A. Orihara

Nagoya Math. J.
Vol. 34 (1969), 129-142

ON THE EISENSTEIN SERIES FOR THE PRINCIPAL CONGRUENCE SUBGROUPS

AKIO ORIHARA

Let Γ be a Fuchsian group (of finite type) acting on the upper half plane. To each parabolic cusp $\kappa_{i}(i=1, \cdots, h)$, corresponds a Eisenstein serie

$$
E_{i}(\tau, s)=\sum_{\Gamma_{i} \backslash \Gamma} y\left(\sigma_{i}^{-1} \sigma \tau\right)^{s}
$$

where Γ_{i} is the stationary subgroup of Γ with respect to κ_{i} and σ_{i} is an element of $S L(2, \boldsymbol{R})$, such that $\sigma_{i} \infty=\kappa_{i}$. (Here we denote by $y(\tau)$ the imaginary part of τ.)
Then,

$$
\mathrm{E}(\tau, s)=\left(\begin{array}{c}
E_{1}(\tau, s) \\
\vdots \\
E_{h}(\tau, s)
\end{array}\right) \text { satisfies the functional }
$$

equation:

$$
\begin{equation*}
\mathrm{E}(\tau, s)=\Phi(s) \mathrm{E}(\tau, 1-s) . \tag{*}
\end{equation*}
$$

(For details, see Kubota [1].)
In this paper, we shall give an elementary proof of the functional equation (*) in case $\Gamma=\Gamma_{N}$ (the principal congruence subgroup of Stufe N). For the explicit form of $\Phi(s)$, see Proposition 1,2 in $\S 2$ (the case $N=p^{n}$) and Theorem in 83 (general case).

§1

For a positive integer $N>1$ and a pair of integers $a=\left\{a_{1}, a_{2}\right\}$ we put

$$
\Theta\left(t ; a_{1}, a_{2}\right)=\sum_{\{m, n\} \equiv\left\{a_{1}, a_{2}\right\}(N)} e^{-\pi t|m \tau+n|^{2} / v}
$$

where $\tau=x+i y, y>0$.
Lemma 1.

[^0]\[

$$
\begin{equation*}
\Theta\left(t ; a_{1}, a_{2}\right)=\frac{1}{t N^{2}} \sum_{\left\{b_{1}, b_{2}\right\} \bmod N} e^{\frac{2 \pi i}{N}\left|a_{1}, a_{1}, b_{2}\right|} \Theta\left(\frac{1}{t N^{2}} ; b_{1}, b_{2}\right) . \tag{1}
\end{equation*}
$$

\]

Proof is omitted.
To a pair $\left\{a_{1}, a_{2}\right\}$ such that $\left(a_{1}, a_{2}, N\right)=1$, there corresponds a Eisenstein series for Γ_{N}

$$
E\left(\tau, s ; a_{1}, a_{2}\right)=\sum_{\substack{\{m, n\}=\left\{\begin{array}{l}
\left(a, 1, a_{2}\right\} \\
(m, n)=1 \\
\hline
\end{array}(N)\right.}} \frac{y^{s}}{|m \tau+n|^{2 s}} .
$$

Since $\left\{a_{1}, a_{2}\right\}$ and $\left\{-a_{1},-a_{2}\right\}$ give rise to the same Eisenstein series, there are $\frac{1}{2} N^{2} \prod_{p \mid N}\left(1-\frac{1}{p^{2}}\right)$ distinct series for $N>2$. (For $N=2$, there are three such series.)
Moreover, we put

$$
E^{*}\left(\tau, s ; a_{1}, a_{2}\right)=\sum_{\{m, n\} \equiv\left\{a_{1}, a_{2}\right\}(N)} \frac{y^{s}}{|m \tau+n|^{2 s}} .
$$

These series converge uniformly on compact sets in the upper half plane, if $\operatorname{Re} s>1$.
From the definition, we have

$$
\begin{equation*}
\int_{0}^{\infty} \Theta\left(t ; a_{1}, a_{2}\right) t^{s-1} d t=\pi^{-s} \Gamma(s) E^{*}\left(\tau, s ; a_{1}, a_{2}\right) . \tag{2}
\end{equation*}
$$

For a character $\bmod N$, such that $\chi(-1)=1$, we put

$$
\Theta(t ; a, \chi)=\sum_{\substack{(u, N)=1 \\ u \bmod N}} \overline{\chi(u)} \Theta\left(t ; u a_{1}, u a_{2}\right) .
$$

From (1), it follows that

$$
\Theta(t ; a, \chi)=\frac{1}{t N^{2}} \sum_{b \bmod N} e^{\frac{2 \pi i}{N}\left|a_{b_{1}, b_{2}} a_{2}\right|} \Theta\left(\frac{1}{t N^{2}} ; b, \bar{\chi}\right) .
$$

$E(\tau, s ; a, \chi)$ and $E^{*}(\tau, s ; a, \chi)$ are defined in the same way.
Lemma 2.

$$
\begin{array}{rlrl}
E^{*}(\tau, s ; a, \chi) & =\prod_{p \mid N}\left(1-p^{-2 s}\right) \zeta(2 s) E\left(\tau, s ; a, \chi_{0}\right), & \text { if } \chi=\chi_{0} \equiv 1 \tag{3}\\
& =L(2 s, \bar{\chi}) E(\tau, s ; a, \chi) & , & \text { if } \chi \neq \chi_{0}
\end{array}
$$

Proof. (1) If $\chi \neq \chi_{0}$, we have

$$
\begin{aligned}
E(\tau, s ; a, \chi) & =\sum_{\substack{(u, N)=1 \\
u \bmod N}} \overline{\chi(u)}\left\{\sum_{\substack{(d, N)=1 \\
d \bmod N}}\left(\sum_{d q \equiv 1(N)} q^{-2 s}\right) E\left(\tau, s ; d u a_{1}, d u a_{2}\right)\right. \\
& =\sum_{\substack{(d, N)=1 \\
d \bmod N}} \chi(d) \sum_{d q=1(N)} q^{-2 s} E(\tau, s ; a, \chi) \\
& =\sum_{(q, N)=1} \overline{\chi(q)} q^{-2 s} E(\tau, s ; a, \chi) . \\
& =L(2 s, \bar{\chi}) E(\tau, s ; a, \chi)
\end{aligned}
$$

(2) Let $\chi=\chi_{0}$. If $N=p_{1}^{k_{1}} \cdots p_{r_{r}}^{k_{r}}$ is a factorization into prime factors, then we have

$$
\begin{aligned}
\sum_{(q, N)=1} q^{-2 s} & =\sum_{i_{1}, \cdots, i_{j}}(-1)^{j} \sum_{p_{i_{1}} \cdots p_{i_{j}} \mid q} q^{-2 s} \\
& =\zeta(2 s) \sum_{i_{1}, \cdots, i_{j}}(-1)^{j}\left(p_{i_{1},} \cdots p_{i_{j}}\right)^{-2 s} .
\end{aligned}
$$

Since, as in (1), we have

$$
E^{*}\left(\tau, s ; a, \chi_{0}\right)=\left(\sum_{(q, N)=1} q^{-2 s}\right) E\left(\tau, s ; a, \chi_{0}\right)
$$

we obtain the desired result.
Remark. As is seen from the definition,

$$
\sum_{\chi} E(\tau, s ; a, \chi)=E\left(\tau, s ; a_{1}, a_{2}\right)
$$

Therefore, the functional equation of $E\left(\tau, s ; a_{1}, a_{2}\right)$ can be obtained from that of $E(\tau, s ; a, \chi)$.
$\$ 2$
In this section, we shall prove the functional equation of $E(\tau, s ; a, \chi)$ in case $N=p^{n}$.

Since $E(\tau, s ; a, \chi)$ is a χ-homogeneous function, i.e.

$$
E(\tau, s ; u a, \chi)=\chi(u) E(\tau, s ; a, \chi), \quad\left(u a=\left\{u a_{1}, u a_{2}\right\}, \quad(u, p)=1\right)
$$

we may restrict ourselves to the case $a \in I$, where

$$
I=\left\{\left(a_{1}, a_{2}\right) ; a_{1}=1 \text { or } a_{2}=1, a_{1} \equiv 0(p)\right\}
$$

It is easy to see that, for $a, b \in I$,

$$
\langle a, b\rangle=\left|\begin{array}{l}
a_{1}, a_{2} \\
b_{1}, b_{2}
\end{array}\right| \equiv 0\left(p^{k}\right) \text { if and only if } a \equiv b\left(p^{k}\right)(1 \leqq k \leqq n)
$$

1) The case $\chi=x_{0}$
(a) Let $n \geqq 2$. Then, for $a \in I$, we have from (1)'

$$
\begin{aligned}
& \Theta\left(t ; a, \chi_{0}\right)-\frac{1}{p} \sum_{a^{\prime} \in I, a^{\prime} \equiv a\left(p^{n-1}\right)} \Theta\left(t ; a^{\prime}, \chi_{0}\right) \\
&=\frac{1}{t p^{2 n}} \sum_{b} c(b) \Theta\left(\frac{1}{t p^{2 n}} ; b, \chi_{0}\right) .
\end{aligned}
$$

If $b \equiv 0(p), e^{\frac{2 \pi i}{p^{n}}\langle a, b>}-\frac{1}{p}{a^{\prime} \in I, a^{\prime} \equiv a\left(\rho^{n-1}\right)} e^{\frac{2 \pi i}{p^{n}}<a, b>}=0$. Therefore, $c(b)=0$.
For $b \in I$, we have

If $b \not \equiv a\left(p^{n-1}\right)$, then, as we noted above,

$$
\left\langle a^{\prime}, b\right\rangle=p^{k} u \quad(k<n-1, \quad(u, p)=1) .
$$

Therefore we have

$$
\begin{aligned}
& \sum_{(t, p)=1, t \bmod p^{n}} e^{\frac{2 \pi i}{p^{n}}<a^{\prime}, b>t}=\sum_{(t, p)=1, t \bmod p^{n}} e^{\frac{2 \pi i}{p^{r}} t} \\
= & \#\left\{t ; t \equiv 1\left(p^{r}\right)\right\} \sum_{(t, p)=1, t \bmod p^{r}} e^{\frac{2 \pi i}{p^{r} t} t}=0,
\end{aligned}
$$

because ${ }_{(t, N)=1, t \bmod N} e^{\frac{2 \pi i}{N} t}=\mu(N)$ (Möbius function) and $r=n-k \geqq 2$.
Hence, $c(b)=0$.
If $b \equiv a\left(p^{n-1}\right)$, we have

$$
\sum_{a^{\prime} \equiv a\left(p^{n^{n} 1}\right), a^{\prime} \in I} e^{\frac{2 \pi i}{p^{n}}<a^{\prime}, b>t}=\sum_{a^{\prime} \equiv b\left(p^{n-1}\right), a^{\prime} \in I} e^{\frac{2 \pi i}{p^{n}<a^{\prime}, b>t}}=\sum_{v \bmod p} e^{\frac{2 \pi i}{p} v}=0 .
$$

Therefore

$$
\begin{aligned}
c(b) & =\sum_{(t, p)=1, t \bmod p^{n}} e^{\frac{2 \pi i}{p^{n}<a, b>t}}=p^{n}-p^{n-1} \quad \text { if } a=b \\
& =\sharp\{t ; t \equiv 1(p)\} \sum_{(t, p)=1, t \bmod p} e^{\frac{2 \pi i}{p} t}=-p^{n-1} \text { if } a \neq b .
\end{aligned}
$$

Thus we have proved the following formula:
($1^{\prime \prime}$)

$$
\begin{aligned}
& \Theta\left(t ; a, \chi_{0}\right)-\frac{1}{p}{ }_{a^{\prime} \in I, I} \sum_{a^{\prime} \equiv a\left(p^{n-1}\right)} \Theta\left(t ; a^{\prime}, \chi_{0}\right) \\
= & \frac{1}{t p^{n}}\left\{\Theta\left(\frac{1}{t p^{2 n}} ; a, \chi_{0}\right)-\frac{1}{p_{a^{\prime} \in I, I}} \sum_{a^{\prime} \equiv a\left(p^{n-1}\right)} \Theta\left(\frac{1}{t p^{2 n}} ; a^{\prime}, \chi_{0}\right)\right\} .
\end{aligned}
$$

Now we denote by $E_{n}(\tau, s ; a, \chi)$ the Eisenstein series for $\Gamma_{p n}$. Then, it is easy to see that

$$
\sum_{a^{\prime} \in I, a^{\prime} \equiv a\left(p^{n-1}\right)} E_{n}^{*}\left(\tau, s ; a^{\prime}, \chi_{0}\right)=E_{n-1}^{*}\left(\tau, s ; a, \chi_{0}\right)
$$

We put

$$
G(s)=\pi^{-s} \Gamma(s) \zeta(2 s)\left(1-p^{-2 s}\right)\left\{E_{n}\left(\tau, s ; a, \chi_{0}\right)-\frac{1}{p} E_{n-1}\left(\tau, s ; a, \chi_{0}\right)\right\}
$$

In view of (2), (3) and ($1^{\prime \prime}$), we have

$$
\begin{aligned}
G(s)= & \int_{1 / p^{n}}^{\infty}\left\{\Theta\left(t ; a, \chi_{0}\right)-\frac{1}{p} \sum_{a^{\prime} \in I, I} \sum_{a^{\prime} \equiv a\left(p^{n-1}\right)} \Theta\left(t ; a^{\prime}, \chi_{0}\right)\right\} t^{s-1} d t \\
& +p^{n(1-2 s)} \int_{1 / p^{n}}^{\infty}\left\{\Theta\left(t ; a, \chi_{0}\right)-\frac{1}{p} \sum_{a^{\prime}} \Theta\left(t ; a, \chi_{0}\right)\right\} t^{-s} d t
\end{aligned}
$$

From this immediately follow the analytic continuation of $G(s)$ into the whole s-plane and the functional equation

$$
\begin{equation*}
G(s)=p^{n(1-2 s)} G(1-s) \tag{4}
\end{equation*}
$$

(b) In case $n=1$, a similar argument shows that

$$
\Theta\left(t ; a, \chi_{0}\right)-\frac{1}{p+1} \sum_{a^{\prime} \in I} \Theta\left(t ; a^{\prime}, \chi_{0}\right)=\frac{1}{t p}\left\{\Theta\left(\frac{1}{t p^{2}} ; a, \chi_{0}\right)-\frac{1}{p+1} \sum_{a^{\prime} \in I} \Theta\left(\frac{1}{t p^{2}} ; a^{\prime}, \chi_{0}\right) .\right.
$$

Therefore, as in (a), we can prove that

$$
G(s)=\pi^{-s} \Gamma(s) \zeta(2 s)\left(1-p^{-2 s}\right)\left\{E_{1}\left(\tau, s ; a, \chi_{0}\right)-\frac{1}{p+1} E(\tau, s)\right\}
$$

is an entire function and satisfies the functional equation

$$
\begin{equation*}
G(s)=p^{1-2 s} G(1-s) \tag{5}
\end{equation*}
$$

where

$$
E(\tau, s)=\sum_{(m, n)=1} \frac{y^{s}}{|m \tau+n|^{2 s}}
$$

is the Eisenstein series for the full modular group.
As is well known, $E(\tau, s)$ is meromorphic in the whole s-plane, and satisfies the functional equation

$$
\begin{equation*}
E(\tau, s)=\frac{\sqrt{\pi} \Gamma\left(s-\frac{1}{2}\right)}{\Gamma(s)} \frac{\zeta(2 s-1)}{\zeta(2 s)} E(\tau, 1-s) . \tag{6}
\end{equation*}
$$

From (4), (5) and (6), we can obtain the following result.
Proposition 1. Let $\boldsymbol{E}_{n}\left(\tau, s ; \chi_{0}\right)$ be the column of the $p^{n}+p^{n-1}$ functions $E_{n}\left(\tau, s ; a, \chi_{0}\right),(a \in I)$.

Then, $\boldsymbol{E}_{n}\left(\tau, s ; \chi_{0}\right)$ is a meromorphic function in the whole s-plane and satisfies the following functional equation:

$$
\boldsymbol{E}_{n}\left(\tau, s ; \chi_{0}\right)=\Phi_{n}(s) \boldsymbol{E}_{n}\left(\tau, 1-s ; \chi_{0}\right)
$$

where $\Phi_{n}(s)=\varphi(s)\left\langle c^{(n)}(a, b)\right\rangle$

$$
\text { (matrix of degree } p^{n}+p^{n-1} \text {) }
$$

$$
\begin{array}{rlrl}
\varphi(s) & =\frac{\sqrt{\pi} \Gamma\left(s-\frac{1}{2}\right)}{\Gamma(s)} \frac{\zeta(2 s-1)}{\zeta(2 s)} & & \\
c^{(n)}(a, b) & =\frac{p-1}{p^{2 s}-1} p^{(n-1)(1-2 s)} & & \text { if } a=b \\
& =p^{-n+r+1} \frac{p^{2 s-1}-1}{p^{2 s}-1} p^{r(1-2 s)} & & \text { if } a \equiv b\left(p^{r}\right) \\
& & (0 \leqq r \leqq n-1) .
\end{array}
$$

Proof. As is easily seen,

$$
\begin{aligned}
& c^{(n)}(a, b)= \begin{cases}p^{n(1-2 s)} \frac{1-p^{2 s-2}}{1-p^{-2 s}}\left(1-\frac{1}{p}\right)+\frac{1}{p} c^{(n-1)}(a, b) & (n \geqq 2) \\
p^{1-2 s} \frac{1-p^{2 s-2}}{1-p^{-2 s}}\left(1-\frac{1}{p+1}\right)+\frac{1}{p+1} & (n=1)\end{cases} \\
& \text { if } \quad a=b \\
& =\left\{\begin{array}{l}
-p^{n(1-2 s)-1} \frac{1-p^{2 s-2}}{1-p^{-2 s}}+\frac{1}{p} c^{(n-1)}(a, b) \\
-\frac{p^{1-2 s}}{p+1} \frac{1-p^{2 s-2}}{1-p^{-2 s}}+-\frac{1}{p+1}
\end{array}\right. \\
& \text { if } \quad p^{n-1} \| a-b \\
& =\frac{1}{p} c^{(n-1)}(a, b) \quad \text { if } \quad p^{k} \| a-b \quad(0 \leqq k \leqq n-2) .
\end{aligned}
$$

Hence, by induction on n, follows the desired result.
2) The case $\chi \neq x_{0}$
a) Let χ be a primitive character.

For $a=\left\{a_{1}, a_{2}\right\}$, such that $\left(a_{1}, a_{2}\right)=p^{k} u(k \geqq 1,(u, p)=1)$, we have

$$
\begin{aligned}
& \quad \Theta(t ; a, \chi)=\sum_{\substack{(u, p)=1 \\
u \bmod p^{r}}} \chi(u)\left(\sum_{t \equiv 1\left(p^{r}\right)} \chi(t)\right) \Theta\left(t ; u a_{1}, u a_{2}\right)=0 . \\
& (r=n-k<n)
\end{aligned}
$$

Therefore, from (1), it follows that

$$
\Theta(\dot{t} ; a, \chi)=\frac{1}{t p^{2 n}} \sum_{\substack { b \in I \\
\begin{subarray}{c}{(u, p)=1 \\
u \bmod p^{n}{ b \in I \\
\begin{subarray} { c } { (u , p) = 1 \\
u \operatorname { m o d } p ^ { n } } }\end{subarray}} e^{\frac{2 \pi i}{p^{n}}<a, b>u} \overline{\chi(u)} \Theta\left(\frac{1}{t p^{2 n}} ; b, \bar{\chi}\right) .
$$

We put $S_{x}=\sum_{u \bmod p^{n}} e^{\frac{2 \pi i}{p^{n} u}} \chi(u)$ (Gauss sum). Then,

$$
\begin{equation*}
\Theta(t ; a, \chi)=\frac{1}{t p^{2 n}} \sum_{b \in I} S_{\bar{x}} \chi(\langle a, b\rangle) \Theta\left(\frac{1}{t p^{2 n}} ; b, \bar{\chi}\right) \tag{7}
\end{equation*}
$$

By (2), (3) and (7), we obtain

$$
\begin{equation*}
\pi^{-s} \Gamma(s) L(2 s, \bar{\chi}) E(\tau, s ; a, \chi)=\int_{1 / p^{n}}^{\infty} \Theta(t ; a, \chi) t^{s-1} d t \tag{8}
\end{equation*}
$$

$$
+\frac{S_{\bar{\chi}}}{p^{2 n_{s}}} \sum_{b \in I} \chi(\langle a, b\rangle) \int_{1 / \rho^{n}}^{\infty} \Theta(t ; b, \bar{\chi}) t^{-s} d t
$$

As is easily seen, we have

$$
\sum_{b \in I} \chi(\langle a, b\rangle) \overline{\chi\left(\left\langle b, a^{\prime}\right\rangle\right)}=p^{n} \delta_{a, a^{\prime}} \quad\left(a, a^{\prime} \in I\right)
$$

Moreover,

$$
\left|S_{x}\right|^{2}=p^{n} \text { and } \bar{S}_{x}=S_{\bar{x}} \text { if } \chi(-1)=1
$$

Therefore, from (8), immediately follows the functional equation

$$
\begin{equation*}
G(s, a, \chi)=p^{-2 n s} S_{\bar{x}} \sum_{b \in I} \chi(\langle a, b\rangle) G(1-s, b, \bar{\chi}) \tag{9}
\end{equation*}
$$

where

$$
G(s, a, \chi)=\pi^{-s} \Gamma(s) L(2 s, \bar{\chi}) E(\tau, s ; a, \chi) .
$$

By the functional equation of Dirichlet L-function

$$
H(s, \chi)=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) L(s, \chi)=S_{\chi} p^{-n s} H(1-s, \bar{\chi}),
$$

(9) can be written as follows.

Let $\boldsymbol{E}(\tau, s ; \chi)$ be the column of the $p^{n}+p^{n-1}$ functions $E(\tau, s ; a, \chi)$.

Then,

$$
\boldsymbol{E}(\tau, s ; \chi)=\Phi(s, \chi) \boldsymbol{E}(\tau, 1-s, \bar{\chi})
$$

where

$$
\Phi(s, \chi)=p^{-\frac{n}{2}} \frac{\sqrt{\pi} \Gamma\left(s-\frac{1}{2}\right)}{\Gamma(s)} \frac{L(2 s-1, \bar{\chi})}{L(2 s, \bar{\chi})}\left\langle p^{-\frac{n}{2}} \chi(\langle a, b\rangle)\right\rangle
$$

b) We denote by r the integer $\min \left\{m ; \chi(v)=1\right.$, if $\left.v \equiv 1 \bmod p^{m}\right\}$.

In a) we considered the case $r=n$. Let $r \leqq n-1$.
First we note

$$
\begin{aligned}
\sum_{t \bmod p^{n}} \chi(t) e^{\frac{2 \pi i}{p^{n}} c t} & =\overline{\chi\left(c^{\prime}\right)} S_{x} p^{n-r} \text { if } c=c^{\prime} p^{n-r},\left(c^{\prime}, p\right)=1 \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

Since

$$
\sum_{a^{\prime} \equiv a\left(p^{n-1}\right), a^{\prime} \in I} e^{\frac{2 \pi i}{p^{n}}<a^{\prime}, b>u}=e^{\frac{2 \pi i}{p^{n}<a, b>u}} \sum_{v \bmod p} e^{\frac{2 \pi i}{p} v}=0, \text { if } a \equiv b(p),
$$

$$
\begin{align*}
\Theta(t ; a, \chi) & -\frac{1}{p}{\underset{\substack{a^{\prime} \\
a^{\prime} \in I}}{ } \sum_{\substack{\left(p^{n-1}\right)}} \Theta\left(t ; a^{\prime}, \chi\right)}=\frac{1}{t p^{2 n}} p^{n-r} S_{\bar{x}} \sum_{\substack{b=a \\
b \in I}} \sum_{\left(p^{n-r}\right)} \chi\left(\frac{\langle a, b\rangle}{p^{n-r}}\right) \Theta\left(\frac{1}{t p^{2 n}} ; b, \bar{\chi}\right) . \tag{10}
\end{align*}
$$

On the other hand, we have

$$
\begin{aligned}
& \sum_{\substack{b=a \\
b \in I}} \sum_{\left(p^{n-r)}\right.} \chi\left(\frac{\langle a, b\rangle}{p^{n-r}}\right) \sum_{\substack{b^{\prime} \equiv \\
b^{\prime} \in I}} \sum_{i\left(p^{n-1}\right)} \Theta\left(t ; b^{\prime}, \chi\right) \\
& =\sum_{\substack{b=a \\
b \in I}} \sum_{\left(p^{n}-r\right)}\left\{\sum_{\substack{b^{\prime} \equiv b=\left(p^{n-1)} \\
b^{\prime} \in I\right.}} \chi\left(\frac{\left\langle a, b^{\prime}\right\rangle}{p^{n-r}}\right)\right\} \Theta(t ; a, \chi)=0 .
\end{aligned}
$$

Therefore, (10) is unchanged, if $\Theta(t ; b, \chi)$ is replaced by

$$
\Theta(t ; b, \chi)-\frac{1}{p} \sum_{\substack{b^{\prime} \equiv b \\ b^{\prime} \in I}} \sum_{p^{n-1}} \Theta\left(t ; b^{\prime}, \chi\right) .
$$

We put

$$
G(s, a, \chi)=\pi^{-s} \Gamma(s) L(2 s, \bar{\chi})\left\{E_{n}(\tau, s ; a, \chi)-\frac{1}{p} E_{n-1}(\tau, s ; a, \chi)\right\} .
$$

Then, since

$$
\sum_{\substack{a^{\prime} \equiv a\left(p^{n-1}\right) \\ a^{\prime} \in I}} E_{n}(\tau, s ; a, \chi)=E_{n-1}(\tau, s ; a, \chi)
$$

(we note that $r \leqq n-1$), we have

$$
\begin{aligned}
& \left.\Theta\left(t ; b^{\prime}, \bar{x}\right)\right\} t^{-s} d t \\
& =p^{-2 n s} p^{n-r} S_{\bar{\chi}}^{\substack{b=0 \\
b \in I}} \sum_{\substack{\left.p^{n-r}\right)}} \chi\left(\frac{\langle a, b\rangle}{p^{n-r}}\right) G(1-s, b, \bar{\chi}) .
\end{aligned}
$$

(see the remark below)
From this and the result in a, we obtain the following
Proposition 2.

$$
\boldsymbol{E}_{n}(\tau, s ; \chi)=\Phi_{n}(s, \chi) \boldsymbol{E}_{n}(\tau, 1-s ; \bar{\chi})
$$

where

$$
\left.\begin{array}{l}
\Phi_{n}(s, \chi)=\varphi(s, \chi)\left\langle c^{(n)}(a, b)\right\rangle \\
\varphi(s, \chi)= \\
p^{-r} \frac{\sqrt{\pi} \Gamma\left(s-\frac{1}{2}\right)}{\Gamma(s)} \frac{L(2 s-1, \bar{\chi})}{L(2 s, \bar{\chi})} \\
c^{(n)}(a, b)
\end{array}\right)=p^{(1-2 s)(n-r-k)-k \chi\left(\frac{\langle a, b\rangle}{p^{n-r-k}}\right)} \begin{aligned}
& \text { if } p^{n-r-k} \|\langle a, b\rangle(0 \leqq k \leqq n-r) \\
& =0 \text { otherwise. }
\end{aligned}
$$

Remark. Let $a \equiv b\left(p^{n-r}\right)$. Then,

$$
\begin{aligned}
\sum_{\substack{c \equiv a\left(p^{n-r)} \\
c \in I\right.}} \chi\left(\frac{\langle a, c\rangle}{p^{n-r}}\right) \overline{\chi\left(\frac{\langle b, c\rangle}{p^{n-r}}\right)} & =p^{r}-p^{r-1} & & \text { if } a=b \\
& =-p^{r-1} & & \text { if } p^{n-1} \| a-b \\
& =0 & & \text { otherwise. }
\end{aligned}
$$

Let $N=p_{1}^{n_{1}} \cdots p_{\lambda}^{n_{\lambda}}$ be a factorization into distinct primes.
We put

$$
N=N_{i} p_{i}^{n_{i}} \quad(1 \leqq i \leqq \lambda)
$$

Let us choose a set of integers $\left\{d_{1}, \cdots, d_{\lambda}\right\}$, such that

$$
d_{i} \equiv 0\left(N_{i}\right), \equiv 1\left(p_{i^{n}}^{n_{i}}\right) \quad(1 \leqq i \leqq \lambda) .
$$

Then, the mapping

$$
\boldsymbol{Z}^{\lambda} \ni\left\{a_{1}, \cdots, a_{\lambda}\right\} \longrightarrow a=\sum_{i=1}^{\lambda} d_{i} a_{i} \in \boldsymbol{Z}
$$

induces a ring-isomorphism of $\boldsymbol{Z} /(N)$ onto $\prod_{i=1}^{\lambda} \boldsymbol{Z} /\left(p_{i}^{n_{i}}\right)$.
It is obvious that

$$
\begin{equation*}
\left(a^{(1)}, a^{(2)}, N\right)=1 \quad \text { if and only if } \quad\left(a_{i}^{(1)}, a_{i}^{(2)}, p_{i}\right)=1 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
(u, N)=1 \quad \text { if and only if } \quad\left(u_{i}, p_{i}\right)=1 \quad(1 \leqq i \leqq \lambda) \tag{2}
\end{equation*}
$$

Let $I=I_{1} \times \cdots \times I_{\lambda}$, where $I_{i}=\left\{\left(a_{1}, a_{2}\right) \bmod p_{i_{i}}^{n_{i}} ; a_{1}=1\right.$ or $\left.a_{2}=1, a_{1} \equiv 0\left(p_{i}\right)\right\}$. We denote by $\boldsymbol{V}(I)$ the space of functions on I.

Then

$$
\boldsymbol{V}(I)=\boldsymbol{V}\left(I_{1}\right) \otimes \cdots \otimes \boldsymbol{V}\left(I_{\lambda}\right) .
$$

For a character $\chi \bmod N$, there exist characters $\chi_{i} \bmod p_{i}^{n_{i}}$ such that

$$
\chi(a)=\prod_{i=1}^{\lambda} \chi_{i}\left(a_{i}\right) .
$$

Let

$$
\begin{aligned}
r_{2}=r\left(\chi_{2}\right) & \neq 0 & & (1 \leqq i \leqq \mu) \\
& =0 & & (\mu+1 \leqq i \leqq \lambda) .
\end{aligned}
$$

Then there exists a primitive character $\bar{\chi} \bmod \tilde{N}=\prod_{i=1}^{\mu} p_{i}^{r_{i}}$, such that

$$
\chi(a)=\bar{\chi}(a) \quad \text { if } \quad(a, N)=1 .
$$

We put

$$
\boldsymbol{T}=\boldsymbol{T}_{1} \otimes \cdots \otimes \boldsymbol{T}_{\lambda}
$$

where \boldsymbol{T}_{\imath} is a linear transformation in $\boldsymbol{V}_{i}=\boldsymbol{V}\left(I_{i}\right)$, defined by

$$
\begin{aligned}
& \boldsymbol{T}_{i} f(a)=f(a)-\frac{1}{p_{i}} \sum_{a^{\prime} \in I_{i},} \sum_{a^{\prime} \equiv a\left(p_{i} i_{i}\right)} f\left(a^{\prime}\right) \text { if } n_{i}>1 \text { and } n_{i}>r_{i} \\
& =f(a)-\frac{1}{p_{i}+1} \sum_{a^{\prime} \in I_{i}} f\left(a^{\prime}\right) \text { if } n_{i}=1 \text { and } r_{i}=0 \\
& =f(a) \quad \text { if } n_{i}=r_{i} .
\end{aligned}
$$

Moreover, we define an endomorphism of $\boldsymbol{V}=\boldsymbol{V}(I)$ by

$$
\boldsymbol{A} f(a)=\sum_{b \in I} A(a, b) f(b)
$$

$$
A(a, b)=\sum_{\substack{(u, N)=1 \\ u \bmod N}} \overline{\chi(u)} e^{\frac{2 \pi i}{N}<a, b>u}
$$

We have

$$
\boldsymbol{A}=c \boldsymbol{A}_{1} \otimes \cdots \otimes \boldsymbol{A}_{\lambda}\left(c=\bar{S}_{\tilde{x}} N \tilde{N}^{-1}\right)
$$

where

$$
\begin{aligned}
A_{i}(a, b) & =\left\{\begin{array}{cl}
x_{i}\left(\frac{\langle a, b\rangle}{\left.p_{i}^{n_{i}-r_{i}}\right)}\right. & \text { if } a \equiv b\left(p_{\left.i^{n_{i}}-r_{i}\right)}\right. \\
0 & \text { otherwise } \quad(1 \leqq i \leqq \mu)
\end{array}\right. \\
& =\left\{\begin{array}{cc}
\left(1-\frac{1}{p_{i}}\right) \overline{\tilde{\chi}\left(p_{i}^{n_{i}}\right)} & \text { if } a=b \\
-\frac{1}{p_{i}} \overline{\tilde{\chi}\left(p_{i}^{\left.n_{i}\right)}\right.} & \text { if } a \neq b, a \equiv b\left(p_{i^{i}}^{n_{i}-1}\right) \quad(\mu<i \leqq \lambda) \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

For, we have

$$
\begin{aligned}
A(a, b) & =\prod_{i=1}^{\lambda} \sum_{\substack{\left(u_{i}, p_{i}\right)=1 \\
u_{i} \bmod p_{i} i_{i}}} \overline{\bar{x}_{i}\left(u_{i}\right)} e^{\frac{2 \pi i}{p_{i} n_{i}}<a_{i} b_{i}>u_{i} c_{i}} \quad\left(c_{i}=\frac{d_{i}}{N_{i}}\right) \\
& =\prod_{i=1}^{\mu} p_{i}^{n_{i}-r_{i} \chi_{i}\left(c_{i}\right) S_{\bar{x}_{i}}} \chi_{i}\left(\frac{\left\langle a_{i}, b_{i}\right\rangle}{p_{i}^{n_{i}-r_{i}}}\right) \\
& \times \prod_{i=\mu+1}^{\lambda} \sum e^{\frac{2 \pi i}{p_{i}}<a_{i}, b_{i}>u_{i}} \quad \text { if } p_{i^{2}-r_{i}}^{n_{i}} \| a-b \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

and

$$
\prod_{i=1}^{\mu} \chi_{i}\left(c_{i}\right) S_{\bar{x}_{i}}=\prod_{i=\mu+1}^{\lambda} \overline{\tilde{\chi}\left(p_{i}^{n_{i}}\right)} \bar{S}_{\bar{\chi}} .
$$

From the results obtained in $\S 2$, we have

$$
\begin{align*}
\boldsymbol{T}_{i} \boldsymbol{A}_{i} & =\boldsymbol{A}_{i} \boldsymbol{T}_{i}, \quad \boldsymbol{A}_{i} \boldsymbol{A}_{i}^{*} \boldsymbol{T}_{i}=p_{i}^{r_{i}} \boldsymbol{T}_{i} \quad(1 \leqq i \leqq \lambda) \\
& =\tilde{\chi}\left(p_{i}^{n_{i}}\right) \boldsymbol{T}_{i}, \quad \text { for } \quad i>\mu \tag{11}\\
& =\boldsymbol{A}_{i} \quad, \quad \text { for } \quad i \leqq \mu .
\end{align*}
$$

Therefore we have

$$
\boldsymbol{T} \boldsymbol{A}=\boldsymbol{A} \boldsymbol{T} \quad \text { and } \quad \boldsymbol{A} \boldsymbol{A}^{*} \boldsymbol{T}=N^{2} \boldsymbol{T} .
$$

Lemma. For $f(a, s, \chi)=\pi^{-s} \Gamma(s) E^{*}(\tau, s ; a, \chi)$, we have

$$
\begin{equation*}
\boldsymbol{T} f(\cdot, s, \chi)=N^{-2 s} \boldsymbol{A} \boldsymbol{T} f(\cdot, 1-s, \bar{\chi}) . \tag{12}
\end{equation*}
$$

Proof. From (1'), we have

$$
\boldsymbol{T} \Theta(t ; \cdot, \chi)=\frac{1}{t N^{2}} \sum_{b \bmod N}\left(\boldsymbol{T} e^{\frac{2 \pi i}{N}\langle\cdot, b\rangle}\right) \Theta\left(\frac{1}{t N^{2}} ; b, \bar{\chi}\right) .
$$

If $b_{i} \equiv 0\left(p_{i}\right)$, we have

$$
\begin{aligned}
\boldsymbol{T} e^{\frac{2 \pi i}{N}\langle\cdot, b>} & =0 & & \text { (in case } \left.n_{i}>r_{i}\right) \\
\Theta(t ; b, \chi) & =0 & & \text { (in case } \left.n_{i}=r_{i}\right) .
\end{aligned}
$$

Hence, $\quad \boldsymbol{T} \Theta(t ; \cdot, \chi)=\frac{1}{t N^{2}} \sum_{b \in I} \boldsymbol{T}\left(\sum_{(u, N)=1} \overline{\chi(u)} e^{\frac{2 \pi i}{N}<\cdot, b>u}\right) \Theta\left(\frac{1^{s i}}{t N^{2}} ; b, \bar{\chi}\right)$

$$
=\frac{1}{t N^{2}} \boldsymbol{T} \boldsymbol{A} \Theta\left(\frac{1}{t N^{2}} ; \cdot, \bar{\chi}\right) .
$$

Therefore

$$
\begin{aligned}
& \boldsymbol{T} f(\cdot, s, \chi)=\int_{0}^{\infty} \boldsymbol{T} \Theta(t ; \cdot, \chi) t^{s-1} d t \\
= & \int_{1 / N}^{\infty} \boldsymbol{T} \Theta(t ; \cdot, \chi) t^{s-1} d t+N^{-2 s} \boldsymbol{A} \int_{1 / N}^{\infty} \boldsymbol{T} \Theta(t ; \cdot, \bar{\chi}) t^{-s} d t \\
= & N^{-2 s} \boldsymbol{A} \boldsymbol{T} f(\cdot, 1-s, \bar{\chi}) .
\end{aligned}
$$

Let

$$
\begin{aligned}
\boldsymbol{V}_{i}^{(k)} & =\left\{f \in \boldsymbol{V}_{i} ; f\left(a^{\prime}\right)=f(a)\right. & \text { if } & \left.a^{\prime} \equiv a\left(p_{i}^{k}\right)\right\} \quad\left(r_{i} \leqq k \leqq n_{i}\right) \\
& =\{0\} & & \left(k<r_{i}\right) .
\end{aligned}
$$

We denote by \boldsymbol{P}_{k} the projection operator on $\boldsymbol{V}_{i}^{(k)} \Theta \boldsymbol{V}_{i}^{(k-1)}$. Then, for $f \in \boldsymbol{V}$, we have

$$
\begin{equation*}
\sum_{k_{i}=r_{i}}^{n_{i}} \boldsymbol{P}_{k_{1} \cdots k_{\lambda}} f=f \tag{13}
\end{equation*}
$$

where

$$
\boldsymbol{P}_{k_{1} \cdots k_{\lambda}}=\boldsymbol{P}_{k_{1}} \otimes \cdots \otimes \boldsymbol{P}_{k_{\lambda}}
$$

Lemma.

$$
\begin{equation*}
\boldsymbol{P}_{k_{1} \cdots k_{\lambda}} E_{N}^{*}(\tau, s ; \cdot, \chi)=N^{\prime} N^{-1} \prod_{k_{i}=0}\left(p_{i}+1\right)^{-1}\left(1-\frac{\chi\left(p_{i}\right)}{p_{i}^{2 s}}\right) \boldsymbol{T}^{(N)} E_{N /}^{*}(\tau, s ; \cdot, \chi) . \tag{14}
\end{equation*}
$$

Proof. First we note that

$$
\begin{align*}
\boldsymbol{P}_{k} f(a) & =\frac{1}{c_{k}} \sum_{a^{\prime} \equiv a\left(p^{k}\right)} f\left(a^{\prime}\right)-\left\{\begin{array}{lll}
\frac{1}{c_{k-1}} \sum_{a^{\prime} \equiv a\left(p^{k-1}\right)} f\left(a^{\prime}\right) & \text { for } & k>r \\
0 & \text { for } & k=r
\end{array}\right. \tag{15}\\
& =\frac{1}{c_{k}} \boldsymbol{T}^{(p k)} \sum_{a^{\prime} \equiv a\left(p^{k}\right)} f\left(a^{\prime}\right)
\end{align*}
$$

($c_{k}=p^{n-k}$ or $p^{n}+p^{n-1}$ according as $k>0$ or $k=0$).
We have only to prove the following.
1°
$2^{\circ}=E_{N \prime}^{*}(\tau, s ; a, \chi)$ if $p \mid N$.
In case $(p, N)=1$, we have

$$
\begin{aligned}
& =E_{N \prime}^{*}(\tau, s ; a, \chi)-\sum_{u} \overline{\tilde{\chi}(u)} \sum_{\substack{\{m, n) \equiv p \\
\left(c=p^{-1}\left(N^{\prime}\left(N^{\prime}\right)\right)\right.}} \sum_{\substack{\left.(1), a^{(2)}\right\}(N)}} \frac{y^{s}}{|m \tau+n|^{2 s}} \\
& =\left(1-\frac{\overline{\tilde{\chi}(p)}}{p^{2 s}}\right) E_{N(}^{*}(\tau, s ; a, \chi) .
\end{aligned}
$$

For the proof of 2°, it is sufficient to note that

$$
\begin{aligned}
&\{m, n\} \equiv\left\{u a^{(1)}, u a^{(2)}\right\}\left(p^{k-1}\right) \text { if and only if }\{m, n\} \equiv\left\{u v b^{(1)}, u v b^{(2)}\right\}\left(p^{k}\right) \\
& \text { for some } b=\left\{b^{(1)}, b^{(2)}\right\} \equiv a\left(p^{k-1}\right) \text { and } v \equiv 1\left(p^{k-1}\right) .
\end{aligned}
$$

Theorem. $E(\tau, s ; a, \chi)$ is a meromorphic function in the whole s-plane and satisfies the following functional equation.

$$
E(\tau, s ; \cdot, \chi)=\frac{\sqrt{\pi} \Gamma\left(s-\frac{1}{2}\right)}{\Gamma(s)} \frac{L(2 s-1, \overline{\tilde{\chi}})}{L(2 s, \tilde{\tilde{\chi}})} \Phi^{(1)} \otimes \cdots \otimes \Phi^{(\lambda)} E(\tau, 1-s ; \cdot, \bar{\chi})
$$

where, for

$$
i \leqq \mu, \Phi^{(i)}(a, b)=\chi_{i}\left(\frac{\langle a, b\rangle}{p_{i}^{k}}\right) p_{i}^{(1-2 s) k-n+k} \text { if } p_{i}^{k} \| a-b
$$

$$
(0 \leqq k \leqq n-r)
$$

$$
=0 \quad \text { otherwise }
$$

$$
\text { for } \quad i>\mu, \Phi^{(i)}(a, b)=\left(\tilde{\chi}\left(p_{i}\right) p_{i}^{2 s-1}\right)^{1-n} \frac{p-1}{\tilde{\chi}\left(p_{i}\right) p_{i}^{2 s}-1} \text {, if } a=b
$$

$$
\begin{aligned}
& =p_{i}{ }^{k-n+1} \frac{\tilde{\chi}\left(p_{i}\right) p_{i}{ }^{2 s-1}-1}{\tilde{\chi}\left(p_{i}\right) p_{i}{ }^{2 s}-1}\left(\tilde{\chi}\left(p_{i}\right) p_{i}{ }^{2 s-1}\right)^{-k} \\
& \quad \text { if } p_{i}^{k} \| a-b \quad(0 \leqq k \leqq n-1) .
\end{aligned}
$$

Proof. We put $\gamma(s, \chi)=\pi^{-s} \Gamma(s) L(2 s, \overline{\tilde{\chi}})$.
Since $L(s, \chi)=\prod_{\mu<i \leq i}\left(1-\frac{\tilde{\chi}\left(p_{i}\right)}{p_{i}^{s}}\right) L(s, \tilde{\chi})$, we have, from (12), (13) and (14),

$$
\begin{aligned}
& \quad \gamma(s, \chi) E(\tau, s ; \cdot, \chi) \prod_{\mu<i \leqq k}\left(1-\frac{\overline{\tilde{\chi}\left(p_{i}\right)}}{p_{i}^{2 s}}\right) \\
& =\sum_{k_{i}=r_{i}}^{n_{i}} N^{-1} N^{\prime} \prod_{k_{i}=0}\left(1-\frac{\overline{\tilde{\chi}\left(p_{i}\right)}}{p_{i}^{2 s}}\right)\left(p_{i}+1\right)^{-1} \boldsymbol{T}^{(N)}\left\{\pi^{-s} \Gamma(s) E_{N /}(\tau, s ; \cdot, \chi)\right\} \\
& =\sum_{k_{i}} \prod_{k_{i}=0}\left(1-\frac{\overline{\tilde{\chi}\left(p_{i}\right)}}{p_{i}^{2 s}}\right)\left(1-\frac{\tilde{\chi}\left(p_{i}\right)}{p_{i}^{2-2 s}}\right)^{-1} N^{\prime-2 s} \boldsymbol{A}^{(N)} \boldsymbol{P}_{k_{1} \cdots k_{\lambda}}\left\{\pi^{s-1} \Gamma(1-s) E_{N}(\tau, 1-s ; \cdot, \chi)\right\} \\
& \text { Since } \quad \frac{r(1-s, \bar{\chi})}{r(s, \chi)}=\frac{\sqrt{\pi} \Gamma\left(s-\frac{1}{2}\right)}{\Gamma(s)} \frac{L(2 s-1, \overline{\tilde{\chi}})}{L(2 s, \tilde{\chi})} S_{\chi} \tilde{N}^{2 s-2},
\end{aligned}
$$

we have

$$
E(\tau, s ; \cdot, \chi)=\frac{\sqrt{\pi} \Gamma\left(s-\frac{1}{2}\right)}{\Gamma(s)} \frac{L(2 s-1, \overline{\tilde{x})}}{L(2 s, \overline{\tilde{x}})} \Phi^{(1)} \otimes \cdots \otimes \Phi^{(\lambda)} E(\tau, 1-s ; \cdot, \bar{\chi})
$$

where

$$
\begin{aligned}
& \Phi^{(i)}=\sum_{k=r_{i}}^{n_{i}} p_{i}^{(2 s-2) r_{i}} p_{i}^{(1-2 s)} \boldsymbol{A}^{(k)} \boldsymbol{P}_{k}(1 \leqq \\
&=\sum_{k=1}^{n_{i}} p_{i}^{(1-2 s) k}\left(\frac{1-\tilde{\chi}\left(p_{i}\right) p_{i}-2-2 s}{1-\bar{\chi}\left(p_{i}\right) p_{i}{ }^{-2 s}}\right) \overline{\tilde{\chi}\left(p_{i}\right)^{k}} \boldsymbol{P}_{k}+\boldsymbol{P}_{0} \\
&(\mu<i \leqq \lambda) .
\end{aligned}
$$

By (11) and (15), $\Phi^{(i)}$ can be written as stated in our theorem. (cf. the proof of prop. 1,2)

Literature

[1] T. Kubota , Elementary theory of Eisenstein series (in Japanese), Tokyo University, 1968.

[^0]: Received June 3, 1968

