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ON LEVEL CURVES OF HARMONIC AND ANALYTIC

FUNCTIONS ON RIEMANN SURFACES

SHINJI YAMASHITAD

1. In this note we shall denote by R a hyperbolic Riemann surface.

Let HPr(R) be the totality of harmonic functions u on R such that every

subharmonic function \u\ has a harmonic majorant on R. The class

HPr(R) forms a vector lattice under the lattice operations:

u V v = (the least harmonic majorant of max(u,v));

« Λ t ι = - ( - « ) V ( - n )

for u and v in HP'(R). Following Parreau [4] we shall call an element u

in HPr(R) quasi-bounded on R if

lim (Mu) Λ a = Mu,

cc-»+oo

where α's are positive numbers and

Mu = u V 0 — uAO.

A subharmonic function v on R is said to be quasi-bounded on R if v

is of the form:
v = vΛ — p ,

where yΛ is a quasi-bounded harmonic function on R and p;>0 is a

Green's potential on R ([8]).

For any finite real-valued function f on R and for any finite real

number a, we denote by L(f; a) the set of points z in R such that f(z) =

a holds. We shall call L{f; a) the α-level set or the «-level curve of / on

R. Especially, if / = \g\, where g is an analytic function (i.e., pole-free)

on R, then we shall call L{\g\; a) the α-level curve of an analytic function

Received November 1, 1967
χ) The present author wishes to express his warmest thanks to Prof. Fumi-Yuki Maeda

for kind suggestions and valuable conversations.

77



78 SHINJI YAMASHITA

g on R. For a > 0, the α-level curve of an analytic function g on R is

the counter image of the circle of radius a by g.

For any closed subset F of R and for any fixed point t in R, we denote

MO = inf 5(0,
s

where s runs over all non-negative superharmonic functions on R such that

s I> 1 quasi-everywhere (quasi iiberall) on F ([1]).

A function Φ{r) defined for r ^ O is said to be strongly convex if Φ{r)

is a non-negative monotone non-decreasing convex function defined for r^O

satisfying the condition:

lim Φ{r)lr = + oo.
r->-foo

First we shall prove the following

THEOREM. Let υ be a non-negative continuous subharmonic function on a hyper-

bolic Riemann surface R and assume that v has a harmonic majorant on R. Then

the following three conditions are mutually equivalent.

(1) v is quasi-bounded on R.

(2) There exists a strongly convex function Φ depending on υ such that

lim Φ(α) 1 ^ . ^ ( 0 = 0

for some [and hence for any) point t in R.

(3) lim inf a lLCv; Λβ) = 0

for some (and hence for any) point t in R.

In section 3 we shall prove the following extension of Nakai's theorem

([3])2) as an application of Theorem.

COROLLARY 1. Let R be a hyperbolic Riemann surface. For an element u

in HPr{R), the following three conditions are mutually equivalent.

(4) u is quasi-bounded on R.

(5) There exist two strongly convex functions Φ and Ψ depending on u such

that

2) Cf. Lemma 1 in this note.
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(5.1) lim Φ(«)li(U ; α )(ί)=0
α->+oo

and

(5.2) lim Ψ(-β)lI<u.β)(t)=O

for some (and hence for any) point t in R.

(6) The following

(6. 1) lim inίa 1L(U.At) = 0

and

(6.2) lim inΠ-β) 1^^(0 = 0
/3-> — oo

are valid for some [and hence for any) point t in R.

In section 4 we shall be concerned mainly with <x-level curves of

analytic functions on R. The following corollary will play a fundamental

role.

COROLLARY 2. Let ψ(r) be a non-negative finite real-valued continuous func-

tion defined for a<r <b (where a = — oo and b = + oo are admissible) and

φ{r)->+oo strictly increasingly as r\a (resp. r/b). Let v{z) be a continuous

function defined on a hyperbolic Riemann surface R such that a < υ{z) < b and the

function ψ{v) is a quasi-bounded subharmonic function on R. Then there exists a

strongly convex function Φ depending on ψ[v) such that

(7) limΦ(ψ(β))lLίv;ββ) = 0

(resp. lim Φ(ψ(β)) 1^,. w(f) = 0)
p—>b

for some (and hence for any) point t in R.

2. To prove Theorem we shall need the following two lemmas.

LEMMA 1. (NakaVs theorem ([3])) Let u be a non-negative harmonic function

on a hyperbolic Riemann surface R. Then the following three conditions are

mutually equivalent.

(8) u is quasi-bounded on R.

(9) lim αlz*«ϊflO(*) = 0
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for some [and hence for any) point t in R.

(10) lim infer 1^.^(0 = 0

for some {and hence for any) point t in R.

LEMMA 2. Let υ be a non-negative quasi-bounded subharmonic function on a

hyperbolic Riemann surface R. Then there exists a strongly convex function Φ de-

pending on v such that the subharmonic function Φ{v) is quasi-bounded on R.

Proof First, by Lemma 2 in [8], there exists a strongly convex func-

tion Φ depending on v such that the subharmonic function Φ{v) has a

harmonic majorant on R. Next, we define a function <p(r) for — oo <r < -j-oo

by the following:

Φ{r) for O^r,
φ(r) =

[ Φ(0) for r < 0.

Then the subharmonic function υ and the convex function φ{r) satisfy the

conditions in Lemma 3 in [8]. Therefore by (E) of Lemma 3 in [8], we

can conclude that the least harmonic majorant of the subharmonic function

φ{υ) = Φ{v) is quasi-bounded on R, or equivalently, the subharmonic function

Φ{υ) is quasi-bounded on R.

Proof of Theorem,

Proof of (1) = > (2). By Lemma 2 there exists a strongly convex func-

tion Φ depending on v such that the subharmonic function w — Φ(v) is

quasi-bounded on R, that is, w is of the form:

w = w* —

where wΛ is a non-negative quasi-bounded harmonic function on R and

φ^0 is a Green's potential on R. Obviously, w^Lw*.

For a non-negative finite real-valued function g on R and for a posi-

tive finite constant a, we shall denote by S{g; a) the set of points z in R

such that g{z)^a holds.

Obviously the sets S(w.; a) and S{wΛ a) are closed subsets of R. On

the other hand, the level set L(w; a) (resp. L{wΛ a)) is closed and hence

by Satz 4. 8 in [1] we have

l2*«;;oθ(*) = ls(i*; )(*) ( r e S P U(n>* ;«)(*) = ls(u;-
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for any point t in R — S{wΛ a). This means that

(11) lim a lLiw^β) = Hm a lSiw ; β )(ί)
<X->-foo <*-»+oo

(resp. lim alLCw-;«β) = lim α l ^ ^
α—»-{-oo <χ—>+oo

for an arbitrary fixed point t in R, if either the right hand side or the

left hand side of (11) has the meaning, since R — U {R — S{w* a)).
α>0

By w^wΛ, we have S(w; a) c S(wΛ a) and from this it follows that

or

(12) & m t ; ^

for any point t in 7?.

Now we apply Lemma 1 to the non-negative quasi-bounded harmonic

function wr. Then by (9) in Lemma 1, we have

(13) lim αV; β ) (ί) = 0
<χ-»+oo

for some (and hence for any) point t in R. By (11), (12) and (13) we

have

lim α l i ( w . β ) ( 0 = 0

or

(14) lim alUΦ(υy}aβ) =0

for some (and hence for any) point t in R.

Since Φ is strictly increasing from sufficiently large r on, we have

L{Φ(v); a) = L(v; Φ'^a)) for sufficiently large a. Therefore, by exchanging

a in (14) for Φ{a), we have

lim Φ(a)lL(v.^(t)=0
ct->+oo

for some (and hence for any) point t in R.

Proof of (2) = > (3) is obvious since Φ(a) > a for sufficiently large a > 0.

Proof of (3) = > (1). Let v = vΛ — q be the F. Riesz decomposition
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of v on R, where vΛ is the least harmonic majorant of v on R and

is a Green's potential on R. Obviously q is continuous. By the same

reason as in the proof of (1) = > (2), we have

(15) lim inf {a 12) lL{v;φβ) = ϋnα inf (α/2) lSo;«/2)U)
<χ—>-j-cx) <χ--»-J-*oo

(resp. lim inf alLiv* y^{t) = lim inf α ls(»A;«)(0)

for an arbitrary fixed point t in R, if either the right hand side or the

left hand side of (15) has the meaning.

Next we prove

(16) lim (α/2)l S C f f ϊ Λ / 2 ) (/)=0

or

(16)' lim alS(q;a)(t)=0.

To prove (16)' we take a0 > 0 so large that a fixed point x is in R — S{q%> a)

for any a>a0. Let a > a0 and i?^,a be the connected component of the

open set R — S(q; a) containing the point x. Then we have U RXί0L = R.
α>αo

For any point / in RXiϋ. we have

q(t) > qxM) ^ « 1 ^ . β )(ί) ̂  0,

where g^fa is the greatest harmonic minorant of q in the domain i?^,α, since

by the definition of 1S( 9 . α),

for any point t in ^^, a . On the other hand,

&*.•(*) \ 0 as α->+oo,

for any point / in R since ^ is a Green's potential on R and {i?α;,α}<x>ot

exhausts R. Therefore we have

lim sup α l S ( ? ; β ) ( ί ) = 0

for any point t in R, or we have (16)'.

Now by vΛ — v Λ- q we obtain

S{v*;a)aS{v;al2) U S{q; a/2).
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From this it follows that

O^ls(t;A; <»)(£) ̂ l-S(t;;«/2)(0 + ls(«; α/2)(0

or

(17) 0^als(v*;*)(t)<2[(al2)lsCv;«/2)(t) + (α/2)lscί;β/2)(0]

for any point t in R. Assume (3) in the theorem. Then

(18) lim inf (α/2) l ^ ^ ί O = 0
α-^+oo

for some (and hence for any) point t in R. Therefore by (15), (16), (17)

and (18), we have

lim inf alL(v*;aβ) = 0
α-»+oo

for some (and hence for any) point t in R. We apply Lemma 1 to the

non-negative harmonic function υA. Then vΛ is quasi-bounded on R and

therefore v is a quasi-bounded subharmonic function. We have completely

proved the theorem.

Remark. By applying Lemma 2 to a non-negative continuous quasi-

bounded subharmonic function υ repeatedly and using (1) = > (2) of Theo-

rem, we have the following: There exists a sequence [Φm]^Li of strongly

convex functions depending on υ such that for any fixed number m, we

have

lim \Φn{Φm^{ (ΦM) . . . ) ) ] li(p ;•)(*)= 0
α-»+oo

for some (and hence for any) point t in R.

3. In this section we give

Proof of Corollary 1.

Proof of (4) :=> (5). Since u is quasi-bounded on R, w V 0 as well as

— u A 0 is quasi-bounded on R. By inequalities

,0)^u V 0

and

max(— M , 0 ) ^ ( — w) V 0 = - M Λ 0 ,

the subharmonic functions max(^,0) and max(—w,0) are quasi-bounded on
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R. We apply (1) = > (2) of Theorem to max(#,0) and max(— u,0). Then

there exist two strongly convex functions Φ and Ψ depending on max(^,0)

and max(—u,0) respectively (and hence depending on u) such that

(19) lim Φ(a) lL(max(u,oy, β ) (ί) = 0

oc-^+oo

and

(20) l im ¥(α)lL(maicC_u>oγ><ίβ) = 0

for some (and hence for any) point t in R. On the other hand,

(21) L(max {u, 0) α) - L{u α)

and

(22) L(max (— u, 0) α) = L(— u; α) = L(w β)

for α > 0, where we put β = — α. By (19) and (21) (resp. (20) and (22)) we

have (5. 1) (resp. (5. 2)).

Proof of (5) = Φ (6) is obvious.

Proof of (6) = > (4). Combining (21) and (6. 1) (resp. (22) and (6. 2))

and using Theorem, (3) = > (1), we can easily show that the subharmonic

function max(^,0) (resp. m a x ( - ^ , 0 ) ) is quasi-bounded on R. Hence u V 0

as well as (— u) V 0 is a quasi-bounded harmonic function on R. There-

fore u=u\/0 + uA0 = u\/0 — {— u)V0 is quasi-bounded on R. This

completes the proof of Corollary 1.

4. Before proving Corollary 2, we shall give some examples of func-

tions v and ψ stated in Corollary 2.

EXAMPLE 1. Let HP{R) (for p > 0) be the Hardy class on R, that is,

the totality of analytic functions f on R such that every subharmonic func-

tion \f\p has a harmonic majorant on R. Then, by Theorem 2 in [8], an

analytic function f on R belongs to HP{R) if and only if the subharmonic

function \f\p has a quasi-bounded harmonic majorant on R, or equivalently,

]f\p is a quasi-bounded subharmonic function on R. In this case,

v= I/I

and
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f 0 for a<r<0,
ψ{r) =

[ rp for 0 ^ r < + oo,

where a is an arbitrary negative number. Obviously φ(χ) / + 00 as r / +oo.

We have: There exists a strongly convex function Φ such that

lim W W i ; » ( O = 0

for some (and hence for any) point t in j?.

EXAMPLE 2. By Theorem 1 in [8], an analytic function / on R is in

the Smirnov class S(R) (cf., e.g., [8]) if and only if the subharmonic function

log+ |/| has a quasi-bounded harmonic majorant on R, or equivalently,

log"*" I jf 1 is a quasi-bounded subharmonic function on R. In this case,

v= I/I

and

0 for a<r<l,
ψ{r) =

log r tor

where a is an arbitrary negative number. We have ψ{r) /* + 00 as Ύ / +°°.

EXAMPLE 3. Let / be an analytic function on R such that w = f(z)

takes only the values in the angular domain: |argκ;|<d (0<δ<π). Then,

for any constant p, where 0 < p < π/2δ, the function / is in the Hardy

class HP(R). This can be proved as follows.3) By

we have

if 0 <p <πj2δ. Hence / is in HP(R) so that the subharmonic function | / | p

is quasi-bounded on R for any p, 0 < p < π/2δ. Therefore this is a special

case of Example 1.

EXAMPLE 4. Let f{z) = u{z) + iw(z) be an analytic function in the open

unit disc U: \z\ < 1 such that the real part u{z) of f[z) can be extended

continuously to the closed disc U\ | s | < l . Then, by Smirnov's theorem

3) V.I. Smirnov [6] proved the case: <5=τr/2 (cf. [5]).
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([6], cf., e.g., [2], p. 401, Theorem 7), the analytic function eif is in the

Hardy class HP{U) for any φ > 0, or \eίf\p — e~pw is a quasi-bounded sub-

harmonic function on U for any φ > 0. In this case,

v — w

and

φ(r) — e~vr for — oo < γ < + oo.

Obviously ψ{r) / + oo as r \ — oo.

EXAMPLE 54P A bounded Jordan domain G in the plane with rectifi-

able boundary is said to be a Smirnov domain if for some (and hence for

any) one to one conformal mapping ψ{z) from the open unit disc U: \z\<l

onto G, the harmonic function log|^' | is represented as the Poisson integral

of its boundary values on the unit circle: \z\ = 1, or equivalently, it is a

quasi-bounded harmonic function on U ([6], cf., e.g., [2] and [5]). We know

that a bounded Jordan domain G in the plane with rectifiable boundary is

a Smirnov domain if and only if for some (and hence for any) one to one

conformal mapping ψ from U onto G, the analytic function \\ψf is in the

class S{U) (cf., e.g., [7]), or equivalently, the subharmonic function log+ |l/^'|

is quasi-bounded on U. In this case,

*= w\
and

φ(r) = log+(l/r) for 0 < r < + oo.

We have ψ(r) / + oo as r \ 0.

We give

Proof of Corollary 2. This is an immediate consequence of (1) = > (2)

of Theorem. In fact, by (2) in Theorem, we obtain a strongly convex

function Φ depending on the quasi-bounded subharmonic function ψ{v) such

that

lim Φ(α

4) Tumarkin and Havinson [7] defined Smirnov domains of finite connectivity and obtained
some analogous results as in the case of simply connected Smirnov domains.
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for some (and hence for any) point t in R. Let β be near a (resp. b).

Then by property of the function ψ(r) we have the assertion.
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