of all idem-

potents of R.

(2. 1) DEFINITION. The Boolean spectrum of R is the Stone space X = Spec

B{R) consisting of all prime (equivalently, for Boolean rings, maximal) ideals

of B(R).

It is possible to describe X without reference to B{R):

(2. 2) A point x in X is a collection of idempotents in R with the proper-

ties

(2. 2a) For every idempotent e in R, either e e x or 1 — e & x but not both;

(2. 2b) If e and / are idempotents in R, then ef e x if and only if e e x

or / <Ξ x.

For each element ^ in a;, there is a neighborhood of x, namely Ue =

{y ^ X \ e <E y}. These neighborhoods form a base of the open sets. Notice

Ue c Uf if and only if e ;> /, that is ef = /.

From this description, we deduce a continuous map

(2.3) φ: Spec R-+X, φ(p) = the set of idempotents in p.

Since p is a prime ideal in R and since e{l — e) = 0, it is clear that

φ(p) satisfies (2. 2a) and (2. 2b), and so is a point of X. Since φ~ι(Ue) =

{p e Spec i? |^ej)) = (ί)G Spec R\l — e φ φ] and this is a basic open set, φ

is continuous.
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Note that 0 e # and l $ a ; , for otherwise (2. 2a) implies 0 $ x and

and (2.2b) then implies the contradiction 0 = l 0ea ; . From this and

(2. 8) below, we deduce that the R-ideal Rx generated by x is proper for

each x (if 1 e Rx then 1 = re for some e e x and 1(1 — e) = 0, 1 = e <E CC

contradicting the definition of cc), hence contained in some maximal ideal

p of R. Thus 0(p) = x and ^ is surjective.

The following is another version of X which, however, we shall not

use explicitly.

(2. 4) X is homeomorphic to the identification space one gets from Spec R by identi-

fying each connected component to a point. The homeomorphism is induced by φ.

Proof We first show that, for each x e X, φ~ι{x) is a connected com-

ponent of Spec R. If V is any connected set in Spec R, φ(V) is connected

in the totally disconnected space X, and hence is a single point. This

means that φ~ι(x) is a union of connected components. We need only show

φ~x{x) is connected. The homomorphism R-±RX — R\Rx induces a continu-

ous map Spec Rx -> Spec R which merely associates to each prime ideal in

Rx its inverse image in R. From the definition of φ, we see that the image

of this map is φ~ι{x). Since Spec Rx is connected (2. 13), so is φ~x{x).

This shows that X is in one-to-one correspondence with the identifica-

tion space. To show that the topology of these two spaces agree, we need

to show that φ is continuous and closed. Its continuity has already been

mentioned. Now assume C is closed in Spec R. Then C = {p\p z> /} for

some ideal / in R. We see that φ{C) = {x e X\ for some p in Spec R,

pzD Rχ + 1} = {χ\Rx + l¥=R}. The complement of φ(C) is {x\Rx + / = R]

and this is open, because Rx + / = R means re + i - 1 for some r, e and /

in R, x and / respectively (see (2. 8)); but then this same equation says

Ry + / = R for every y containing e, and this set of y 's is a neighborhood

of x.

Pierce's sheaf & over X is then the direct image, under φ, of the

standard sheaf έ?(R) of local rings over Spec R. In other words, for every

open set U in X, the ring of cross-sections of R over U is defined to be

Γ(φ~ι{U), ^{R))9 where Γ is the usual cross-section functor. In particular,

we computed φ~ι{Ue) above; Γ{Ue9&) is the ring of fractions S~ιR where

S is the multiplicatively closed set generated by 1 — e. Since 1 — e is

idempotent, we have
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(2. 5) Γ(Ue&) = {(1 - e)}~'R = RlRe.

In particular, if e = 0, we get Γ{X9&) = R, [P,4. 4],

We can also describe the single stalks of & as both rings of fractions

of R and homomorphic images of R: For each point x in X, Rx = limΓ(U, &),

the direct limit taken over the directed set of neighborhoods U of x. Using

the formula (2. 5), we quickly get

(2. 6) Rx = S-*R w h e r e S = {1 — e\e & x]

where, of course, Rx is the ideal of R generated by the elements of x. Note

that Rx is flat over R.

In fact, Pierce works even with noncommutative rings. The same

remarks we have just made will also apply to this case, substituting the

spectrum of the center of R for Spec R.

We need repeatedly the usual sheaf property: if two cross sections

agree at a point, then they agree in a neighborhood of the point. How-

ever, for the sheaf & this is easily translated into simple algebraic terms

and is quite special. We make this translation now and collect the major

applications that we shall need.

DEFINITION. Let M be any i?-module. Then

Mx = M®RRX = S-'M where S = {1 - e\e e x}

= M\Mx

If a e M, then ax will denote the image of a under M-*MX. We remark

that, if M is finitely generated (resp. finitely presented, resp. faithful, resp.

projective) as an J?-module, then Mx has the same property as an i^-module.

And if M is a separable J?-algebra, then Mx is a separable iv^-algebra.

If geHomβ(M,M), we shall use gx to denote the i^-module endo-

morphism of Mx induced by g. This conflicts with the notation already

introduced which would make gx an element of Ή.omR{M,M)x — Homβ

(M,M)(S)RRX We shall adhere to the first version of gx; in all our cases

there is no real conflict, because Horn^M, M)x will be identified with a

subset of ΈiomRχ(M,M)x. This is elucidated in the following proposition.
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(2. 7) The map g^ gx from HomR(M, M) to Hom^tM,., Mx) is the composite

Hom^M, M) -> Homβ(M, M) ®RRX = Homβ(M, M)x-+ HomΛ i (Mx, Mx) this last

map is a monomorphism when M is finitely generated and is an isomorphism when

M is finitely generated and projective.

Proof. If F is free on a finite number of generators and F ->• M is an

epimorphism, then we have induced monomorphisms

, M) -> Homβ(F, M)

Hom^M, M) ®RRX -> HomΛ(F, M) (g) Rx

(since Rx is flat) and isomorphisms

HomR(F,M) ®RRX = HomR(F,Mx) = HomRΛ(Fx9Mx)

the first resulting from the fact that F is a finite product of R's. Similarly,

Fx-+Mx is an epimorphism and induces a monomorphism Ή.omRχ(Mx,Mx)

->ΐίoπiRχ(Fx,Mv). Thus in the commutative diagram

M, M) ®RRX -> Homβ(F, M) ®RRX

M,, Mx) -> Hom a JF Λ , MJ

three of the four arrows are monomorphisms. It follows that the fourth is,

too. The isomorphism statement is standard [CE, VI. 4. 1. 3].

(2. 8) Every finite set of elements in Mx is contained in Me for some e e x. If

mx = 0 for all m in a finite subset of M, then m(l — e) = 0 for some e e x and

for all m in this subset.

Proof Such a finite set is contained in 2 Met for some finite subset

{et} ax. If e is the union of the eίf then e e # and e^Re so ^M

(cf. [P, 1. 6]). The last part of (2. 8) merely asserts Me {1 — e) = 0.

(2. 9) Ztfί α α/zrf 6 έtf elements of M and ax = bx at one point of X. Then

ay = by for all y in some neighborhood Ue of x, that is, a{l — e) = 6(1 — e) for

some e e x. If ax — bx for every x, then a = b.

Proof. If ax = bx then (2. 8) shows {a - b) (1 - e) = 0. If ax = 6Λ for

every a; in 1 then for each a; in I we have e e α; with α(l — e) = 6(1 — β).

Since X is compact, it is covered by a finite number of the Ue9 say
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Uei, , UβΛ. By (2. 10) this means 1 = Σ><(1 - et) so that a = Σflr,(l - ^)

= Σ &r«(l - eύ = b.

(2. 10) VeeAUe = Z Z /̂Zέtf 1 £ Σ « Ξ A # ( 1 ~ *)•

Proof. The hypothesis means every x is in some Ue, that is every x

meets A, that is, the Boolean ideal generated by all 1 — e with e e A is not

contained in any x. This must then be the unit ideal, so that 1 is a

linear combination in B{R) of {1 — e\e & A}. Such a linear combination

is also a linear combination in R (the Boolean sum e@f is e + f — ef)9

proving (2. 10).

(2. 11) If N is a submodule of M and Nx = Mx for all x (note: since Rx is flat

over R, Nx c Mx), then N= M (that is, ® x e χ Rx is faithfully flat).

If M is finitely generated and Nx = Mx for one x, then there is a neighborhood

of x such that Ny = My for every y in the neighborhood.

Proof By reducing to M/N, we can assume N = 0. If a e M and

ax = 0 then a e Mx. If M is finitely generated, (2. 8) gives e e x such that

M=Me. Then for every y containing e, My=0. If ax = 0 for all x,

then β = 0 by (2. 9).

We can lift idempotents:

(2. 12) Let S be any R-algebra and u any idempotent in Sx. Then there is an

idempotent v in S such that υx = u.

Proof Lift u to any element w in S. Then (w2 — w)x = 0. By (2. 9),

{w2 — w) (1 — e) = 0 for some 0 e #. This implies v = w (1 — e) is idempotent

and vx = wx — wxex = wx— u.

(2. 13) [P, 4. 4] Rx has no idempotents except 0 and 1.

Proof. If u is idempotent in iv^ and υ is an extension to R as in

(2. 12) then either v e cc or 1 — z; e cc, by (2. 2a). Thus w = 0 or 1.

We can extend automorphisms:

(2. 14) Suppose S is an R-algebra that is finitely presented as an R-module, let N

be a finite subset of S and let g be an Rx-algebra automorphism of Sx that is the

identity on Nx. Then there is an R-algebra automorphism h of S such that h is

the identity on N and hx = g.
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Proof. Let e19 , en be i?-module generators of S whose relations

are also finitely generated and let Σ i fpjβj = 0 be a finite set of defining re-

lations. Further, let e^j = Σfc r'utPK be the multiplication table of the e's,

and let nq = Σy r"qjej be the elements of N. Then we are only required

to find f19 , fn in 5, to serve as h(ex), , h{en), satisfying

Έjrpjfj = 0

(2.15) fJj-Έ*r'iJkfk = 0

Έj r"qjfj - Σ; r'ίjβj = 0.

We know this finite set of equations is satisfied modulo Sx by {g(eix)}. Lift

each g{eix) to any element / / in S and consider the finite number of ele-

ments of S that are the left hand sides of (2. 15) with / / replacing fi9

Since these elements are 0 at x, they are all contained in Se for some e

in x by (2. 8). It follows that (//)„ satisfies (2. 15) for every y in X that

contains e. Let ft = //(I — e) + ̂ e. Then for every y in X, either e<Ey

in which case / i y = {f/)y satisfies (2. 15), or 1 — e e 2/ in which case fiy = eiy9

which also satisfies (2. 15). Thus with these fi9 the left hand sides of (2. 15)

are zero at every point of X9 hence are zero (2. 9).

(2. 16) THEOREM. Let S be an R-algebra, finitely generated as an R-module and

assume that the group of all Rx-algebra automorphisms of Sx is finite, for each x

in X. Then every finite set of R-algebra automorphisms of S generates a finite

group {the automorphism group of S is "locally finite").

Proof Let h19 , hn be the finite set of automorphisms of S, and H

the group they generate. Then for each x9 hlx9 , hnx satisfy enough

relations to make Hx a finite group. Let m?: be these relations, that is, each

nii is a monomial in the hj and the hr3

γ and nii(hίx, , hnx) = 1. This

last means that the image of each πii{hu •••,*„) under the map HomΛ(S,S)

-+HomRχ{Sx,Sx) is the identity. By (2. 7) so is the image in Ή.omR($, S)®RX.

Therefore mlh,, , hn)x = lx. By (2. 8) with M = HomR{S,S), we have

Mi{hi9 ,hn) (1 — e) = 1 — e for some e in x. Since the h5 are all the

identity on e, this means that the hj induce on S/Se automorphisms that

satisfy enough relations (namely the m%) to generate a finite group. For

every x in X, we have produced a neighborhood Ue of x, such that H

induces on S/Se a finite group He. By the compactness of X9 we cover X
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with finitely many of these neighborhoods [Ue\e e A}. Then H is embed-

ded in the finite product of the finite groups He9 e e A, because if h in H

induces the identity on every S/Se then hx is the identity on every Sx = S/Sx

(since every x contains some e in A) from (2. 7) h -+1 under HomB(S, S)

^Hom^SjS)^; (2. 9) then implies A = 1. Thus H is finite.

(2. 17) If S is an R-algebra and F is a finite group of R-algebra automorphisms

of S, then for every x in X, ( S ^ = (SX)
F* where SF denotes the fixed ring under

F (3. 3).

Proof The inclusion c is trivial. If u e Sx and fx{u) = u for every

/ in F, lift u to an element υ in S and have (f{v) — v)x'= 0 for all (finitely

many) / in F. By (2. 8), f(υ) {1 — e) = v(l — e) for some 0 in x. If

s = t>(l — e), we have s & SF and 5Λ = υx — u, which completes the proof.

3. Galois theory.

Henceforth we consider a ring extension R c S satisfying the following

hypotheses.

(3. 1) DEFINITION. A commutative i?-algebra S is said to be weakly Galois

(over R) provided

(3. la) S is a finitely generated, faithful, projective i?-module, and a

separable i?-algebra.

(3. lb) The S-module Homiϊ(S,S) is generated by i?-algebra automor-

phisms of S. If p: S -> Hom^S, S) is the usual regular representation of

S, p{s)[t) = st, then (3. lb) may be phrased thus:

(3. lc) P(S)G = Homβ(S,S).

See also (3. 6) and (3. 15) for equivalent conditions.

(3. 2) If S is weakly Galois over R, then for every x in X, Sx is weakly Galois

over Rx.

Proof, (3. la, b) are inherited under localizations.

(3. 3) DEFINITION. If S is a ring and H is a set of automorphisms of S,

we use SH to denote the fixed ring {5 e S\h{s) = s for every h in H}. If

T is a subring of S, AutΓ(S) will denote the group of all automorphisms of

S that are the identity on T.



GALOIS THEORY 91

(3. 4) If S is weakly Galois over R and G = AutΛ(S), then SG = R.

If 5 G SG, then ρ(s) commutes with G in Homβ(S, S). Since S is com-

mutative, p(s) commutes with p(S). Hence, by (3. lc), ρ{s) is in the center

of Homβ(S, S), which, because of (3. la) is p(R). Hence s e R.

In Section 4 we give an example to show that the converse of (3. 4)

fails, even in the presence of (3. la). However, (3. 6), which gives an

equivalent formulation of "weakly Galois", may be considered a kind of

converse. The converse holds in the following form in the absence of idem-

potents:

(3. 5) Suppose R has no idempotents but 0 and 1. If S satisfies (3. la) and

if SH = R for some subgroup H of G, then p(S)H = HomR{S,S); in particular, the

Galois theory in [VZ] applies if and only if S is weakly Galois over R.

Proof If e19 , en is the set of minimal idempotents in 5, then H

must be transitive on this set and Sβj must be /^-Galois over R [VZ, 1. 3]

where Hά is the subgroup of H that sends Sβj into itself. If pj is the regu-

lar representation of Sej9 then this implies ΉomR(Sej9 Sβj) = Pj{Sej)Hj. If

htJ is an element of H sending et to ej9 then HomR{S9S) = ®ijΐlomR{Sei,Sej)

Hjhv c P(S)H.

(3. 6) THEOREM. Let S be an R-algebra satisfying (3. l a ) . Then S is weakly

Galois over R if and only if there is a finite group (equivalently, a finite set) of

automorphisms of S having fixed ring R.

Proof. Assume S is weakly Galois. By (3. 2) and (3. 5), the Galois

theory in [VZ] applies to Sx for each x in X. That is, A u t ^ S J is a finite

group with fixed ring Rx. Use (2. 14) to extend this finite group to auto-

morphisms h19 ' , hn of 5. These will generate a finite group H, by

(2. 16). By (3. 5), (p(S)H)x=Px (SX)HX = HomSχ(Sx,Sx) = Horn*(S9 S)x (of

course, ρx is the regular representation of Sx). It follows by (2. 11) that

Py(Sy)Hy = {p{S)H)y = ΐlomR{S9S)y for all y in a neighborhood of x. In

particular, (Sy)
Hv = Ry by (3. 4). For each x we have a finite group H and

a neighborhood of x such that at each point y in the neighborhood,

{Sy)
Hv=Ry. By compactness, we get a finite number of these neighborhoods

covering X and a finite number of H's which then generate a finite group

F with {SX)
F* = Rx at every point x. By (2. 17) and (2. 11), SF = R.
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Conversely, if F is finite and SF=R, then for every x, Ra:

which by (3. 5) and (2. 7) implies PX{SX)FX = Hom^S^, Sx) = HomΛ(S, S)x.

It then follows from (2. 11) that p(S)F = HomR(5,S), proving S is weakly

Galois.

(3. 7)2) DEFINITION. If H is a group of automorphisms of S, the closure of

if is the set of all automorphisms g that satisfy either of the following

equivalent conditions:

(3. 7a) For each a; in I and each minimal idempotent / in Sx9 Px{f)gx =

Px{f)hx for some h in H.

(3.7b) For some set {£*} of idempotents in S with 112̂  = 1, p{Ei)g=p{Ei)hί

for some hi in H (all z).

if is closed if it equals its own closure.

The condition 112̂  = 1 in (3.7b), of course, is a statement in the

Boolean algebra B{S); it means that if E is an idempotent in S and

EEt — Eι for all i, then E — 1. However, for comparison between (3. 7a)

and (3. 7b), another condition is more convenient: for every x in X and

for every minimal idempotent / in Sx there is some i such that Eix^f,

that is Eixf = f. The proof that these two conditions are equivalent is

not difficult and runs along our typical line of extension arguments.

We now prove the equivalence of (3. 7a) and (3. 7b). If g satisfies

(3. 7a), lift each / in each Sx to an idempotent Ef in 5 by (2. 12), and

consider the two elements u = p{Ef)g and v = p{Ef)h in HomΛ(S, S), where

h is the element of H given in (3. 7a) such that Px{f)gx = Px(f)hx. By

(2. 7) we conclude the images of u and v in Homβ(5, S1)̂  are equal.

By (2. 9), u(l — e) = v(χ — e) for some e e x. Write E} = (1 — e)2£/e

Then />(£})</ - p(E})h and (£}), = (1 - e)x{Ef)x = f.

Conversely, for each minimal idempotent / in Sx9 choose an Et such

that Eίx= f. Then p{Et)g = p{Ei)hi implies px(Eίx)gx = Px(Eix)hίx, as desired.

(3. 8) THEOREM. Let S be a weakly Galois R-algebra. Then the usual Galois

correspondence (3. 3) is one-to-one between the set of all separable sub algebras of S

and the set of all subgroups H of the automorphism group of S that satisfy (3. 8c)

below, or, equivalently, that satisfy (3. 8a) and (3. 8b):

2) Added August 12, 1968: A. Magid has improved (3.7b) to ρ(Ei)g = p(Ei)hi for some finite
set of orthogonal idempotents Ei with Σ £ ΐ = l and some hi in H.
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(3. 8a) For some finite subgroup F of H, SF = SH.

(3, 8b) H is closed in the sense of (3. 7).

(3. 8c) H is the closure of some finite set {equivalently, some finite group) of

automorphisms of S.

Proof We need to show five things:

(3. 9a) If T is separable and H = AutΓ(S), then H satisfies (3. 8a) and

(3. 8b).

(3. 9b) If if is a subgroup of the automorphism group of S and H

satisfies (3. 8a) and (3. 8b) 5 then SH is separable over R.

(3. 9c) If T is separable and H=Autτ(S), then T = SH.

(3. 9d) If H satisfies (3. 8a) and (3. 8b) and T = SH, then Autτ{S)=H.

(3. 9e) (3. 8c) is equivalent to (3. 8a) and (3. 8b).

We begin with a stronger version of (3. 9b).

(3. 10) If F is a finite subgroup of G, then SF is a separable subalgebra of S.

Proof First, we argue that if T = SF, then T is flat over R: For every

x in X, Tx = SJ by (2. 17), but this is separable over Rx by [VZ, Theorem

p. 731]. Hence Tx is also protective and therefore flat over Rx. For every

i?-module A and every x, (ToγR(T,A))x = TorR*(Tx,Ax)=0. This implies

Tor*(Γ,,4) = 0 by (2.11).

Since T and S are both flat over R, the mapping T(g)T-*S®S is

a monomorphism, and we may identify T®T with its image in S®S. To

prove T is separable, then, it suffices to produce an element / in S®S

with the following properties

(3. lla) / (

(3. lib) (1 (x) / - t ® 1) / = 0 for all t in T

(3. lie) μ{f) = 1

where μ\ 5(x)S->S is the multiplication map, for then T®T-^T will split

as (T (x) T)-module map, since a reverse map may be defined by the condi-

tion that it send 1 to /. This splitting implies T is separable.

Since S is separable μ splits, and the image of 1 under this reverse

map is an element e in S (x) S having the properties ( l ® s — s®l) e = 0 for
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all s in S and μ(e) = 1. This e is unique due to the commutativity of 5;

since for every g in G, {g®g){e) has these properties, we have {g® g)(e) = e.

Now, for each h in F, write eh = (A(g)l)(e). Since A®1 is an (J?(g)S)-

algebra automorphism of S (x) S, (1 ® s — A(s) (g) 1) eΛ = 0 for all s in S. In

particular, (1 (g) * — / (g) 1) eΛ = 0 for all t in T.

Let / denote the union of the eh,

f = 1 - Π A e j P(l - * f t).

Then (3. lib) holds since it holds for each eh, and (3. lie) holds because

μ(l — e) - 0 and so μ(Π (1 — eh)) = 0. It remains to show that f ^T®T.

It is clear that / e (S (g) S)F®F because for all A, A', A" in F,

W (x) A") (βΛ) = (h'h (x) A'') (̂ ) =

= (A'M""1 ® 1) (A" <g> A") (β) = (^ΆA"-1 ® 1) (β) = eΛ; AΛ,/-i

so W ®h" permutes the eh's, and will leave / fixed. Therefore, it remains

to show (S (x) S)F®F =T®T. If A e F then SίΛ> = Ker (1 - A: S -> S), so,

since S is flat over R9 S ® Sίfe> = Ker (1 - 1 (g) A) = (S (g) S)ίχ®Λ>. Further, if

•Si, •• , S n are i?-submodules of S, then S(g) (Π ̂ =i S*) = n(S(g) SJ (since

PιSi= Ker(S-> Π(S/SΪ)) and tensoring with a flat module S preserves kernels

and finite products of i?-modules). Hence S (£) SF = {S®SY®F. In the

same way, since T is flat over R, (S (^T)*®1 = SF0T. Combining,

(S (x) S ) ^ F = ((S ® S)ι®F)F®1 = (S ® T)^®1 = T®T.

In view of (3. 4), the following is enough to prove (3. 9c):

(3. 12) ijf S w weakly Galois over R and if T is a separable subalgebra of S then

S is weakly Galois over T.

Proof If T is separable, then T is finitely generated as an i?-module

[AB, 4. 7 and 4. 8], say by a finite set N. Use (2. 14) to conclude that

H = AutΓ(S) induces on 5^ the full automorphism group of Sx over Tx9 for

each x in X. Then by (3. 5) and (2. 7) ioα;(Sr)/3rΛ; = HomΓχ(Sa;,SΛ;) = HomΓ(S,S)Λ;

(this last equality needs the fact that S is finitely generated and projective

over T, which also comes from [AB, 4. 8]). It then follows from (2. 11)

that p(S)H= HomΓ(S,S).

We have proved part of (3. 9a), namely (3. 8a), because (3. 12) asserts

that S is weakly Galois over T and (3. 6) then implies that SF — T for some

finite subgroup F of H. Combined with (3. 9c), this gives (3. 8a).
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To complete the proof of (3. 9a), it suffices to show

(3. 13) For every subalgebra T of S, AutΓ(S) is closed.

Proof If g is an automorphism such that, for every a; in I and every

minimal idempotent / in Sx, Px(f)gx — Px{f) hx for some h in AutΓ(S),

then for every t in T, fgx(tx) = Px(f)gx(tx) = Px(f)hx(tx) = ftx. Since the

sum of all / in Sx is 1, we have gx{tx) = tx or g(t)x = tx for every x. By

(2. 9), g(t) = t and so g e AutΓ(S).

(3. 14) If F is a finite group of automorphisms of S and if T = SF, then AutΓ(S)

is contained in the closure of F.

Proof Suppose g e AutΓ(S). Then for every x in X gx is an auto-

morphism of Sv that is the identity on Tx, and Tx = Sf*, according to

(2. 17). By [VZ, Theorem] gx is in the "fat group generated by FJ\

that is, for every minimal idempotent / in Sx9 px(f)gx = Px{f)hx for some

hx in Fx. This is the same as saying g is in the closure of F.

This completes the proof of (3. 14). (3. 9d) follows immediately: If

H is any group satisfying (3. 8a) and (3. 8b) and if T = SH = SF with F a

finite subgroup of H, then since the closure operation preserves inclusions,

the closure of F is contained in H. But T = SH implies that H c AutΓ(S),

and we have just proved in (3. 14) that AutΓ(S) is contained in the closure

of F. Hence H = AutΓ(S) = closure of F. Notice that we have simul-

taneously proved (3. 9d) and half of (3. 9e): (3. 8a) and (3. 8b) imply (3. 8c).

To complete the proof of (3. 9e), suppose H satisfies (3. 8c), write H =

the closure of F with F finite, and set T = SF. According to (3. 14),

Aut Γ (S)ciί . By (3.13) and because F c AutΓ(S), iJcAutΓ(S), which

means H= AutΓ(S). Since T is separable by (3. 10), we may use (3. 9c) to

conclude that T = SH

9 so that H satisfies (3. 8a). It is a triviality that every

closure is closed, so H satisfies (3. 8b).

We can now compare our weakly Galois hypothesis with that of Kreimer.

His condition is this:

(3. 15) There exists a finite set of orthogonal idempotents {eί9 , en] in R with

Σ et = 1 and with Set Galois over Ret for each i.

This clearly implies weakly Galois, but we shall also prove the converse.

First, if S is weakly Galois over R we show that S« is Galois over Rx
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for each x in X. If Sx = Π S* is a decomposition of Sx into indecompos-

able i^-algebras, then all the Si must be isomorphic, else the sum of the

identity elements of those Si that are in one isomorphism class will be a

proper idempotent in Sx that is invariant under all automorphisms, hence

will be a proper idempotent in Rx9 contradicting (2. 13). Now choose one

isomorphism α^: Si^+Si for each i and construct an automorphism a of Sx

by demanding that a restricted to Si be ai+1 o alι for i < n and a restricted

to Sn be aΰ1. Let H be the cyclic group generated by a and let Gx be

the product of H and the automorphism group of Si over i^ . Then Sx

will be G^-Galois over Rx (the elements of Gx are strongly distinct in the

sense of [CHR, 1. 1]).

Now lift Gx to a set of automorphisms of S by (2. 14). The multipli-

cation table that holds at x will hold in a neighborhood Ue of x, so this

lifted set will be a group in Ue, isomorphic to Gx. If Se[G] denotes the

usual crossed product (with trivial factor set) of G over the ring Se, we

have the homomorphism θ: Se[G]-+ΐlomRe(Se9Se). We know this induces

an isomorphism at x, since the definition of "Sx is G^-Galois over Rx"

requires SX[G x]-± ΉomRχ{Sx9 Sx) be an isomorphism and the localization at

x of Se[G] is S J G J and of H o m ^ (Se, Se) is ΐlomRχ(Sx,Sx). If C denotes

the cokernel of θ, then Cx — 0 but C is finitely generated over Re since

H o m ^ (Se, Se) is, so C is zero in some neighborhood of x, that is Cer = 0

for some e' with & e ί/β/ c [7e. Hence 0': S0'[G]->HomΛβ'(Se',Sef) is an

epimorphism. But H o m ^ (Se', Se') is projective over Re\ so the kernel of

θ' is a direct summand in Se'[G], hence finitely generated over Re'. The

same localization argument then shows that this kernel is also zero in some

smaller neighborhood of x. Thus for every a; in I there is a neigh-

borhood Ue" of x such that Se"[G] -> Horn^// (Se", Se") is an isomorphism,

that is Se" is G-Galois over Re". A finite number of neighborhoods cover

X. Using the usual Boolean operations and noticing that if Se is G-Galois

over Re, then Se' is G-Galois over Rer for every e' with U/ c Ue, we can

arrange that these neighborhoods Uei, , Uβn are disjoint. Then {elf ,en]

is the required set of idempotents.

4. Two examples.

First we show that in the Galois correspondence, we must restrict our-

selves to groups satisfying (3. 8a) and (3. 8b) the latter closure condition

is not enough by itself.
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Let X be {1, 1/2, 1/3, , l/n, , 0} with its relative topology as a

subset of the real line and let W be the ring of continuous functions from

X to the discrete field Q of rational numbers. In other words, W is the

result of adjoining an identity to a countable ring-direct sum of copies of

Q. The Boolean spectrum of W is indeed X and wx = w{x) for each w in

W. Let K be a Galois extension field of Q with Galois group G and let

V be the ring of continuous functions from X to K. Then V is weakly

Galois over W since V = K(g)QW and F^®1) = W (in fact, the extension is

even strongly Galois). Consider the subgroup H of AuW(F) consisting of

all automorphisms g such that g is the identity at the point 0 in X. Then

H is closed, Hψ Autw(F), but VH = W because if υ $ W then vx e Q for

some # and hence for some E f= 0 and H contains an automorphism h such

that hy - identity for all y ψ x and hx(vx) ψ vx so that h(υ) ψ v. This shows

that H and Aut^F) cannot both fit into a Galois correspondence.

The second example shows that without assuming 5 is weakly Galois,

the partial assumptions (3. la) and SG = R for some G are not sufficient

to carry out our Galois theory.

Let W be as above, let en denote the idempotent characteristic function

of the one-point set {l/n} and let R be W[t,u]II with t and u indetermi-

nates over W and / the ideal generated by tu — 1 and all ten + n4en for

n = l,2, . Let a denote the residue class of t in R. The Boolean

spectrum of R is still X, Rx = Q for all x f=0 and Ro = Qlt^t'1] with t =<χx

indeterminate over Q. Let S be the result of adjoining a fourth root β of

a to R, so S = R[v]l{vA — a). Then S has a free basis 1, β, β2, β3 over R

and is separable because e = (1/4) (1 (x) 1 + β (x) β"1 + β2 (x) /3"2 + βB ® β~3) is an

element of S(x)ΛS satisfying /*(*) = 1 and e{β®l—l(g)0)=O so £(#01—l(g)a;)=O

for all oj in S. We now show SG=i?. If xφO then SΛ = Q[7-rc4 ] = 0[V : =ΐ],

a Galois extension field of Rx = ζ). Thus any element s of S that is in-

variant under all automorphisms of S will have s , e Rx for all x ψ 0. To

show that in fact s e i ? , write s = a + bβ + cβ2 + d/33 with α, b, c, d ^ R.

Since ŝ  = ^ + 6 ^ + cxβl + rf^S e Rx, we must have ^Λ = cx = dx = 0 for

all a f= 0. By (2. 9), if we show b0 = cQ = dQ = 0 then 6 = c = d = 0 and

s <E R. Now ft = Σ?=m«i«ΐ with at e TF and 6̂ , = Σ«i(^)«^ = 0 for all #^0.

Since «0, , an are continuous functions, all a^x) are constant (=^(0)) on

some neighborhood of 0. Thus we have a single polynomial 2 ^ ( 0 ) ^ in

Q[t, t'1] with infinitely many roots, namely ax = — n4 for all integers n.
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This polynomial must be 0, so ^(0) = 0 for all i. Thus b0 = 0. Similarly,

c0 = do = ϋ and we have proved Sσ = R.

On the other hand, we show that S0

G<> ψ Ro which, by (2. 17) and (3. 6),

show that S is not weakly Galois over R and also shows that our technique

of reducing to the case of no idempotents will not work here. As we said,

RQ = QUft'1] with t indeterminate over Q; and So = RJLβo] with β% = t.

Then So is contained in the rational function field Q{β0) (β0 is indeter-

minate over Q) and contains no fourth roots of 1 e x c e p t + 1 . If g is an

ivValgebra automorphism of SO, it carries β0 to another fourth root of t,

which must be β0 times a fourth root of 1. Hence g(βo)=z±βo and g{βo2) = βo2.

Thus /V is in SQ

G» but not in Ro.
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