S. Yamashita Nagoya Math. J. Vol. 34 (1969), 77–87

ON LEVEL CURVES OF HARMONIC AND ANALYTIC FUNCTIONS ON RIEMANN SURFACES

SHINJI YAMASHITA¹⁾

1. In this note we shall denote by R a hyperbolic Riemann surface. Let HP'(R) be the totality of harmonic functions u on R such that every subharmonic function |u| has a harmonic majorant on R. The class HP'(R) forms a vector lattice under the lattice operations:

 $u \lor v = (\text{the least harmonic majorant of } \max(u, v));$

$$u \wedge v = -(-u) \vee (-v)$$

for u and v in HP'(R). Following Parreau [4] we shall call an element u in HP'(R) quasi-bounded on R if

$$\lim_{a\to+\infty}(Mu)\,\wedge\,\alpha=Mu,$$

where α 's are positive numbers and

$$Mu = u \vee 0 - u \wedge 0.$$

A subharmonic function v on R is said to be quasi-bounded on R if v is of the form:

$$v=v^{\wedge}-p,$$

where v^{-} is a quasi-bounded harmonic function on R and $p \ge 0$ is a Green's potential on R ([8]).

For any finite real-valued function f on R and for any finite real number α , we denote by $L(f; \alpha)$ the set of points z in R such that $f(z) = \alpha$ holds. We shall call $L(f; \alpha)$ the α -level set or the α -level curve of f on R. Especially, if f = |g|, where g is an analytic function (i.e., pole-free) on R, then we shall call $L(|g|; \alpha)$ the α -level curve of an analytic function

Received November 1, 1967

¹) The present author wishes to express his warmest thanks to Prof. Fumi-Yuki Maeda for kind suggestions and valuable conversations.

g on R. For $\alpha > 0$, the α -level curve of an analytic function g on R is the counter image of the circle of radius α by g.

For any closed subset F of R and for any fixed point t in R, we denote

$$1_F(t) = \inf_{a} s(t),$$

where s runs over all non-negative superharmonic functions on R such that $s \ge 1$ quasi-everywhere (quasi überall) on F ([1]).

A function $\Phi(r)$ defined for $r \ge 0$ is said to be strongly convex if $\Phi(r)$ is a non-negative monotone non-decreasing convex function defined for $r \ge 0$ satisfying the condition:

$$\lim_{r\to+\infty} \varPhi(r)/r = +\infty.$$

First we shall prove the following

THEOREM. Let v be a non-negative continuous subharmonic function on a hyperbolic Riemann surface R and assume that v has a harmonic majorant on R. Then the following three conditions are mutually equivalent.

- (1) v is quasi-bounded on R.
- (2) There exists a strongly convex function Φ depending on v such that

$$\lim_{\alpha \to +\infty} \Phi(\alpha) \, \mathbf{1}_{L(\boldsymbol{v}; \, \boldsymbol{\alpha})}(t) = 0$$

for some (and hence for any) point t in R.

(3) $\lim_{\alpha \to +\infty} \inf \alpha \, \mathbf{1}_{L(v; \alpha)}(t) = 0$

for some (and hence for any) point t in R.

In section 3 we shall prove the following extension of Nakai's theorem $([3])^{2}$ as an application of Theorem.

COROLLARY 1. Let R be a hyperbolic Riemann surface. For an element u in HP'(R), the following three conditions are mutually equivalent.

(4) u is quasi-bounded on R.

(5) There exist two strongly convex functions Φ and Ψ depending on u such that

78

²⁾ Cf. Lemma 1 in this note.

(5.1)
$$\lim_{\alpha \to +\infty} \Phi(\alpha) \, \mathbf{1}_{L(u;\alpha)}(t) = 0$$

and

(5. 2)
$$\lim_{\beta \to -\infty} \Psi(-\beta) \mathbf{1}_{L(u;\beta)}(t) = 0$$

for some (and hence for any) point t in R.

(6) The following
(6. 1)
$$\lim_{\alpha \to +\infty} \inf \alpha \, \mathbb{1}_{L(u;\alpha)}(t) = 0$$

and

(6. 2)
$$\lim_{\beta \to -\infty} \inf (-\beta) 1_{L(u;\beta)}(t) = 0$$

are valid for some (and hence for any) point t in R.

In section 4 we shall be concerned mainly with α -level curves of analytic functions on R. The following corollary will play a fundamental role.

COROLLARY 2. Let $\psi(r)$ be a non-negative finite real-valued continuous function defined for a < r < b (where $a = -\infty$ and $b = +\infty$ are admissible) and $\psi(r) \rightarrow +\infty$ strictly increasingly as $r \searrow a$ (resp. $r \nearrow b$). Let v(z) be a continuous function defined on a hyperbolic Riemann surface R such that a < v(z) < b and the function $\psi(v)$ is a quasi-bounded subharmonic function on R. Then there exists a strongly convex function Φ depending on $\psi(v)$ such that

(7) $\lim_{\beta \to a} \Phi(\psi(\beta)) \, \mathbf{1}_{L(v;\,\beta)}(t) = 0$ (resp. $\lim_{\beta \to b} \Phi(\psi(\beta)) \, \mathbf{1}_{L(v;\,\beta)}(t) = 0$)

for some (and hence for any) point t in R.

2. To prove Theorem we shall need the following two lemmas.

LEMMA 1. (Nakai's theorem ([3])) Let u be a non-negative harmonic function on a hyperbolic Riemann surface R. Then the following three conditions are mutually equivalent.

- (8) u is quasi-bounded on R.
- (9) $\lim_{\alpha \to +\infty} \alpha \, \mathbf{1}_{L(u;\alpha)}(t) = 0$

for some (and hence for any) point t in R.

(10) $\lim_{\alpha \to +\infty} \inf \alpha \, \mathbf{1}_{L(u\,;\alpha)}(t) = 0$

for some (and hence for any) point t in R.

LEMMA 2. Let v be a non-negative quasi-bounded subharmonic function on a hyperbolic Riemann surface R. Then there exists a strongly convex function Φ depending on v such that the subharmonic function $\Phi(v)$ is quasi-bounded on R.

Proof. First, by Lemma 2 in [8], there exists a strongly convex function Φ depending on v such that the subharmonic function $\Phi(v)$ has a harmonic majorant on R. Next, we define a function $\varphi(r)$ for $-\infty < r < +\infty$ by the following:

$$arphi(r) = \left\{ egin{array}{cc} arphi(r) & ext{for } 0 \leq r, \ arphi(0) & ext{for } r < 0. \end{array}
ight.$$

Then the subharmonic function v and the convex function $\varphi(r)$ satisfy the conditions in Lemma 3 in [8]. Therefore by (E) of Lemma 3 in [8], we can conclude that the least harmonic majorant of the subharmonic function $\varphi(v) = \Phi(v)$ is quasi-bounded on R, or equivalently, the subharmonic function $\Phi(v)$ is quasi-bounded on R.

Proof of Theorem.

Proof of $(1) \Longrightarrow (2)$. By Lemma 2 there exists a strongly convex function φ depending on v such that the subharmonic function $w = \varphi(v)$ is quasi-bounded on R, that is, w is of the form:

$$w=w^{\star}-p,$$

where w^{\wedge} is a non-negative quasi-bounded harmonic function on R and $p \ge 0$ is a Green's potential on R. Obviously, $w \le w^{\wedge}$.

For a non-negative finite real-valued function g on R and for a positive finite constant α , we shall denote by $S(g; \alpha)$ the set of points z in R such that $g(z) \ge \alpha$ holds.

Obviously the sets $S(w; \alpha)$ and $S(w^{*}; \alpha)$ are closed subsets of R. On the other hand, the level set $L(w; \alpha)$ (resp. $L(w^{*}; \alpha)$) is closed and hence by Satz 4.8 in [1] we have

$$1_{L(w;a)}(t) = 1_{S(w;a)}(t)$$
 (resp. $1_{L(w^{*};a)}(t) = 1_{S(w^{*};a)}(t)$)

80

for any point t in $R - S(w^{\uparrow}; \alpha)$. This means that

(11)
$$\lim_{\alpha \to +\infty} \alpha \, \mathbf{1}_{L(w;\alpha)}(t) = \lim_{\alpha \to +\infty} \alpha \, \mathbf{1}_{S(w;\alpha)}(t)$$
$$(\text{resp. } \lim_{\alpha \to +\infty} \alpha \, \mathbf{1}_{L(w^{\wedge};\alpha)}(t) = \lim_{\alpha \to +\infty} \alpha \, \mathbf{1}_{S(w^{\wedge};\alpha)}(t))$$

for an arbitrary fixed point t in R, if either the right hand side or the left hand side of (11) has the meaning, since $R = \bigcup_{\alpha>0} (R - S(w^{\wedge}; \alpha))$.

By $w \le w^{\uparrow}$, we have $S(w; \alpha) \subset S(w^{\uparrow}; \alpha)$ and from this it follows that

$$0 \leq 1_{S(w;a)}(t) \leq 1_{S(w^{*};a)}(t)$$

or

(12)
$$0 \leq \alpha \, \mathbf{1}_{S(\boldsymbol{w};\,\boldsymbol{a})}(t) \leq \alpha \, \mathbf{1}_{S(\boldsymbol{w}^{\star};\,\boldsymbol{a})}(t)$$

for any point t in R.

Now we apply Lemma 1 to the non-negative quasi-bounded harmonic function w^{-} . Then by (9) in Lemma 1, we have

(13) $\lim_{\alpha \to +\infty} \alpha \, \mathbf{1}_{L(w^{\uparrow}; \, \alpha)}(t) = 0$

for some (and hence for any) point t in R. By (11), (12) and (13) we have

$$\lim_{\alpha \to +\infty} \alpha \, \mathbf{1}_{L(w; \, \alpha)}(t) = 0$$

or

(14)
$$\lim_{\alpha \to +\infty} \alpha \, \mathbf{1}_{L(\boldsymbol{\varrho}(\boldsymbol{v}); \, \boldsymbol{\alpha})}(t) = 0$$

for some (and hence for any) point t in R.

Since Φ is strictly increasing from sufficiently large r on, we have $L(\Phi(v); \alpha) = L(v; \Phi^{-1}(\alpha))$ for sufficiently large α . Therefore, by exchanging α in (14) for $\Phi(\alpha)$, we have

$$\lim_{\alpha \to +\infty} \Phi(\alpha) \, \mathbf{1}_{L(v;\,\alpha)}(t) = 0$$

for some (and hence for any) point t in R.

Proof of (2) \Longrightarrow (3) is obvious since $\Phi(\alpha) > \alpha$ for sufficiently large $\alpha > 0$. Proof of (3) \Longrightarrow (1). Let $v = v^{-1} - q$ be the F. Riesz decomposition of v on R, where v^{\wedge} is the least harmonic majorant of v on R and $q \ge 0$ is a Green's potential on R. Obviously q is continuous. By the same reason as in the proof of $(1) \Longrightarrow (2)$, we have

(15)
$$\lim_{\alpha \to +\infty} \inf \left(\alpha/2 \right) \mathbf{1}_{L(\boldsymbol{v};\boldsymbol{\alpha}/2)}(t) = \lim_{\alpha \to +\infty} \inf \left(\alpha/2 \right) \mathbf{1}_{S(\boldsymbol{v};\boldsymbol{\alpha}/2)}(t)$$
$$(\text{resp. } \liminf_{\alpha \to +\infty} \alpha \mathbf{1}_{L(\boldsymbol{v}^{\wedge};\boldsymbol{\alpha})}(t) = \liminf_{\alpha \to +\infty} \alpha \mathbf{1}_{S(\boldsymbol{v}^{\wedge};\boldsymbol{\alpha})}(t))$$

for an arbitrary fixed point t in R, if either the right hand side or the left hand side of (15) has the meaning.

Next we prove

(16)
$$\lim_{\alpha \to +\infty} (\alpha/2) \, \mathbf{1}_{S(q;\alpha/2)}(t) = 0$$

or

(16)'
$$\lim_{\alpha \to +\infty} \alpha \, \mathbf{1}_{S(q; \alpha)}(t) = 0.$$

To prove (16)' we take $\alpha_0 > 0$ so large that a fixed point x is in $R - S(q; \alpha)$ for any $\alpha > \alpha_0$. Let $\alpha > \alpha_0$ and $R_{x,\alpha}$ be the connected component of the open set $R - S(q; \alpha)$ containing the point x. Then we have $\bigcup_{\alpha > \alpha_0} R_{x,\alpha} = R$. For any point t in $R_{x,\alpha}$ we have

$$q(t) \ge q_{x,\alpha}(t) \ge \alpha \mathbf{1}_{S(q;\alpha)}(t) \ge 0,$$

where $q_{x,\alpha}$ is the greatest harmonic minorant of q in the domain $R_{x,\alpha}$, since by the definition of $1_{S(q;\alpha)}$,

$$q(t) \ge \alpha \, \mathbf{1}_{S(q; \mathbf{a})}(t) \ge 0$$

for any point t in $R_{x,\alpha}$. On the other hand,

$$q_{x,\alpha}(t) \searrow 0$$
 as $\alpha \rightarrow +\infty$,

for any point t in R since q is a Green's potential on R and $\{R_{x,\alpha}\}_{\alpha>\alpha_0}$ exhausts R. Therefore we have

 $\lim_{\alpha \to +\infty} \sup \alpha \, \mathbf{1}_{\mathcal{S}(q; \, \alpha)}(t) = 0$

for any point t in R, or we have (16)'.

Now by $v^* = v + q$ we obtain

 $S(v^{\dagger}; \alpha) \subset S(v; \alpha/2) \cup S(q; \alpha/2).$

From this it follows that

$$0 \leq \mathbf{1}_{S(\boldsymbol{v}^{\star};\,\boldsymbol{a})}(t) \leq \mathbf{1}_{S(\boldsymbol{v};\boldsymbol{a}/2)}(t) + \mathbf{1}_{S(\boldsymbol{q};\,\boldsymbol{a}/2)}(t)$$

or

(17)
$$0 \le \alpha \, \mathbf{1}_{S(\boldsymbol{v}^{*}; \, \boldsymbol{\sigma})}(t) \le 2[(\alpha/2) \, \mathbf{1}_{S(\boldsymbol{v}; \, \boldsymbol{\sigma}/2)}(t) + (\alpha/2) \, \mathbf{1}_{S(\boldsymbol{q}; \, \boldsymbol{\sigma}/2)}(t)]$$

for any point t in R. Assume (3) in the theorem. Then

(18)
$$\liminf_{\alpha \to +\infty} (\alpha/2) \, \mathbf{1}_{L(\boldsymbol{v}; \alpha/2)}(t) = 0$$

for some (and hence for any) point t in R. Therefore by (15), (16), (17) and (18), we have

$$\lim_{\alpha \to +\infty} \inf \alpha \, \mathbf{1}_{L(v^{\uparrow}; \, \alpha)}(t) = 0$$

for some (and hence for any) point t in R. We apply Lemma 1 to the non-negative harmonic function v^{\uparrow} . Then v^{\uparrow} is quasi-bounded on R and therefore v is a quasi-bounded subharmonic function. We have completely proved the theorem.

Remark. By applying Lemma 2 to a non-negative continuous quasibounded subharmonic function v repeatedly and using $(1) \Longrightarrow (2)$ of Theorem, we have the following: There exists a sequence $\{\Phi_m\}_{m=1}^{\infty}$ of strongly convex functions depending on v such that for any fixed number m, we have

$$\lim_{\alpha \to +\infty} \left[\varPhi_m(\varPhi_{m-1}(\cdot \cdot \cdot (\varPhi_1(\alpha)) \cdot \cdot \cdot)) \right] \mathbf{1}_{L(v;\alpha)}(t) = 0$$

for some (and hence for any) point t in R.

3. In this section we give

Proof of Corollary 1.

Proof of (4) \Longrightarrow (5). Since *u* is quasi-bounded on *R*, $u \lor 0$ as well as $-u \land 0$ is quasi-bounded on *R*. By inequalities

$$\max(u,0) \leq u \lor 0$$

and

$$\max(-u,0) \leq (-u) \lor 0 = -u \land 0,$$

the subharmonic functions $\max(u, 0)$ and $\max(-u, 0)$ are quasi-bounded on

R. We apply $(1) \Longrightarrow (2)$ of Theorem to max (u, 0) and max (-u, 0). Then there exist two strongly convex functions Φ and Ψ depending on max (u, 0)and max (-u, 0) respectively (and hence depending on u) such that

(19)
$$\lim_{\alpha \to +\infty} \Phi(\alpha) \, \mathbb{1}_{L(\max(u, 0); \alpha)}(t) = 0$$

and

(20)
$$\lim_{\alpha \to +\infty} \Psi(\alpha) \, \mathbf{1}_{L(\max(-u,0);\alpha)}(t) = 0$$

for some (and hence for any) point t in R. On the other hand,

(21)
$$L(\max(u,0); \alpha) = L(u; \alpha)$$

and

(22)
$$L(\max(-u,0);\alpha) = L(-u;\alpha) = L(u;\beta)$$

for $\alpha > 0$, where we put $\beta = -\alpha$. By (19) and (21) (resp. (20) and (22)) we have (5. 1) (resp. (5. 2)).

Proof of $(5) \Longrightarrow (6)$ is obvious.

Proof of $(6) \Longrightarrow (4)$. Combining (21) and (6.1) (resp. (22) and (6.2)) and using Theorem, $(3) \Longrightarrow (1)$, we can easily show that the subharmonic function max (u, 0) (resp. max (-u, 0)) is quasi-bounded on R. Hence $u \lor 0$ as well as $(-u) \lor 0$ is a quasi-bounded harmonic function on R. Therefore $u = u \lor 0 + u \land 0 = u \lor 0 - (-u) \lor 0$ is quasi-bounded on R. This completes the proof of Corollary 1.

4. Before proving Corollary 2, we shall give some examples of functions v and ϕ stated in Corollary 2.

EXAMPLE 1. Let $H_p(R)$ (for p > 0) be the Hardy class on R, that is, the totality of analytic functions f on R such that every subharmonic function $|f|^p$ has a harmonic majorant on R. Then, by Theorem 2 in [8], an analytic function f on R belongs to $H_p(R)$ if and only if the subharmonic function $|f|^p$ has a quasi-bounded harmonic majorant on R, or equivalently, $|f|^p$ is a quasi-bounded subharmonic function on R. In this case,

v = |f|

and

$$\psi(r) = \left\{ egin{array}{ccc} 0 & ext{for} & a < r < 0, \\ r^p & ext{for} & 0 \leq r < +\infty \end{array}
ight.$$

where a is an arbitrary negative number. Obviously $\psi(r) \nearrow + \infty$ as $r \nearrow + \infty$.

We have: There exists a strongly convex function Φ such that

$$\lim_{\beta \to +\infty} \Phi(\beta^p) \mathbf{1}_{L(|f|;\beta)}(t) = 0$$

for some (and hence for any) point t in R.

EXAMPLE 2. By Theorem 1 in [8], an analytic function f on R is in the Smirnov class S(R) (cf., e.g., [8]) if and only if the subharmonic function $\log^+|f|$ has a quasi-bounded harmonic majorant on R, or equivalently, $\log^+|f|$ is a quasi-bounded subharmonic function on R. In this case,

$$v = |f|$$

and

$$\psi(r) = \left\{ egin{array}{ccc} 0 & ext{for} & a < r < 1, \ & \log r & ext{for} & 1 \leq r < +\infty, \end{array}
ight.$$

where a is an arbitrary negative number. We have $\psi(r) \nearrow + \infty$ as $r \nearrow + \infty$.

EXAMPLE 3. Let f be an analytic function on R such that w = f(z) takes only the values in the angular domain: $|\arg w| < \delta$ $(0 < \delta < \pi)$. Then, for any constant p, where 0 , the function <math>f is in the Hardy class $H_p(R)$. This can be proved as follows.³) By

$$f(z) = |f(z)| e^{i \arg f(z)}$$

we have

$$|f(z)|^p = \frac{\Re[(f(z))^p]}{\cos(p \arg f(z))} < \frac{\Re[(f(z))^p]}{\cos p\delta}$$

if $0 . Hence f is in <math>H_p(R)$ so that the subharmonic function $|f|^p$ is quasi-bounded on R for any p, 0 . Therefore this is a special case of Example 1.

EXAMPLE 4. Let f(z) = u(z) + iw(z) be an analytic function in the open unit disc U: |z| < 1 such that the real part u(z) of f(z) can be extended continuously to the closed disc \overline{U} : $|z| \leq 1$. Then, by Smirnov's theorem

³⁾ V.I. Smirnov [6] proved the case: $\delta = \pi/2$ (cf. [5]).

([6], cf., e.g., [2], p. 401, Theorem 7), the analytic function e^{if} is in the Hardy class $H_p(U)$ for any p > 0, or $|e^{if}|^p = e^{-pw}$ is a quasi-bounded sub-harmonic function on U for any p > 0. In this case,

v = w

and

$$\psi(r) = e^{-pr} \quad \text{for } -\infty < r < +\infty.$$

Obviously $\psi(r) \nearrow + \infty$ as $r \searrow - \infty$.

EXAMPLE 5⁴) A bounded Jordan domain G in the plane with rectifiable boundary is said to be a Smirnov domain if for some (and hence for any) one to one conformal mapping $\varphi(z)$ from the open unit disc U: |z| < 1onto G, the harmonic function $\log |\varphi'|$ is represented as the Poisson integral of its boundary values on the unit circle: |z| = 1, or equivalently, it is a quasi-bounded harmonic function on U ([6], cf., e.g., [2] and [5]). We know that a bounded Jordan domain G in the plane with rectifiable boundary is a Smirnov domain if and only if for some (and hence for any) one to one conformal mapping φ from U onto G, the analytic function $1/\varphi'$ is in the class S(U) (cf., e.g., [7]), or equivalently, the subharmonic function $\log^+|1/\varphi'|$ is quasi-bounded on U. In this case,

$$v = |\varphi'|$$

and

$$\psi(r) = \log^+(1/r)$$
 for $0 < r < +\infty$.

We have $\psi(r) \nearrow + \infty$ as $r \searrow 0$.

We give

Proof of Corollary 2. This is an immediate consequence of $(1) \Longrightarrow (2)$ of Theorem. In fact, by (2) in Theorem, we obtain a strongly convex function φ depending on the quasi-bounded subharmonic function $\psi(v)$ such that

$$\lim_{\alpha \to +\infty} \Phi(\alpha) \, \mathbb{1}_{L(\phi(\boldsymbol{v}); \, \alpha)}(t) = 0$$

86

⁴⁾ Tumarkin and Havinson [7] defined Smirnov domains of finite connectivity and obtained some analogous results as in the case of simply connected Smirnov domains.

for some (and hence for any) point t in R. Let β be near a (resp. b). Then by property of the function $\psi(r)$ we have the assertion.

References

- C. Constantinescu and A. Cornea, Ideale Ränder Riemannsher Flächen; Springer, Berlin, (1963).
- [2] G.M. Goluzin, Geometric theory of functions of a complex variable; 2nd ed., Izd. NAUKA, Moscow, (1966), (Russian), German transl. of the 1st ed., Deutscher Verlag der Wissenschaften, Berlin, (1957).
- [3] M. Nakai, On a criterion of quasi-boundedness of positive harmonic functions; Proc. Japan Acad., 41 (1965), 215–217.
- [4] M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann; Ann. Inst. Fourier, 3 (1952), 103-197.
- [5] I.I. Privalov, Boundary behaviours of analytic functions; GTTI, Moscow and Leningrad, (1950), (Russian), German transl., Deutscher Verlag der Wissenschaften, Berlin, (1956).
- [6] V.I. Smirnov, Sur les formules de Cauchy et de Green et quelques problèmes qui s'y rattachent; Izv. AN SSSR, ser. mat., 3 (1932), 337-372.
- [7] G.C. Tumarkin and S. Ya. Havinson, Analytic functions in multiply connected domains of V.I. Smirnov's class (of class S); Izv. AN SSSR, ser. mat., 22 (1958), 379–386, (Russian).
- [8] S. Yamashita, On some families of analytic functions on Riemann surfaces; Nagoya Math. Journ., 31 (1968), 57–68.

Department of Mathematics Faculty of Science Hiroshima University