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CONTRACTION GROUPS AND EQUIVALENT NORMS*

WILLIAM G. VOGT MARTIN M. EISEN GABE R. BUISt

Using the notation in [1], the Lumer-Phillips theorem (3. 1 of [2]) is

refined to single parameter groups in real Banach space and real Hubert

space. The theory can be extended to complex spaces.

DEFINITION 1.

Let X be a Z?-space with norm || ||x and let [ , \ be a corresponding

semi-scalar product on X. Then the semi-scalar product [ , •] is said to

be equivalent to [ , ]i on X iff \\ \\1 and || || are equivalent norms on X.

THEOREM 1.

Let A be a linear operator with D{Λ) and R(A) both contained in a B-space

{X, II 111) such that D(A) is dense in X. Then A generates a group {Tt; — oo<t <cχ>}

in X such that {Tt; t > 0 } is a negative contractive semi-group with respect to an

equivalent norm || || iff

(1) - δ\\x\\* < lAx, x]<- ϊ\\xψ (x €Ξ D(A))

where oo > δ > ϊ > 0 and [ , ] is an equivalent scalar product consistent with || ||,

and

(2) R{I(1 -r)-A) = X R(I{1 + δ) + A) = X.

Proof.

The sufficiency of conditions (1) and (2) follows immediately from the

results in Yosida [1], pp. 250-254.

Conversely suppose that A generates a group such that | |T ί l |<^-^

(f|Ξ>0) where β > 0 . It is known that for a group \\T^\\ < Meat, where

Received June 10, 1968.
Revised July 15, 1968.
* This research was supported in part by the National Aeronautics and Space Ad-

ministration under Grant No. NGR 39-011-039 with the University of Pittsburgh.
t Presently with TRW Systems Group, Redondo Beach, California, U.S.A.

149



150 WILLIAM G. VOGT MARTIN M. EISEN GABE R. BUIS

M>1 and a can be chosen such that a > β [1], Define St = T^e-** and

define || ||2 by

||aj||2 = sup||S ta?||.

This yields an equivalent semi-scalar product and the left side of inequality

(1) with δ = a. To show the right side is also valid consider

(3) lT,e**x - x, x\ ^ l | 7 > ^ | | 2 | | * | | 2 - IM|f.

Next estimate \\Tse
βsx\\2 as follows

\\Ttee*x\\t = sup \\Ts~te<s-Vχ\\ ^ max (||&||, e^-^s\\x\\2) ^ | | s | | a .

Hence, (3) yields [Tse
βsx — x, x\ < 0 which in turn implies the right side of

(1) with T = β.

Finally (2) follows from theorem 3. 1 of [2] applied to the contraction

operators T^e^ (with respect to || ||2) and Tte
0t (with respect to || ||i).

Remark.

Theorem 1 is valid for {H, [ , }t) a Hubert space and [ , ] an equiva-

lent scalar product.

Proof.

Using the results of theorem 1, it need only be shown that there exists

a scalar product [ , ] equivalent to the scalar product [ , ]j such that

(1) holds. Define [ , •], for any group {Tt; — oo < / < oo} which is negative

with respect to || \\ί9 by

(4) [3,ld= ΓlTt3, Tty\dt.
JO

By hypothesis, WTtW^Me-P* U ^ O ) , where /3>0 and M ^ l ; hence

(5) [^^]=^(

Since [Tt] is a group, there exist constants a ̂  β and 1/fc^l such that

l |T7Ίli^(l/*)e β ί for r ^ O . By using the fact that \\Ta\\, ̂  HTΠlΓΊIαlli it

follows from (4) that

(6) [x,xl^(k*l2a)\\x\\l

We leave it to the reader to verify that [ , ] is a scalar product. The

equivalence of the two scalar products follows from (5) and (6).
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To show that an equation of the form (1) is valid we consider

\Ttx, Ttx] - lx, x] = lim j \\τsTtx, TsTtx\ds - \\τsx, T.x^ds]

= -[\τsx, Tsx\ds, (t>0).
Jo

Since lim t'^lTtX, Ttx] — [x,x]) - 2[Ax, x] the last equality implies that

(7) 2[Ax,xl=-\\x\\2

1 (χ€ΞD(A)).

Equations (5), (6), and (7) yield (1) with γ = β/M2 and δ = a\Ψ.
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