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HOROCYCLIC CLUSTER SETS OF FUNCTIONS

DEFINED IN THE UNIT DISC

STEPHEN DRAGOSH

1. Introduction.

This paper contains in part the author's Ph.D. dissertation written under

the supervision of Professor F. Bagemihl at the University of Wisconsin-

Milwaukee. This research was supported by grants from the National

Science Foundation and the University of Wisconsin Graduate School.

Unless otherwise stated. / : D-*W shall mean f{z) is an arbitrary single-

valued function defined in the open unit disc D: \z\ < 1 and assuming values

in the extended complex plane W. The unit circle \z\ = 1 is denoted by

Γ.

We assume the reader to be familiar with the rudiments of the theory

of cluster sets. A general reference would be Noshiro [21] or Collingwood

and Lohwater [9]. We shall use the following sets defined in [9, p. 207]:

C(/,£), the cluster set of / at ζ;

Cj^(f,ζ), the outer angular cluster set of / at ζ;

Cj{f,ζ), the cluster set of / at ζ on a Stolz angle Δ at ζ;

F(f), the set of Fatou points of / ;

/(/), the set of Plessner points of / ;

M{f), the set of Meier points of / ;

R(f,ζ), the range of/ at ζ.

We denote the cluster set of / at ζ on a chord χ at ζ by Cx(f,ζ). The

principal chordal cluster set of / at ζ is defined to be

πx(/,r)= n cx(f,ζ),
XX

where the intersection is taken over all chords X at ζ; and the inner angu-

lar cluster set of / at ζ is defined to be
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= n
Δ

where the intersection is taken over all Stolz angles ά at ζ. In addition

we shall define the following sets:

)> t n e outer horocyclic angular cluster set of / at ζ- p. 56;

&s(f,ζ), the inner horocyclic angular cluster set of / at f p. 56;

Cΰiffζ), the primary-tangential cluster set of / at ζ p. 75;

Fω(f), the set of horocyclic Fatou points of / p. 57;

Iω(f), the set of horocyclic Plessner points of / p. 57;

K(f) --p. 61;

Kω(f) p. 53;

Mω(f), the set of horocyclic Meier points of / p. 57;

Πή,(/, ζ), the principal horocyclic cluster set of / at ζ p. 56;

Πrβ(/,ί) : - p . 70.

Bagemihl defined and studied the majority of these sets in [3].

If / : D-*W, then a point w e W is a non-tangential cluster value of

/ at ζ provided there exists a sequence {zn} lying between two chords at

ζ such that \\mzn = ζ and \imf{zn) — w.

A circle internally tangent to Γ at a point ζ e Γ is called a horocycle

at ζ, and will be denoted by hr(ζ), where r (0 < r < 1) is the radius of the

horocycle. The point ζ itself is not considered to be part of hr(ζ). A

point w e W is a horocyclic cluster value of / at ζ provided there exists a

sequence {zn} lying between two horocycles at ζ such that \imzn = ζ and

\imf(zn) = w. Our purpose is to examine the relationships between non-

tangential and horocyclic cluster values of a function / in D. In particu-

lar, we shall compare (metrically and topologically) the sets of Fatou points,

Plessner points and Meier points of / with their horocyclic analogues.

Section 2 deals with arbitrary single-valued functions in D. First it

is shown (Theorem 2) that Collingwood's theorem concerning K{f), f

meromorphic in D, is true for / arbitrary in D. If one defines Kω(f) as

the horocyclic analogue of K(f), then (Theorem 3) Kω{f) is both residual

and of measure 2π on Γ; i.e. the horocyclic analogue of Collingwood's

theorem is true. Theorem 4 states that there exists a set residual and of

measure 2π on Γ such that at each point ζ of the set, each non-tangential
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cluster value of / at ζ is a horocyclic cluster value of / at ζ relative to every

pair of horocycles at ζ. An immediate corollary is that almost every (in

the sense of Lebesgue) horocyclic Fatou point of / is a Fatou point of /,

and almost every Plessner point of / is a horocyclic Plessner point of / .

This had been shown by Bagemihl [3, Theorems 1 and 2] for meromorphic

functions.

Littlewood [16] and Lohwater and Pίranian [17, Theorem 9] have shown

that not almost every Fatou point of / need be a horocyclic Fatou point

of / even if / is holomorphic and bounded in D. Theorems 5 and 12

demonstrate the same result. In [10] it has been shown that not almost

every horocyclic Plessner point of / need be a Plessner point of / even if

/ is holomorphic in D. For the function / in [10], each of the sets of

Fatou points of / and horocyclic Plessner points of / has measure 2π. In

Section 3 some further properties of points which are simultaneously Fatou

points of / and horocyclic Plessner points of / are proved for / meromor-

phic in D.

The results of the preceding paragraph imply the non-existence of the

following horocyclic analogues of Fatou's theorem [11] and Plessner's theo-

rem [22]: If / is holomorphic and bounded in D, then almost every point

of Γ is a horocyclic Fatou point of / ; if / is meromorphic in D, then

almost every point of Γ is either a horocyclic Fatou point of / or a horo-

cyclic Plessner point of / . Moreover, in Section 4 a function / is const-

ructed such that / is holomorphic in D, but the union of the sets of horo-

cyclic Fatou points, horocyclic Plessner points and horocyclic Meier points

of / has measure zero. The horocyclic behavior of this function is explained

by the introduction of what we call the primary-tangential pre-Meier

point. The explanation is a consequence of a theorem (Theorem 11) similar

to the statement cited as the horocyclic analogue of Plessner's theorem.

Specifically, if / is meromorphic in D, then almost every point of Γ is either

a primary-tangential pre-Meier point of../ or a horocyclic Plessner point of

/ . A theorem similar to the statement cited as the horocyclic analogue

of Fatou's theorem is Theorem 10: If / is a normal meromorphic function

in D, then almost every point of Γ is either a primary-tangential pre-Meier

point of / or a point ζ at which ΠΓβ,(/,f) = W.

It can be easily shown [3, Theorem 3] that if / is meromorphic in D,

then almost every Meier point of / is a horocyclic Meier point of / . Sec-
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tion 5 is devoted to proving that not almost every horocyclic Meier point

of / need be a Meier pointof / even if / is holomorphic and bounded in D.

To conclude the introduction we give a brief description of horocyclic

notation and terminology.

Given a horocycle hr(ζ) at a point f e Γ , the region interior to hr{ζ)

will be denoted by Ωr(ζ). The half of hr(ζ) lying to the right of the radius

at ζ as viewed from the origin will be denoted by K{ζ), and is called the

right horocycle at ζ with radius r. The left horocycle is defined analogously.

Also, Ωt(ζ) and Ω~{ζ) denote the right and left half, respectively, of Ωr(ζ).

Suppose that 0 <rί<r2<l and that r3 (0 < r3 < 1) is so large that the

circle \z\ = rz intersects both of the horocycles hri(ζ) and hr2{ζ). We define

the right horocyclic angle Hΐltr2,rs(ζ) at ζ with radii rί9 r2, rz to be

^ ) ] n Ωijiζ) Π {z: \z\ > r 3 } ,

where the bar denotes closure and "comp" denotes complement, both relative

to the plane. The corresponding left horocyclic angle is denoted ϋΓ71,r2.r8(S').

We write Hri,r2trs{ζ) to denote a horocyclic angle at ζ without specifying

whether it be right or left, or simply H(ζ) in the event r19 r2, r3 are arbitrary.

Define the right outer horocyclic angular cluster set of / at ζ to be

C*+(f,ζ)=UCH+(f,ζ),

and the right inner horocyclic angular cluster set of / at ζ to be

c» (f,ζ)= n+c^ (/,?),

where in each case H+ ranges over all right horocyclic angles at ξ*. The

outer horocyclic angular cluster set of / at ζ is defined to be

= Cr(/,?) UCr(/,f),

and the inner horocyclic angular cluster set of / at ζ to be

Finally the right principal horocyclic cluster set of / at ζ is defined to be

π:(/,?)= n cht{f,ζ)9
0<r<l

while we define the principal horocyclic cluster set of / at ζ to be
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If f:D-±W, then a point ζ e Γ is called a right horocyclic Fatou

point of / with right horocyclic Fatou value w <z W provided

ζ is called a right horocyclic Plessner point of / provided

C9+(f,ζ) = W;

ζ is called a right horocyclic Meier point of / provided

where c denotes proper inclusion. The sets of right horocyclic Fatou points,

right horocyclic Plessner points and right horocyclic Meier points of / are

denoted by F+(f), I+

ω(f) and M+

ω{f) respectively. One defines F~ω{f), /;(/)

and M~{f) in an analogous manner.

The sets of horocyclic Fatou points, horocyclic Plessner points and

horocyclic Meier points of / : D-+W are denoted by Fω{f), Iω(f) and Mω(f)

respectively, and are defined as follows:

ζ(ΞFω(f) if C«(/,Ώ is a singleton;

ζ e Iω(f) if C»(/f 0 = W; i.e. Iω(f) = 7J(/) n / ' (/ ) ;

? e M6)(/) if TLω(f,ζ) = C(/,£) c T7; i.e. Mω(/) = MJ(/) n M'ω{f).

By an arc at a point ζ^Γ we mean a continuous curve Λ: z = z(t)

(0 < t < 1) such that |z(/)I < 1 for 0 < t < 1 and lim^ί) = ζ.

A point ξ* e Γ is said to be an ambiguous point of / : D -> W if there

exist two arcs Ax and ί̂2 at ζ such that

c^(/,f)n CΛ2(f,ζ) = φ.

BagemihPs ambiguous point theorem [1, Theorem 2] states that / has at

most enumerably many ambiguous points. Thus,

IK(f) n Fz(f)1 - Fω(f)

must be an enumerable set for f:D-*W.

If Si and S2 are subsets of Γ such that Sx — S2 and S2 — Si are of first

Baire category (we sometimes say that nearly every point of Sλ is a point

of S2 and nearly every point of S2 is a point of SJ, then Si and S2 are

said to be topologically equivalent. If meas [Sx — S2] = meas [S2 — SJ = 0,

then Sj and S2 are said to be metrically equivalent.
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2. Cluster sets of arbitrary functions.

Let &r(l) be an open connected subset of D such that ^ ( l ) n Γ = {1}.

By &{ζ) we shall mean the transform of ^ ( 1 ) under the rotation about the

origin that sends 1 into ζ. The following lemma is quite similar to that

of Collingwood [8, Theorem 2].

LEMMA 1. Let f:D-+W. Then

for a residual Gd subset of Γ.

Proof Let D be the set of points ζ e Γ for which the condition of the

lemma does not hold. It suffices to prove that E is an Fa set of first

category.

Considering W to be the Riemann sphere, let {Qp: p — 1, 2, •} be

the enumerable collection of open spherical discs on W such that the

boundary of Qp is a circle whose center has rational coordinates and whose

radius has rational length. Let -~QP denote the open spherical disc on

W with the same center as Qp and area one-half that of Qp.

Given ζ e E, there exists a disc Qp such that

)Γi^-Qp¥*Φ and C^co CΛ ζ)n

Hence we can find a positive integer m such that

n aj n Qp = Φ,

where am is the annulus 1 — 1/m < \z\ < 1. Thus we may write

P = I I P

where

) p = φ and C(/, ζ) Π -w~ Qp ψ φ, ζ e £ T O i P .

Since ^ ( 1 ) is open, one can easily prove that

f\am)ΠQp = ψ9 ζ e Em,p.

Also, it is readily seen that
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Thus,. E^,P £ E for all values of m and φ. Hence we have

E = U Em,p £ U Em,v £ £ .

Thus, E is an F , subset of Γ.

We now show that each set £ w , p is nowhere dense, so that E is of

first category. If Em,p is dense on any open arc jΓ* of Γ, then, setting

we have

Since ^ ( 1 ) is connected, we obtain am if we allow the points ζ to range

over Γ in the previous union. Also £§̂ (1) Γ\ Γ = {1}, so that no point of

Γ* is a frontier point of am — α*. Thus, given any ξ" e Γ*, there exists a

positive integer TV = N{ζ) such that

{zE:D: \z-ζ\<lln] <za*, n > N.

Since

This

/(«*) n 0,

contradicts the

C(f,

C(/,Ώ no,

fact that

ζ) Π ~^Γ~ Qp 7^ 0 :

== ^> ζ ^ J

This completes the proof.

The following conventions will be used throughout the remainder of

this paper.

Given a point f e Γ , Λn,r(ξ"), or more simply J n , r , represents the Stolz

angle at ζ such that Jn,r has aperture πj2n, n a positive integer; and the

bisector of Δn,r at ζ makes a rational angle r (—τr/2 < r < π/2) with the

radius at f. If αm is the annulus 1 — \\m < \z\ < 1 and 1— l/m>

sin(|rl + - ^ r ) » then we set

Then for each point ζ e Γ, we define Σ(ξ*) t o be the enumerable collection
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of all such Stolz "triangles" Δn,rtJ£) at ζ. When we wish to refer to this

collection without specifying a point ζ, we write Σ

Analogously, we define ΣL(£) to be the enumerable collection of horo-

cyclic angles Hri,r2,rz{ζ) at ζ with the radii rv r2, r3 rational.

Making use of the enumerability of Σ and Σω we can prove

LEMMA 2. Let f: D-+W. Then

for a residual Gδ subset of Γ.

Proof For each J E 2 , we have Cj(/, ζ) = C(f, ζ) for a residual Gδ

subset of Γ by Lemma 1. The intersection of these enumerably many

residual Gδ sets is a residual Gδ subset E1 of Γ such that

c(f,ζ)= n CΛf,ζ) = Cj&(f9ζ)f ζ*Ex.

Similarly, we can find a residual Gδ subset E2 of Γ such that

C(f, ζ) = ΓΊ CH{f, ζ) = C»(/, Ώ, f e £ 2 .

Then j^j Π ̂ 2 is the required subset of Γ.

THEOREM l. (Bagemihl [3, Theorem 4]). Let f:D->W. Then the

sets /(/), /*(/), I^{f) and Iω(f) are topologically equivalent.

Proof Since C s(/, f) = C8+(/, ?) Π C»-(/, ξ") for each f ε Γ , Lemma 2

implies that

cjp(f, ζ) = cβ+(/, Ώ - cs-(/, Ώ = c»(/, r) = c(/, f)

for a residual set of points ζ & Γ. This implies the desired result.

Remark 1. A further consequence of Lemma 2 is that if any one of

the sets /(/), /+(/), /;(/) or Iω(f) is dense on an arc Γ* of Γ (hence

C{f, ζ) = W for each point ζ e Γ*), then each of the four sets is residual

on Γ*.

Remark 2. (Bagemihl [3, Remark 3]). Let f:D-*W. Then the sets

KU)* K(f) a n d Fω(f) are topologically equivalent. Since C^(f,ζ)QCj^(f,ζ),

C9+(f,ζ)GC*+(f,ζ)9 C9-(f,ζ)QCr(f,ζ) and C»(/, £) c: C« (/,?), Lemma 2

implies that
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, ζ) = C«+ (/, ζ) = C«- (/, ζ) = C* (/, £)

for a residual set of points f e Γ . The result now follows.

Remark 3. It need not be true that the sets M(f) and Mω(f) are

topologically equivalent for / : D->W. Let S be an enumerable everywhere

dense subset of Γ. Define f(z) in D by /(o) = 0 and

f(z) = 1 for 2; e *+(£), ? e S ,

/U) = 0 for z e= *ΐ(f), ? e f - S .

Since both S and Γ — S are everywhere dense on Γ,

However, Πω(/,f) = {0} for f e Γ - S , and Πω(/,f) = {1} for f e S . Thus

Λf(/) = Γ, but Mω(f) Π Γ = φ. This example also shows that M{f) and

Mω(f) need not be metrically equivalent for / : D-+W.

DEFINITION 1. If / : D-+W, then K{f) consists of those points f e / 1

for which C^(/, ζ) = Cj2(f, ζ) for any pair of Stolz angles Δx and J2 at f.

Collingwood [7, Theorem 4a] has shown that K(f) is both residual and

of measure 2τr on Γ for / meromorphic in D. It is a consequence of the

following lemma that the same result holds for an arbitrary function / in

D.

LEMMA 3. Let f:D-*W. Then at almost every and nearly every point

where £f{ζ) is any set for which there exists a Stolz angle at ζ containing

Proof. If E is the set of points ζ ^ Γ for which the lemma fails to

hold, then for each ζ e E there exists a set Sf (?) lying in the interior of a

Stolz angle at ζ such that Cj^co (Λ > ζ) £ C ĉo (f, ζ) for some (not necessarily

the same) Stolz angle Δ(ζ) at ζ. Then there exists a disc Qp on the Rie-

mann sphere W such that

(/, f ) f l θ p ^ # and CJCO (Λ Ω n Q^= ψ.

It is then possible to find a Stolz triangle Δn,r,m(ζ) e Σ(Ώ such that

f(Δn,r,m(ζ)) Γι QP = φ. Thus we may write
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n, r, m, p

where ζ^ En%r%m%v provided there exists at least one set £f(ζ) lying in a

Stolz angle at ζ such that

Cs?m(f9ζ) f)Qp¥=φ and /(Jn. r i m(?)) Π QP = tf.

Now suppose that some set En,r,mtP has positive exterior measure. If

En,r.m.p> then

(1)

Note that it is not necessarily true that Cjg^co (/, ?) Π 0 P ^ φ for at least

one set Sf (?) lying in some Stolz angle at ξ" for each ζ e X.

If

(2) G = U

then G is composed of finitely many open simply connected subregions

Gv , GN of D. There are only finitely many such subregions because

Γ — X contains only finitely many arcs with length exceeding a fixed number

between 0 and 2π. As in [23, p. 220], we conclude that each subregion

Gk (1 < k < N) has a rectifiable Jordan curve Jk (1 < k < N) as boundary.

Now X Π Jk must be of positive exterior measure for at least one curve

Jk. Also the tangent to Jk at almost every point of Γ Π Jk coincides with

the tangent to Γ. Consequently, there exist points of X belonging to

Γ Π Jk at which the tangent to Jk coincides with the tangent to Γ. At

any such point each Stolz angle at the point has a terminal portion (i.e.

a Stolz triangle at ζ) contained in Gk. Thus there exist points f ε l ,

such that C_£f(o (/>?)£/(Gjb) for every set £f(ζ) at ζ which is contained

in a Stolz angle at ζ. By (1) and (2),

f(Gk) ΠQp = ψ.

However, according to the definition of X, we must have

for at least one set £f(ζ) lying in some Stolz angle at ζ for every f s l

which is inconsistent with the previous statement. Hence each set Entr,m,p,

and consequently E, has measure zero.

It is evident that our proof needs only minor modifications to establish

that each set En,r,m,p, and consequently E, is of first category.
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THEOREM 2. Let f: D->W. Then K(f) is both residual and of measure

2π on Γ.

Proof. At each point ζ e Γ — K{f) there exists a Stolz angle Δ{ζ) such

that CJ(O (/,?)£ C&{f,ζ). Lemma 3 implies that Γ — K{f) is of measure

zero and first category.

DEFINITION 2. If f:D-> W, then iΓω(/) consists of those points ζ e Γ

for which CHl(f, ζ) = CH2{f, ζ) for any pair of horocyclic angles Hι and Hz

at f.

Remark 4. A most crucial line of reasoning in the proof of Lemma 3

was that each Jordan curve Jk was rectifiable so that the tangent to Jk

coincided with the tangent to Γ at almost every point f e Γ Π /*; and con-

sequently, at almost every point ζ e Γ Π Λ, each Stolz angle at ζ had a

terminal portion interior to GkJ

For a fixed horocyclic angle Hrί,r2,r3{ζ) and a closed set PaΓ, define

By [3, Lemma 1], Gω is composed of finitely many simply connected sub-

regions Gω

λ, , Gω

N having as their respective boundaries the rectifiable

Jordan curves /", , Jω

N. Hence the tangent to Jω

k (1 < k < N) at almost

every point ζ e Γ Π /® coincides with the tangent to Γ. However, this

does not imply that at almost every point ζ e Γ Π Jζ9 each horocyclic angle

/ί has a terminal portion which lies in G", because the tangent to if at ξ*

also coincides with the tangent to Γ at ζ. But if we can verify that this

latter statement is true, then by virtually the same proof as of Lemma 3

we can obtain a horocyclic analogue of Lemma 3 (see Lemma 6).

LEMMA 4. Let P be a perfect nowhere dense subset of [0,1]. For almost

every point φ e P, if {(an, bn)} is any sequence of open intervals in [0,1] — P con-

verging to p, then

\an-p\l{bn-an) tends to +oo.

t If S(ZD such that S Π Γ = {ζ}, then S ' c S is called a terminal portion of S if
S'f)D—am = φ and S'Γ\ap = SΓ\ap, where p>m>0.
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Proof. According to Hobson [12, p. 194], the metric density exists and

is unity at almost every point p G i 3 . Let p e P be such a point, and

suppose the sequence {{an, bn)} converges to p from the right. Then by

the definition of metric density

(3) lim *neas(Pn(p,ftJ) = 1n->+oo meas (p, bn)

and

(4) lim , m e a s ( P n ( y > a . ) ) = χ >

n->+oo meas [p, an)

Let xn = meas (P Γ) (p, £»)), yn = cιn — p and zn = bn — an. Then (3) implies

and, since P Π (p, ftn) = P Π (p,«„), (4) implies

2/n

Since α^ > 0, 2/n > 0 and 2^ > 0, these conditions imply that

; i.e.

T h u s (βΛ - p)l(bn — an)-++ 00 a n d in general , \an — p[l(bn — an)-++ 00.

L E M M A 5. Let P be a perfect nowhere dense subset of Γ and set

Gω = U Hri r2 r a (f),

where Hritr2tT8 is a fixed horocyclic angle. Then at almost every point f e ? each

disc Ωr(ζ) (0 < r < 1) has a terminal portion lying interior to Gω.

Proof. Without explicitly going through all the details we note that it

is possible, by means of a bilinear mapping L(z), to transfer the setting of

our lemma from D to the upper half-plane and arrive at an equivalent

formulation. We now give this formulation in a somewhat extensive form.

Let P be a perfect nowhere dense set on the finite interval / of the

real axis, and let the two circles (take {an9 bn) c / — P)

(5) C,: (x- anγ + (y - i?)2 = P 2 and C2: (x - bnf + (y - rf = r*
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have radii satisfying

(6) 0 < R1 < r < R2 R < RA.

We choose r and R in this fashion because the two horocycles hrι{ζ) and

hr2(ζ) forming part of Hri,r2tr3(ζ), and hence part of the boundary of Gω,

would be mapped by L(z), as ζ ranges over P c Γ, onto circles of the form

(5) whose radii satisfy a condition of the form (6).

Figure 2

At the left and right endpoints of each interval in / — P construct

circles Cj and C2 respectively (see Figure l). In the proof it shall become

apparent that we could choose C^ to be at the right endpoint and C2 at

the left endpoint of each interval in / — P (see Figure 2). These two situa-

tions correspond to the choice of Hri,r2,rΆ(ζ) as a left and right horocyclic

angle, respectively.

Our ultimate goal is to prove:

(7) At almost every point p e P, for any sequence {{an,bn)} of arcs in I—P
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converging to φ, the point (xn9 yn) e CX Π C2 (see Figure l) lies interior to

any given circle tangent to the #-axis at p for at most finitely many values

of n.

Our method of proof will be to show that the condition on p in (7) is

satisfied at each point p e P at which Lemma 4 holds. Since Lemma 4

holds for almost every point p e P, (7), and hence our lemma, will be

established.

Suppose to the contrary that there exists a point p G P a t which Lem-

ma 4 holds and the condition on p in (7) fails to be true. Without loss of

generality we may assume that p = 0. Hence, we are assuming that there

exists a circle C: x2 + {y — p)2 = P2 (0 < p < + °o) and a sequence {(αn, 6J} in

I—P converging to p = 0 for which \an\l(bn — an) -> + oo, but the point

(ccn, 2/n) e d ίl C2 lies interior to C for infinitely many values of n; i.e.

(8) α̂n + (yn — i0)2 < P2 for infinitely many n.

Also, since \an\j{bn — an) -> + co and sgn{an) =sgn{bn),

(9) |ftΛ + « Λ l / ( * » - f l » ) - > + o o .

Consider the radical axis / of Cj and C2 passing through Ci Π C2. The

equation for / is given by

(x ~ anγ + (y - R)2 -R2- [(x - bn)
2 + (y - r)2 - r2] = 0,

or

Hence,

(10) * . =

Solving (10) simultaneously with the equation of Cx in (5) for yn9 we

have

n — an 2

This can be rewritten as

(* - ^)2

 (b _" u
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Since yn-+0+ we immediately have

Vn = 0((bn - ann

and hence,

(11) yn< K{bn — an)
2, K>0, for all sufficiently large n.

Now we show that (8) is impossible. Substituting (10) in (8) yields

The left-hand side of (12) is greater than

(R -
2

and by (6) and (11), this expression is greater than

_ D , 1 bn + an Ί
^ 2 + ^ r ft.-β. J

By (9) this latter expression tends to + oo so that (12), and hence (8), can

hold for at most finitely many values of n, which is a contradiction. Thus

our lemma is proved.

LEMMA 6. Let f: D-+W. Then at almost every and nearly every point

where β^{ζ) is any set for which there exists a disc Ωr{ζ) at ζ containing

Proof. As stated in Remark 4, the proof of Lemma 3 with only minor

modifications can be used here. We replace Stolz angles by horocyclic

angles, the region G by a region Gω and apply Lemma 5 where needed.

THEOREM 3. Let f: D-+W. Then Kω(f) is both residual and of measure

2π on Γ.

Proof At each point ζ e Γ — Kω(f) there exists a horocyclic angle H{ζ)

such that CH(ζ)(f,ζ) $ C8(/,£). Lemma 6 implies that Γ - Kω(f) is of

measure zero and first category.
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COROLLARY 1. Let f:D~±W. Then the sets F+

ω{f), F~(f) and Fω(f)

are metrically equivalent, and the sets /*(/), I^{f) and Iω(f) are metrically equivalent.

Proof. If ζ belongs to at least one of the sets F+(f), F~(f), Fω(f), but

not to all of them, then CHl{f>ζ) Ψ CH2(f>ζ) for some pair of horocyclic

angles Hx and H2 at ζ. By Theorem 3, the set of such points ζ e Γ is of

measure zero. This proves the first part of Corollary 1, and the proof of

the second part is identical.

Remark 5. Lemma 2 affords some additional information concerning

K(f) and Kω(f). The relation

holds at nearly every point ζ e K{f) Π Kω(f) for any Stolz angle Δ at ζ and

any horocyclic angle H at ζ.

THEOREM 4. Let f: D-+W. Then at almost every and nearly every point

CΛf,ζ)ςzCH(f,ζ)

for each Stolz angle Δ at ζ and each horocyclic angle H at ζ.

Proof If £ is a point where the condition fails to hold, then C J ( C ) (/, ζ)

^C^(f,ζ) for some Stolz angle Δ(ζ) at ζ. Lemma 6 implies the desired

result.

We can now generalize two results of Bagemihl [3, Theorems 1 and 2].

COROLLARY 2. Let f:D->W. Then almost every horocyclic Fatou point

of f is a Fatou point of f, and almost every Plessner point of f is a horocyclic

Plessner point of f.

Proof If ζ <Ξ Fω(f), then there exists a horocyclic angle H{ζ) at ζ and

a point wζ^W such that CH(O{f,ζ) = {wζ}. From Theorem 4 we conclude

that Cjχf{f, ζ) - {wζ} for almost every point ζ^Fω(f); i.e. almost every

point of Fω(f) is a point of F{f).

If ζ <Ξ /(/), then Cj^(/, ζ) = W. According to Theorem 4, Cj^(f, ζ)

£C s (/, f) for almost every point f e Γ . Thus C*(f,ζ)=W for almost

every point ζ <Ξ /(/), which is the desired conclusion.
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3. The set F(f) n /„(/).

The following example, a special case of an example of Lohwater and

Piranian [17, Theorem 9], shows that F{f) and Fω(f) need not be metri-

cally equivalent.

THEOREM 5. There exists a function B{z) holomorphic and bounded in D

such that the set of horocyclic Fatou points of B{z) has measure zero.

Proof. The Blaschke product

oo (n )2n 4- M 2 n

B{Z) = J ϊ i 1 + (Pnzr > p- = 1 ~ ( ^ " Γ 1 , n = l,2,

has zeros at the points

*».* = Pne^k-^-nπ, n = 1, 2, k = 1, 2, , 2n.

In [10] it is shown that for each point ζ e Γ and each horocycle hr(ζ)

(0 < r < 1) at ζ, there exist sequences of these zeros lying interior to Ωϊ{ζ)

and Ωr(ζ)> Thus, for each ζ e Γ,

(13) 0 e C Λ ; ( C ) (5, ζ) (0 < r < 1) and 0 e C f l . ( O (B, ζ)(0<r<l).

It is well-known [24, p. 94] that a Blaschke product has a Fatou value

of modulus one at almost every point ζ e Γ. Take f e jF(β) such that J5

has Fatou value a9 \a\ = 1, at ξ*. If ξ* is a right horocyclic Fatou point

of £ , then the right horocyclic Fatou value must be 0 because a result of

Lindelof [6, p. 42] states that the right horocyclic Fatou value of B at ζ

must equal

and, from (13), 0 belongs to each such cluster set. Thus,

CΩtco(B,ζ) = {0} ( 0 < r < l ) .

However, this contradicts the fact that CJ(O{B, ζ) = {a} for each Stolz angle

Δ{ζ) at ζ. Thus the set of right horocyclic Fatou points of B is of measure

zero. By Corollary 1, Fω{f) has measure zero, and the proof is complete.

To show that /(/) and Iω(f) need not be metrically equivalent, we

cite the following theorem proven in [10].
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THEOREM 6. There exists a function f(z) holomorphic in D such that every

point of Γ is a horocyclic Plessner point of f and almost every point of Γ is a

Fatou point of f.

The following corollary is interesting in view of Plessner's theorem [22]

and Meier's theorem [18, Theorem 5].

COROLLARY 3. There exists a function f{z) holomorphic in D such that

almost every point of Γ is a Fatou point of f and nearly every point of Γ is a

Plessner point of f.

Proof By Theorem 1, /(/) and Iω(f) are topologically equivalent.

Since every point ζ e Γ is a point of Iω{f), the result follows.

Theorem 6 shows that F{f) Π Iω{f) may be large metrically even if /

is holomorphic in D. However, for f:D-±W, F(f) Π Iω(f) must be of

first category by Theorem 1.

An arc Λω at ζ e Γ is said to be an admissible tangential arc at ζ if

there exists a sequence [Hrf\rf\rf> (ζ)} of nested right or of nested left

horocyclic angles at ζ with lim [r2

(7l) — r2

(u)] = 0, each term of which contains
n—>oo

some terminal subarc of Aω.

We now define

iW/,£) = n cAω(f,ζ),

where the intersection is taken over all admissible tangential arcs Aω at ζ.

THEOREM 7. If f(z) is meromorphic in D, then

Uτω(f,ζ) U R(f,ζ) = W

for each point ζ e F{f) Π Iω(f) with the possible exception of at most enumerably

many such points.

Proof If ζ is a point of F(f) n /«(/) such that UTω(f,ζ) U R(f,ζ) aW,

then either W — [ΠΓJ/,?) U /?(/,?)] is the Fatou value of / at ζ or there

exists a value w <$ ΠΓω(/, ζ) U R(f,ζ) different from the Fatou value of / at

ζ. We assert that in either case, ζ is an ambiguous point of / . Bage-

mihPs ambiguous point theorem [1, Theorem 2] then implies the desired

result.

In the first case Cx(f,ζ) Π CΛω{f, ζ) — φ for each chord X at ζ and some

admissible tangential arc Aω at ζ, so that ζ is an ambiguous point of / .



HOROCYCLIC CLUSTER SETS 71

In the second case there must be an admissible tangential arc Λω at ζ

such that w$ CAω{f9ζ)- Let z be a chord at ζ disjoint from Λω, and join

the endpoints of X and Λω by means of a Jordan arc /* so that {ζ) UΛω\J J*UX

is a Jordan curve. Let G denote the interior of this Jordan curve and set

J = Λω\Jj*\JX. Since Λω is an admissible tangential arc at ζ, G must

contain at least one right or left horocyclic angle at ζ. Thus CG(f, ζ) = W.

Since w is not the Fatou value of / at ζ and w φ C^ω(/,ζ)9 M;$ Cj(f, ζ).

Moreover, w $ RG{f,ζ), because w $ R{f,ζ). Hence

w e [Cβ(f9 ζ) - CAf, ζ)1 Π comp Ra(f, ζ),

so that by the Gross-Iversen theorem [9, p. 101], there exists an arc A at

ζ such that CΛ(f,ζ) = {w}. Hence, ζ is an ambiguous point of /, and the

theorem is proved.

COROLLARY 4. If f{z) is holomorphic in D, then

for each point ζ e F{f) Π Iω(f) with the possible exception of at most enumerably

many such points.

We now prove that Corollary 4 is no longer true if we replace

F(f) Π /„(/) by /„(/).

THEOREM 8. Let P be a perfect nowhere dense subset of Γ. Then there

exists a function f(z) holomorphic in D such that almost every point of P is a point

of Iω(f), and ΊITω(f,ζ) = {0} for each point ζ e P with at most enumerably many

exceptions.

Proof Set

τ=ζupht(ζ).

Then T is a tress in the sense of Bagemihl and Seidel [4, Definition 1], and

there exists a function f{z) holomorphic in D such that

(14) Cu\iθ (f9ζ) = {0}

for each point f e P [4, Corollary 1],

If meas[P Π F(/)]>0, then, since Ch\m (/> ζ) = {0} for each point

f e ? n F(f), f must have 0 as Fatou value at each point ζ ^ P f] F(f)

with the possible exception of at most enumerably many ambiguous
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points. But this is impossible by Priwalow's theorem [9, Theorem 8. 1].

Hence almost every point of P is a point of /(/) by Plessner's theorem.

By Corollary 2, almost every point of P is a point of Iω(f). By (14),

ΠΓfl)(/, f) = {0} at any point of P which is not an ambiguous point of / .

This completes the proof of the theorem.

Remark 6. By [21, Remark, p. 74], it is not possible to construct the

function f{z) of Theorem 8 to have both a right and a left horocycle at

almost every point f e P o n which / is bounded.

Remark 7. Theorem 4 states that C^?(f, ζ) Ω C»(/, ζ) for almost every

point ζ G Γ for / : D-+W. It is a consequence of Theorem 8 that even

if / is holomorphic in D9 then it need not be true that ILx(f,ζ) c Uω(f,ζ)

for almost every point ζ G Γ.

If / is holomorphic in D, then, by applying the Gross-Iversen theorem,

one sees that

c^e Πχ(/,f) U Uω(f,ζ)

for each point ? G /(/) U Iω{f) with the possible exception of at most enu-

merably many ambiguous points. Thus, for the function f(z) in Theorem

8, oo G Πx(/,?) and oo <£ Hω(f,ζ) for almost every point ζ G P since almost

every point of P is a point of /ω(/)

It is an open question whether Ux(f,ζ) c Πω(/, f) for nearly every point

ζ G Γ if /U) is meromorphic in Zλ

4. Horocyclic cluster sets of meromorphic functions.

THEOREM 9. There exists a function f{z) holomorphic in D such that almost

every point of Γ is a Fatou point of f, but

meas \Fω{f) U Mω(f) U /„(/)] = 0.

Proof For the Blaschke product B{z) of Theorem 5, almost every point

ζ G Γ is a Fatou point of B with Fatou value of modulus one. By a theo-

rem of Lusin [12, p. 192], this set of Fatou points of B contains a set S of

measure 2π such that S = Ό Sn9 where Sx c S2 c c S Λ c Sn+1 cz - a Γ
n

and each Sn is a perfect nowhere dense set.

By essentially the same method as used in [10], it is possible to const-

ruct a function g(z) holomorphic in D such that g{z) is bounded on the
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disc Ωi{ζ) for every point f ε S ; and for each point f e Γ , there exists a

sequence {zn} c D converging to ζ for which &g(zn)-++ oo and \B{zn)\> - | - .

If we- set /(z) = J5(z) e^*), then the latter property of g{z) implies that

oo e C(/, f) for each point ζ e Γ. The former property of #(z) implies that

/(z) is bounded on Ωi(ζ) for each point f ε S . Hence the set Mω{f)\JIω(f)

is of measure zero, while the set of Fatou points of / has measure 2π by

Plessner's theorem.

Let ζ e Γ be a point at which f(z) has a non-zero Fatou value and

/(z) is bounded on Ω\{ζ). The set of such points has measure 2π since it

contains all points of S. Since the zeros of B(z) are zeros of f(z),

0 e Ca co (/, ζ) (0 < r < 1) and 0 e CΩ~rm (f, f) (0 < r < 1).

By the same argument as in Theorem 5, the point ζ cannot be a right

horocyclic Fatou point of / . Thus Fω{f) has measure zero.

We now indicate how to modify the method in [10] in order to const-

ruct the function g(z). For each n = 1,2, , define

Gn = Q U s ^ ( f ) ) U {z: \ z \ < P n ] ,

where - | - < ρλ < p2 < < ρn < ρn+ί < < 1 and pn -> 1. Also, for

each n = 1,2, , let Zn be a finite subset of D— Gn chosen as follows:

(1) in each component of D — Gx having area in the range \πj2n,πl2n~ι),

choose a point z in D — Gn at which | B{z) \ > -FT (recall that B(z)

has radial limit of modulus one on a dense set of radii)

(2) in each component of D — Gg having area in the range [πl2n+1,πl2n)

choose a point z in D — G^ at which | B(z) | > - y

(n) in each component of D — Gn having area in the range [τr/22n S

π/22n"2) choose a point z at which \B(z)\ > ~γ

It is easily proven that the collection UZΛ has Γ as its derived set, so
n

that for each ζ e Γ there exists a sequence {zΛA} converging to ξ" where
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For the function t(z) defined on the sets Tn we substitute the function

τ(z) defined on the sets Zn by τ{z) = n, z e Zn, n = 1,2, . Also, we

define

U Zλ, n = l,2,

so that each Fn is a compact set with connected complement. We obtain

by induction a sequence of polynomials {pn{z)} converging (uniformly on

compact subsets of D) to a function g{z) holomorphic in D such that g(z) is

bounded in Gn, n = 1,2, . Since Ωi(ζ) is a subset of Gw for each

f e S f t ( n = l,2, ), βr(z) is bounded on Ωi(ζ) for each f s S n ( « = l,2, •)

as required.

The sequence {φn(z)} also satisfies

\Pn(z)-τ(z)\ <2~n, Z<Ξ U Zj9

lflf(2)-p»(z)l<2-n, ^ e DPn.

Thus,

lim |flfU)-τ(a;)| = 0 .

Hence for each point f e Γ there exists a sequence {zWλ} converging to ζ,

znk e Z f t t , such that

lim \&g(znk)-τ{zΛk)\ = lim |^βr(zΛib) - «*[ = 0.
A;-»oo

The function g(z) has the required properties, and the theorem is proved.

To determine the horocyclic behavior of the function f{z) of Theorem

9, we begin with the definition of a normal meromorphic function in the

unit disc D due to Noshiro [20].

DEFINITION 3. Let f(z) be a meromorphic function in D. Denote by

zr = L{z) an arbitrary one-to-one conformal mapping of D onto itself. The

function f(z) is called normal in D if the family of functions [f{L(z))} is

normal in the sense of Montel, where convergence is defined in terms of

the spherical metric.

LEMMA (Bagemihl [3, Lemma 4]). If f(z) is a normal meromorphic function

in D and ζ^ Kω{f), then



HOROCYCLIC CLUSTER SETS 75

Remark 8. A meromorphic function assuming each of three values only

finitely often in D is normal in D (see [19, pp. 125-125] or [15, p. 54]). If

/ is meromorphic in D and ζ is a horocyclic Meier point of /, then

C(f,ζ)dW. Thus / is normal on each disc Ωr(ζ) ( 0 < r < l ) . From this

and the lemma of Bagemihl just cited, one can prove that

at each horocyclic Meier point of a meromorphic function /.

DEFINITION 4. The primary-tangential cluster set of / at ζ is defined

to be

= u

The term "primary-tangential" is used to differentiate this cluster set from

similar cluster sets wherein tangential approach of higher order is used.

Remark 9. It is evident that

for every point ζ e Γ. By Lemma 6,

C f l(/,?)e

at almost every point ζ e Γ. Thus, at almost every point

DEFINITION 5. A point ζ e Γ is said to be a primary-tangential pre-

Meier point of / : D->W provided

The term Cίpre-Meier" is used because the condition

Ch-(f,ζ) = Cκ,(f,ζ) c W (0 < r < l; 0 < r' < 1)

is fulfilled at each primary-tangential pre-Meier point of /, and this is a

necessary condition that a point f G f be a horocyclic Meier point of / .

If it is also true that CΩ(f, ζ) = C(f, ζ) c W, then the point ζ is in fact a

horocyclic Meier point of /.
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Each horocyclic Meier point of a function / meromorphic in D is a

primary-tangential pre-Meier point of / because of Remark 8. An example

can be easily constructed to show that the word ccmeromorphic" cannot be

omitted.

Although a horocyclic analogue of Fatou's theorem does not exist, we

can prove

THEOREM 10. If f(z) is a normal meromorphic function in D, then almost

every point f e Γ is either a primary-tangential pre-Meier point of f or a point at

which UTω(f,ζ) = W.

Proof By Remark 9, C%{f9 ζ) = CΩ(f9 ζ) almost everywhere on Γ. Since

Kω(f) is of measure 2π, BagemihPs lemma implies that

for almost every point ζ e Γ. The theorem now follows from the fact that

at every point f e Γ , either CΩ(f,ζ) c W or CΩ{f,ζ) = W.

Applying Theorem 10 to the holomorphic bounded function B{z) in

Theorem 5, we see that the set of primary-tangential pre-Meier points of

B has measure 2π and the set of horocyclic Fatou points of B has measure

zero.

Although a horocyclic analogue of Plessner's theorem does not exist, we

can prove

THEOREM 11. If f(z) is meromorphic in D, then almost every point ζ e Γ

is either a primary-tangential pre-Meier point of f or a horocyclic Plessner point of

f.

Proof At a point ζ G= Γ - Iω(f), C*(f,ζ)c:W. By Theorem 3 and

Remark 9, for almost every point f e Γ - Iω(f)9

(15) ζ e Kω(f) and C»(/, ζ) = C»(/, ζ) = CΩ(f, ζ) c W.

Let the point f e Γ - Iω{f) satisfy (15), and let Λω be an admissible

tangential arc at ζ. Then there exists a disc ΩrQ{ζ) at ζ containing Λω.

Since CΩ{f9 ζ)cW9 f*(z)9 the restriction of f(z) to ΩrQ(ζ)9 is a norinal

meromorphic function in ΩrQ(ζ) by Remark 8. Furthermore, ζ e Kω{f)

implies that ζ e Kω{f*), where the meaning of Kω{f*) is the natural one.

BagemihPs lemma applied to the function f*{z) implies that
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CΛJJ, ζ) = CAω(f*> ζ) = Cflr§co (/*, f) = Ci2 r0(O (/, ζ) = CΩ(f, ζ),

where the last equality follows because C»(/, ζ) = Ca(f,ζ). Since Λω was

an arbitrary admissible tangential arc, ΠΓω(/,ξ*) = Coif, ζ). Thus almost

every point ζ e Γ — /ω(/) is a primary-tangential pre-Meier point of /, and

the theorem is proved.

Theorem 11 implies that for the function f(z) in Theorem 9 almost

every point ζ e Γ is a primary-tangential pre-Meier point of /, but meas

[Fβ(/) U Mω(f) U /«,(/)] = 0.

Since no primary-tangential pre-Meier point of a function is a Plessner

point of the function, Plessner's theorem implies that almost every primary-

tangential pre-Meier point of a meromorphic function f(z) is a Fatou point

of f(z). Since meas[F(/) Π /ω(/)] = 27r for the function f(z) of Theorem 6,

the converse is not true.

Finally we point out that for a meromorphic function f(z) almost every

point of Fω{f) U Mω(f) is a primary-tangential pre-Meier point of / . This

follows from Theorem 11 and the fact that no point of Fω{f) U Mω{f) is a

point of Iω(f). The function f{z) in Theorem 9 shows that the converse

need not be true.

5. The set F(f) Π Mω(f).

In the proof of our final theorem, we shall need

Remark 10. Let c c D be the arc of a circle C orthogonal to Γ (i.e.

c = D n C ) , and let f e Γ be interior to C. Then, under inversion in c,

the image of that part of each disc Ωr{ζ) (0-<r<l) which lies exterior to C

again lies in Ωr{ζ).

Proof. Let L{z) = i~r_
% » Then L{z) maps /fcr(f) onto a straight line

parallel to the real axis and c onto a semi-circle L{c) with diameter on the

real axis. The inversion in c corresponds to inversion in L{c), and the

assertion is evident.

THEOREM 12. There exists a function f(z) holomorphic and bounded in D

such that almost every point ζ e Γ is a horocyclic Meier point of f, while the set of

Meier points of f has measure zero.

Proof We shall prove that the function f(z) constructed by Jenkins in

[13] has the required properties.
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Let d be the domain obtained from the unit disc \w\ < 1 by inserting

at each point ^WΌ* a radial slit of length 1/ /n where m, n are integers,

n>0, \m\ < n, and the fraction mjn is in its lowest terms.

We obtain from the domain d a Riemann surface R by the following

construction. For each slit Sj {j = 1,2, •) let dό be a domain obtained

from d by reflection in the diameter bearing Sj. Then we cross-join dj to

d along Sj and the corresponding slit on dj. For each dj9 let the remain-

ing boundary slits of d5 be denoted by sjk {k = 1,2, k ψ j), where sjk

corresponds to sk. For each d3- and each slit sjk on dj9 let the domain djk

be obtained from dj by reflection in the diameter bearing sjk. We cross-

join djk to dj along sjk and the corresponding slit on djk for each admis-

sible value of k. For each djk, let the remaining boundary slits of djk be

denoted by sjkι {I = 1,2, / ^ k, I ψ j), where sjkι corresponds to sjk.

Continuing this process, we obtain a Riemann surface R which has no

relative boundary over \w\ < 1. Evidently R is simply connected and of

hyperbolic type so that there exists a function w = f{z) which maps D in a

one-to-one conformal manner onto the surface R. We assume that / car-

ries the origin z = 0 onto the point of d covering the origin w = 0.

The surface is invariant under the following transformations. Let dr

and d" be two sheets of R cross-joined along the slit s. Select any point

pr in dr, and let pf

w denote the point in \w\ < 1 covered by pr. Let pZ

denote the point in \w\ <1 obtained from p'w by reflection in the diameter

which contains the radial segment covered by 5. With p' we associate the

point p" in d" which covers pZ. Under such an association dr is trans-

formed into d" and conversely, while the slit 5 is fixed. Any sheet J*

attached to dr is transformed into a sense-reversed (with respect to the

diameter bearing the slit along which it is cross-joined to dr) replica of it-

self attached to d", and any sheet d** attached to d" is transformed into

a sense-reversed (with respect to the diameter bearing the slit along which

it is cross-joined to d") replica of itself attached to dr, etc. We may extend

such a mapping to the points on the cross-joins by continuity to obtain,

for each choice of d', d" and s, a transformation which leaves R invariant.

Note that the slit s is the only pointwise fixed subset of R.

Each corresponding transformation in D is an anti-conformal transfor-

mation of D onto itself, and thus must be the conjugate of a linear trans-

formation. Since each transformation on R fixes pointwise a slit 5, the
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transformation in D fixes pointwise an arc in D with its endpoints on Γ.

The conjugate of a linear transformation carrying D onto itself can leave

such an arc pointwise fixed only if the arc lies on a circle orthogonal to

Γ and the mapping in question is inversion in that circle.

We can now give a geometric description of f{z). In the mapping

f{z) of D onto R, the subset of D mapped onto the initial sheet d of R is

a subdomain δ of D bounded by a countable set of open arcs cj {j — 1,2, )

on circles orthogonal to Γ (one for each slit s5\ j = 1,2, •) together with

a set H on Γ. Since the length of an arc (in D) of a circle orthogonal to

Γ is for a suitable constant, say if*, less than K* times the length of the

arc on Γ which the circle intercepts, the boundary of δ is a rectifiable

Jordan curve. If Φ denotes a one-to-one conformal mapping of the disc

\Z\ < 1 onto d, then f~λ{Φ(z)) maps \Z\ < 1 in a one-to-one conformal man-

ner onto δ. The boundary of d consists of Γw: \w\ =1 and the enumer-

able collection of slits s19 s2, . Due to the choice of the lengths of the

slits s19 s29 , no Stolz triangle with a vertex on Γw can be completely

contained in d. According to a theorem of Lavrentieff [14, Theorem 1],

the set of points on \Z\ = 1 mapped onto Γw by Φ, say E, must be of mea-

sure zero. Since the domain δ has a rectifiable boundary and H is the

image under f^{Φ{z)) of the set E of measure zero, H is of measure zero by

the Riesz theorem [24, p. 49],

The function f(z) defined on D can be thought of as the continuation

of f(z) defined on δ. If we reflect δ in each of the arcs cy (j = 1,2, )

and continue this process, we sweep out the domain D while the corres-

ponding transformations on R completely cover R as the image of d. The

images of H under these successive inversions have measure zero. Thus,

their enumerable union K has measure zero.

We shall show that CΩ(f9ζ) = {w: \w\<l] for each point ζ e Γ - K.

Then, since \f(z)\ < 1, C{f9ζ) = {w: \w\ < 1} for each point ζ^Γ - K (and

hence for each point f e f ) , Since / has a radial limit almost everywhere,

the set of Meier points of / is of measure zero. By Theorem 10, ΠΓύ)(/, ζ)

= Cg{f9ζ) for almost every point J G Γ , SO that

c(f,ζ) = cΩ(f,ζ) = τιTω(f,ζ) ε uω(f9ζ)

for almost every point ζ e Γ — K. Thus Π«(/,?) = C(/,f) for almost every
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point f G Γ , and the set of horocyclic Meier points of / is of measure 2π

as asserted.

If ζ e Γ — K9 then ζ is not an endpoint of any arc c5 ( = 1,2, )

nor is ζ an endpoint of the reflection of any such arc. So there exists a

sequence cj9 cjk, cm, of arcs on circles orthogonal to Γ such that ζ lies

interior to each such circle. These arcs correspond under / to cross-joins

sj9 sjk9 sjkι, on i?, where d and d5 are cross-joined along sj9 etc. Also,

if δj c D is the domain obtained from δ by reflection in cj9 then / carries

δj onto dj9 etc.

Now if Cg(f,ζ) ψ [w. \w\ < 1}, then there exists a point wQ9 \wQ\ < 1,

and a closed neighborhood N(w0) of w0 contained in {w: \w\ < 1} such that

N(WQ) has area η > 0 and

N(w0) Π CΛ(/,?) = ^-

Since f(δ) = ί/, we can choose the disc Ωr(ζ) so large that

area [f(δ Π ̂ r(f))] > JΓ - ?/2.

Hence, we must have

f(δf] Ωr(ζ))Γ\N(w0)¥=φ.

Now let ^ c d, be the reflection of δ Π βr(f) in Cj. Then f{δ*j)czf{δj)

- dj. As previously stated, / in δj is the continuation of / in δ by reflec-

tion in the arc cj. The corresponding transformation on R between d and

dj preserves area so that, since fffi) is the image of f(δ ΠΩr{ζ)) under this

transformation on R9

(̂  Π Ωr{ζ)).

Now ?̂ c ^ and by Remark 10, δ*j c Ωr(ζ). Thus, δj c δs Π i2r(f), so that

area f(δd n ^r(D) > area/(5?) = area/(5 Π Ωr(ζ)) >π- ηl2.

Thus

f(δj n βr(f)) n N(wo)^φ.

Proceeding in this fashion we obtain the sequence of domains

δ n Ωr(ζ), δj n Ωr(ζ), δjk n Ωr(ζ),

which converges to ζ9 while the image under / of each such domain inter-
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sects N(w0). Since N(w0) is closed and bounded, there exists a point in

N{w0) which belongs to Cβ r ( c ) (/,£). Thus,

which contradicts our assumption that this intersection is empty. This

completes the proof of the theorem.
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