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A CATEGORICAL SETTING FOR DETERMINANTS

AND TRACES

Helmut Rδhrl0)

The aim of this paper is to investigate some applications of a certain

universal problem. The universal problem deals with categories C which

for every object A have some "structure" on the set C(Λ,Λ) of endomorph-

isms of A and calls for a universal solution, relative to this structure, that

is associated with C(A, A) and centralizes the set of automorphisms of A.

The commutative version of this universal problem asks for a universal

solution, relative to the said structure, that abelianizes the canonical monoid

structure of C(A,A).

In §1 the general case is discussed. A number of existence theorems,

all versions of the Special Adjoint Functor Theorem (see [11]) are stated

and various structure theorems concerning the universal solution are proved.

§2 deals with presheaves and the corresponding universal problem. It is

shown that the universal problem for presheaves may be solved pointwise and

that, under fairly weak assumptions, the stalk functor commutes with the

universal solution. It is also asserted that under appropriate hypotheses any

recollatement of a sheaf leaves the universal solution unchanged. In §3 the

trace for endomorphisms in an i?-additive category is defined as a special

instance of the universal problem of §1. Here, the previously mentioned

structure is that of a left i?-module. The existence of the trace (for the

endomorphisms) of any object A is easily obtained. It turns out to be the

canonical morphism from End A to Ho (Aut A, End A) with Aut A ope-

rating on End A by conjugation. Moreover it is shown that the trace of

an endomorphism of a finite direct sum "is the sum of the diagonal entries"

in the matrix description of that endomorphism. In §4 we restrict ourselves

to the study of the trace for endomorphisms of unital i?-modules, R being
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an associative, commutative ring, though many of the results of this section

remain valid for 7?-additive categories with multiplication. The topics dis-

cussed are the behavior of the trace under forming the transpose, under

tensoring, under change of rings, and under restriction of scalars. However,

the most important aspect of this section is the following localization prin-

ciple: If the i?-module M is finitely presentable then for every prime ideal

p of R the commutative trace of Mp equals the localization at p of the

commutative trace of M. Hence the notion of trace as defined here per-

forms well on the category of finitely presentable module, a category which

dominates the theory of coherent sheaves. The localization principle is used

in order to prove that for finitely generated projective i?-modules our notion

of commutative trace coincides with the classical one (see [5]). §5 is con-

cerned with another special instance of the universal problem of §1, namely

the notion of predeterminant for endomorphisms in an i?-monoidal category.

Here, the previously mentioned structure is that of a left i?-monoid. The

structure of an i?-monoid being more cumbersome and intricate than the

structure of an i^-module indicates that fewer results will be available on

predeterminants than on traces. Again the existence of the predeterminant

is easily established. It is shown that elementary automorphisms of a finite
k

direct sum ®A, k>2, are mapped into the unit element by the predetermi-

nant map; if End A contains "good" units then the restriction k>2 be-

comes unnecessary. One of the consequences of these properties is that for

a possibly non-commutative field R the predeterminant for endomorphisms
k

oΐ®R, k>2, is the classical (Dieudonne-) determinant; if R is different

from Z2 then the restriction k>2 becomes unnecessary. A similar result is

valid for R a commutative principal ideal domain having 1 as a stable

range. Hence we obtain in these cases a characterization of the determi-

nant by general (universality) properties rather than by properties explicitly

referring to the particular nature, that is square-matrix-shape, of the endo-

morphisms involved (see e.g. [14] and [19]). For euclidean domains this

characterization was obtained in [18]. §6 continues the discussion of §5 for

the jR-monoidal category associated with the category of unital i?-modules,

being an associative, commutative ring. It is shown that an endomorphism

of a finitely generated projective iv?-module M is an isomorphism if and only

if its image under the predeterminant map is a unit; this implies that for

such a module the group of units of the predeterminant monoid is isomor-
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phic to the factor commutator group of AutRM. As in §4 the localization

principle is established for finitely presentable i?-modules. In the final sec-

tion we outline additional applications. We also indicate a characterization

of the determinant over a large class of commutative unital rings as the

solution of a universal problem closely related to the one dealt with in §1.

§1. The Universal Problem.

Let C be a category. For a given object A of C we shall denote the

set C(A,A) by C(A). The invertible elements of C(A) form a group C*(A),

the composition in C*(A) being the obvious one. C*(A) operates on C(A) by

conjugation, that is by the assignment

C*(A) X C{A) 3 {a,μ)i >aμcΓι GΞ C(A).

This operation and its orbit set C(A)IC*(A) shall be used in the sequel with-

out any further reference.

Consider the following universal problem whose data are a category C,

a category L, a map /: Ob C — > Ob L, and a faithful, set-valued covariant

functor I \:L >S subject to the condition

C{A) = \l(A)\ for all objects A of C,

the universal problem being to find for a given object A of C an object

U A of L and a morphism uA from I (A) to UA such that

(i) \uA\ factors through C{A)—>C{A)IC*{A)

(ii) for any morphism v with domain I {A) such that \υ\ factors through

C(A) >C(A)IC*{A) there exists uniquely a morphism ύ from UA

to the codomain of v satisfying υ = ΰ uA.

In case of existence the universal problem furnishes a unique factorization

|w.,l

C(A) ^ \UA\

•I ^
C(A)IC*(A)

and we obtain trivially

(1. 1) C O R O L L A R Y . In case of existence the pair {uA,UA) is unique up to isomor-

phism.

(1. 2) C O R O L L A R Y . In case of existence φ = \ΰ\ o χA where \υ\ = φo q.
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In order to facilitate the statement of the following existence theorem

we denote for any object A of C the class

{υ:dom(υ) =1{A) & \v\ factors through C(A)—>C(A)IC*(A)}

by ΔA. Then we have (see [11], p. 84)

(1. 3) THEOREM. Suppose that

(i) I I preserves products and monomorphisms

(ii) L is well-powered and complete

(iii) for the object A of C there is a set SA of objects of L such that for

any v e ΔA there exists a vr e ΔA and a morphism codom {vr) — > codom (v) such that

^ codom (vf)
codom (v') e SA and I (A) < ^ J commutes.

v codom (u)

Then the universal problem for A possesses a solution.

Proof For the sake of completeness we repeat the proof given in [11],

p. 84-85. Form the product

LA = Π{codom(υ'): υ e ΔA & codom(v9) e SA}.

Its existence is guaranteed by the assumption that L is complete. Denot-

ing by 2V thez/. projection LA—> codom (υ') there exists uniquely a w: l(A)

—> LA such that φj w = v' for all v' e ΔA satisfying codom (vr) e SA.

Since | I preserves products an easy argument shows that w e ΔA holds.

L being well-powered and complete implies further that there is a minimal

subobject UA — > LA of LA through which w factors. This factorization shall

be written as w = mA'UA. We claim that the pair (uA9UA) is a solution of

the universal problem for A. First we observe that \uA\ factors through

C(A)—>C{A)IC*(A) since w does and since \mA\ is a monomorphism in S

(i.e. an injection). Next, given v e ΔA the condition (iii) of (1. 3) furnishes

a commutative diagram as indicated there whence

codom (υ9)

codom {v)
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commutes, establishing the existence of the desired factorization. Unique-

ness of this factorization is then an immediate consequence of the minimality

of UA.

Browsing through [11], p. 87-89, and adopting the statements and reason-

ings to our situation we find the following results:

(1. 4) PROPOSITION. Suppose that

(i) ) I preserves products and monomorphisms

(ii) C is complete, cocomplete, well-powered, and cowell-powered

(iii) L is a full, replete subcategory of C that is closed under the formation of

products and subobjects.

Then the universal problem possesses a solution for every object of C.

(1. 5) PROPOSITION. Suppose that

(i) I I preserves products and monomorphisms

(ii) L is well-powered and complete

(iii) every object of L generates through the identity functor of L at most a set

of non-isomorphic objects of L.

Then the universal problem possesses a solution for every object of C.

(1. 6) PROPOSITION. Suppose that

(i) 1 I preserves products and monomorphisms

(ii) L is well-powered and complete and possesses a cogenerator.

Then the universal problem possesses a solution for every object of C.

(1. 7) COROLLARY. Under the assumptions of either (1. 3), (1. 5), or (1. 6) the

morphism uA is an epimorphism.

That much for general existence theorems.

For the sake of convenience we shall denote by Γ the quadruple

(C, L, /, I I) of the data described previously and subject to the above re-

quirements. Let Γ and Γr be two such quadruples and let Ψ — (j^Ί &<><!%?)

be a triple of covariant functors (with appropriate domain and codomain)

such that
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O b C > L > S

commutes and that for every object A of C—notice that

holds—there is a (necessarily unique) factorization

One checks immediately that these triples Ψ form a category, the composi-

tion of such triples being the obvious one. It should also be remarked that

the last factorization implies that for every object A of C, & maps ΔA into

{1. 8) THEOREM. Let Ψ: Γ-+Γr be a morβkism and suppose that for the object A

of C both {uA,UA) and (u^rA,U^rA) exist. Then there exists a unique factorization

&uA = gA'U^rA, and for the resulting morphism gA the relation

\QA\ °λ^ΓA ^ valid.

Proof. Straight forward.

(1. 9) PROPOSITION. Let Ψ\ Γ-±Γ' be a morphism and suppose that for the object

A of C

(i) the universal problem for A possesses a solution (uA,UA)

(ii(ii) uA is an epimorphism and & preserves epimorphisms

(iii) ^ is a surjection from ΔA onto

Then (&uA, ^UA) is a solution of the universal problem for

Proof The existence of the required factorization follows easily from

(iii) by pulling back. Uniqueness of the required factorization is an im-

mediate consequence of (ii).

(1.10) PROPOSITION. Let Ψ:Γ-+Γr be a morphism and suppose that for the

object A of C

(i) the universal problem for J^"A possesses a solution
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(ii) there is a covariant functor <&'\ V ->• L such that <g" o ̂  is the identity

on L and that gf o gf' is isomorphic to the identity on Lr via an iso-

morphism m satisfying

(iii) \ujrAV factors through

(iv) <%T is full and faithful

Then the universal problem for A has (&'u^rA,&'U^A) as a solution.

Proof Let v be in ΔA. Then &υ is in Δ^rA and therefore there exists

a factorization ^v = υ u^rA. The first condition of (ii) implies then that

v = &'υ &'u^rA. In case υ belongs to ΔA and v = ΰ &'u^rA we obtain

^t> = ^w &&'u^rA whence the second part of (ii) establishes the unique-

ness of &ΐ). The first condition of (ii) then establishes the uniqueness of

ΰ. In order to show that &'u^rA e ΔA holds we observe that there is a

factorization &&'u^rA = w*u^rA whence we have a commutative diagram

\\wV

Therefore the fullness of J%f asserts the existence of a diagram

Its commutativity follows from the commutativity of the previous diagram

and the faithfulness of ^ .

It is clear from the proof of (1. 10) that, simultaneously, the second

condition of (ii) can be weakened to:

there is an isomorphism w such that &&'u^rA= w u^τA

and condition (iv) can be weakened to:
is a bijection from S{C{A)lC^A)A^fu^A\) to S(^(C{A)IC*{A))9
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Next we shall give several statements relating the solutions of the uni-

versal problem for various objects.

(1. 11) PROPOSITION. Let A and A! be objects of C for both of which the univer-

sal problem has a solution. Suppose that there is a morphism t from I {A) to l{Ar)

such that

C{A) — — —

C(A)IC*(A) - >C(A')IC*{A')

commutes. Then there exists uniquely a morphism ut from UA to UA' rendering

l(A) > l(A')

UA >UA>

commutative. If in addition, t is an isomorphism and τ is a bijection, then ut is

an isomorphism.

Proof Since \uA>\ factors through C(A')—>C(A')lC*{A') our hypothesis

shows that \uA' t\ factors through C{A)—>C{A)IC*(A). Hence the univer-

sality property of uA furnishes the desired morphism ut. The remainder

follows quickly from the uniqueness part of the universality property.

Suppose that for the objects Aλ and A2 of C the product AXTA2 exists.

Then we have canonical maps

C(Λ) X C(A2) —>C(A1TA29A1) X CiAiirAztAz)-—>C{A1TA2)

the composition of which sends {u19 u2) into the unique morphism w satisfy-

ing

pAlw = u&Al and pAftw = u2pA2,

φAi being the projection onto Aι. An easy computation shows that this

map is a homo morphism of monoids. Since the images of C{Ay) x {A2} and

{A^ x C{A2) in C{AXΎA2) commute we obtain a commutative diagram

(Λ) C{A2) —>c(A ι τA 2 )
(1. 12) I

C(Λ)/C*(Λ) C(A2)IC*{A2)-
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(1. 13) PROPOSITION. Let Al9A2 be objects of C for both of which one universal

problem admits a solution. Assume that

(i) the products AιΎA2 and l(Ax)τl(A2), and the coproducts l{Ax)Ml(A2) and

UAlMUA2 exist

(ii) there is a morphism m: l(Aλ\Ύ 1{A2) -—>1{A1TA2) that, via | | , lies above

the canonical mapC{Ax) x C(A2)—>C{A1τA2)

(in) there is a morphism k: [{A^MliA^ >l(A1)τ l[A2) which renders the diagrams

\l(A1)Ml(Aι)\ -^Uc(A) X C(A2)

I ϊ
CiAJIC^At) >C(Aι)IC*(A1) X C(A2)IC*(A2)

commutative, where j \ : l(Ai) — > l{Ax)lLl(A2) are the canonical injections

(iv) the universal problem for AXΎA2 possesses a solution.

Then there exists uniquely a morphism g: UAIMUA2—>UΛlΎA2 such that

k m

>l(A1τA2)

UAίAUA2 > UAlΎA2

commutes.

Proof. (1. 12) together with the hypotheses implies that uAlΎA2mkji belongs

to ΔA.. Hence there exists a factorization

uAlΎA2mkJi = giUA. i = 1,2 ,

the morphisms gt having UAlΎA2 as common codomain. g1 and g2

therefore determine canonically a morphism g from UAlMUΛ2 to UAlΎA2 which

has the desired properties, as is checked easily.

(1. 14) PROPOSITION. Let Ar and A be objects of C for both of which the uni-

versal problem possesses a solution. Let furthermore k: l{Ar)—>1{A) be a morphism

such that for some map K the diagram

1*1
C{A') —>C{A)

C(A')IC*(A') —+C(A)IC*(A)



44 HELMUT ROHRL

commutes. Assume that

(i) I I reflects epimorphisms (resp. monomorphisms resp. isomorphisms)

(ii) K is a surjection (resp. injection resp. bijection)

(iii) C(A)IC*(A) — > \UA\ is a surjection (resp. C{A')IC*(A') >\UA>\ is a

surjection and C{A)IC*(A) > \UA\ is an injection resp. C(A')IC*{A')

— > \UA'\ is a surjection and C(A)jC*(A)—> \UA\ is a bijection).

Then there is a natural epimorphism (resp. monomorphism resp. isomorphism) Uy—>UA.

Proof. From the commutative diagram in (1. 14) we take that uAk be-

longs to ΔA'. Hence there is a unique factorization uAk= ΰuA'. Consider

the commutative diagram

C(A)IC*(A)

From it we conclude that under the various hypotheses (ii) and (iii), |u| is

a surjection (resp. injection resp. bijection) whence (i) finishes the proof.

There is a "commutative companion" to the universal problem posed

at the beginning of this section. It is gotten by sharpening the condition

(i)5 namely that \uA\(aμ) = \uA\(μa) for all automorphisms a of A and all

endomorphisms μ of A, to

(ic) NiK^i^) = \^l\(fJt2fJti) f° r all endomorphisms μuμ2 oΐ A

and by replacing (ii) by the correspondingly altered condition (iic). Clearly

we have

(1. 15) PROPOSITION. If for some object A of C both, uA and uc

A, exist then there

is a unique factorization uc

A = wA uA.

Existence of a solution of this altered universal problem can be esta-

blished under the conditions of either (1. 3)—with the solution set condition

(iii) appropriately modified—or (1. 4) resp. (1. 5) resp. (1. 6). And, as before

we obtain

(1. 16) COROLLARY. Under the assumptions of either (1. 3) with the modified

solution set condition, or of (1. 5) resp. (1. 6) the morphism wA is an epimorphism.
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It should be observed that all results of this section that were stated for

the "non-commutative" universal problem hold, mutatis mutandis, also for

the "commutative" universal problem.

§2. The Universal Problem for Presheaves.

Let P{X9C) be the category of presheaves over X with values in the

category C. For each inclusion W C V of open subsets of X we obtain a

canonical covariant functor from P(V,C) to P(W,C) which sends every

presheaf ^ over V into the restriction ^\W. It gives canonically rise to

natural maps

(2.1) 10* \V}—

being the set of endomorphisms of &*\V in P(V,C). Clearly these

maps constitute a set-valued presheaf [ ^ | ]. Since (2. 1) is a homomor-

phίsm with respect to the canonical monoid structures there are induced

natural maps between orbit sets

the operations being the ones discussed in §1. Again we obtain a set-valued

presheaf [^ | ] / [ ^ I ]*, and the maps which assign to each point its orbit

constitute a natural transformation from [ J ^ | ] to \_^\ ]/LS^Ί]*. One

checks easily that both [_^Ί ] and [_^| ]/L^| ]* are sheaves whenever &

itself is a sheaf.

Assume that the following data are given: a category C, a category

L, a map /: Ob P{X,C)—>Ob P{X,L), and a faithful, set-valued co-

variant functor I \: L — > S that reflects identities. Suppose that

P(X,\ \)K^) = [^\ Ί for all presheaves <£*.

Again we can pose the universal problem asking for the existence of a

presheaf ^/^ over X with values in L and a morphism of presheaves ^^

from l{^) to f/^6 such that

(ip) PCX, I | ) - ^ factors through [ ^ I ] — > [ ^ | ] / [ ^ | ]*

(iίp) for any morphism «, of presheaves with domain l(^) such that

PCX, I |)e factors through [ ^ | ] > [ ^ | ] / [ ^ | ]* there exists

uniquely a morphism £ from ^ ^ to the codomain of «. satisfy-

ing «* = ̂  «^^.
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(2. 2) THEOREM. Let ^ be a presheaf over X with values in C and assume that

for every open subset V of X the pair (uv,Uv) solves the universal problem for all

morphisms v in L with domain 1{J^){V) such that \v\ factors through

L ^ Ί F ] * . Then the previous universal problem for ^ admits a solution (^

satisfying **^>v — uv and < ^ ^ ( F ) = Uv for all open sets V.

Proof Straight forward (see e.g. [16], p. 64).

Clearly we obtain

(2. 3) COROLLARY. The hypothesis of (2. 2) is satisfied for every presheaf ^

provided that the assumption of either (1. 3)—with (iii) replaced by an appropriate

solution set condition—or (1. 4) resp. (1. 5) resp. (1. 6) are valid. Under the assump-

tions of either (1. 3)—with (iii) modified as stated—or (1. 5) resp. (1. 6) ^^ is point-

wise an epimorphism.

Before we go on a remark is in order. Via the canonical imbedding

CC P{X,C) the map / assigns to each object A of C a presheaf l(A) with

values in L. By assumption we have P{X9\, \)1{A) = [A\ ]. Since [A\ ]

is a constant functor the requirement that | | reflects identites implies that

I (A) is a constant presheaf. Hence / gives rise to a canonical map from

Ob C to Ob L which shall again be denoted by /. This map evidently

satisfies \l(A)\ = C(A) which is just the relation imposed in §1 on the data

of the universal problem.

Next we shall discuss the connection between the universal problem for

presheaves and the universal problem of §1 when stated for individual stalks

of those presheaves. This, of course, will only be possible under the as-

sumption that both C and L are cocomplete.

We require now of all presheaves ^ that for every x e X and all open

sets V containing x there is a morphism λ{^)l: 1{^){V)—>l(^x) that is

natural in V. Hitting this morphism with | | we obtain a map \λ(^)l\:

[^\V] >C(^X). We require, in addition, that the maps λ(j^% are

homomorphisms of the canonical monoid structures. Then they give rise to

commutative diagrams

(2. 4)

Suppose that one of the alternate conditions of (2. 3) is satisfied. Then the
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universal problem for ^ x formulated in §1 has a solution {u^χ9U^&x) and the

above commutative diagram shows that |u^&x λ{^ )* I = Iu^$x| \λ(J^)l\

factors through [j^ | F]/L^ | V]*. Hence (2. 2) furnishes a unique factorization

Passage to the direct limit furnishes then a commutative diagram

(2. 5) PROPOSITION. Assume that both C and L are cocomplete, that one of the

alternate conditions of (2. 3) is satisfied, and that the natural morphisms λ{^)v

x render

homomorphisms \λ{J^)Z\ of the canonical monoid structures. Assume furthermore that

I I preserves direct limits. Then λ{^)x being an isomorphism implies that ΰ^x

is an isomorphism.

Proof First we observe that the direct limit ^ ^ : l(^*)x —> *%/^ is

characterized by the following universality property. Given any family of

commutative diagrams

1
that is natural in V there exists uniquely a pair of morphisms

and *%/^δχ — > M rendering all diagrams

commutative. Since λ{^)x: 1{^)X—> l(^x) is an isomorphism by assump-

tion the morphisms l(j^)(V) > 1{^)X > 1{^X) constitute a direct

limit-diagram. The hypothesis on | | then implies that L^|F]—>C{J? f

x)

is also a direct limit-diagram. Thus (2.4) shows that



48 HELMUT ROHRL

) is a direct limit-diagram too. Hence (2. 4) and (2. 6) give

rise to the commutative diagram

and our last remark shows the existence of a map C{^X)\C\^X)—->\M\

rendering the right upper corner commutative. This means that the two

possible compositions from Lj^|F] to \M\ "passing through C(j^x)" coincide.

C{^x) being a direct limit implies therefore that the bottom diagram com-

mutes, i.e. that C(^x)—>\L\—>\M\ factors through C ( ^ ) / C * ( ^ ) .

Hence the universality property of ~^e : 1{^X)—> ^/^x furnishes a unique

morphism <%Sφ — > M such that

commutes. The remaining required commutativity relations now follow

trivially.

The assumptions of (2. 5) are tailored so as to fit the case of ^ being

a coherent sheaf and / being the map that assigns to ^ the sheaf of endo-

morphisms of j ^ . The meaning of (2. 5) is, of course, that the stalks of

the universal solution for the presheaf can be computed stalkwise.

There is another result that is of interest for sheaves. For the purpose

of formulating it we recall that a presheaf ^' over X is a recollatement

of the presheaf ^ if there exists an open covering \Vΐ\i<=i of X and iso-

morphisms at\ ^r\Vι—>£P\Vi. These isomorphisms canonically induce

natural bijections βiV:[^'\V]—>1&\V\ (for V c 7<) by the rule βiv(μ) =

{cti\V) μr {cίi\VYι

9 and these bijections are homomorphisms of the canonical

monoid structures. Altogether we obtain the isomorphisms of presheaves

A: t(&"\Vi)\ ] — - > [ ( ^ Ί ^ ) | 3.

(2. 7) PROPOSITION. Basic assumptions as in (2. 2). Suppose, in addition, that

^ ' is a recollatement of £P and that l(^r) is a recollatement of l{^) with local

isomorphisms λt: l(^')\Vi—>l(^f)\Vi whose images under P{Vi9\ |) are the

induced isomorphisms ft: [ ( ^ ' 1 ^ ) 1 ]•—>Li^\Vi)\ ]. Suppose furthermore that
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both l{^') and <g^> are sheaves. Then the universal problem for the presheaf ^ r

admits a solution ("^s/, %f^&r) and there is an isomorphism ^/^ — ^ ^ ^ such

that for every i e / the diagram

commutes.

Proof. Due to our assumptions «,: l{^')\Vi—>jgf factors through

\ ]—>[(&"\Vt)\ M^r\Vi)\ 3* if and only if e- -^T1 factors through

]—>[(^ a r |F<)I J/ t ί^ lFJI ]*. Since (2. 2) implies that (~^,F i,

= ( - ^ 1 ^ , ^/^\Vi) we conclude that ( (-^[F*)-^, ^^\Vi) solves

the universal problem for all morphisms ** in P(F<,Z) with domain l(^')Wi

such that P(F,, ] Iμ factors through [ ( ^ Ί F , ) ! ]—>[(^*'\Vi)\ Λ\l^rW%)\ ]*.

For V c Fί Π Fj we have the commutative diagram

(2.8)

where

A/rW = {{ccι\V) {aj\V)-i)'μ'{{ccι\V) {ai\V)-1)-1 for all Λ

Clearly the βiJV are functorial in V. Hence the commutativity of (2. 8)

implies the commutativity of

n Vj > W^Wi n vf

(2. 9)

Wi n Vj > W^Wi n

Since both l{^") and g r ^ were assumed to be sheaves (2. 9) shows that

the local morphisms {"• ga\V>ι-h' l{&")\Vι—> I^s\Vi match up to a mor-

phism «^a/: l{^') — > ^^> which evidently solves the universal problem

for ^" and renders the required diagrams commutative.
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(2. 7) states that "compatible" recollaternents on the level of £P and

l(J^) have the "same" universal solution. Applying this to the situation

indicated at the end of the proof of (2. 5) we conclude that, for example,

the universal solution for an arbitrary vector bundle coincides with the one

for a trivial vector bundle.

(2. 10) Remark. The definitions and remarks preceding (2. 2) as well as (2. 2)

and (2. 3) when appropriately modified carry over to arbitrary functor cate-

gories (replacing P(X,C) and P(X,L)). The same holds true for (2. 5) when

"passage to the stalk at #" is replaced by "passage to a certain colimit".

§3. Traces for Endomorphisms in Λ-additive categories.

Let R be an associative ring. As usual we mean by an i?-additive

category A a category with finite direct sums together with a covariant

"structural" Hom-functor Horn: Aop x A—>Modj2 rendering

AOPXA

commutative where | | : Modβ — > S is the standard forgetful functor from

the category Mod^ of left i?-modules to the category S of sets.

In order to set up the universal problems dealt with in §1 we choose

for C the i?-additίve category A, for L the category ModΛ, for / the map

given by

l(A) = End A{= Hom(Λ A)),

and for | | the above forgetful functor | | : Modij—>S. For notational

purposes we denote by Aut A the group A*(A) when viewed as a subset of

End A.

(3. 1) PROPOSITION. Let A be an R-additive category. Then both the universal

problein of §1 and its commutative version admit a solution for every object of A.

Proof (1. 5).

Given the object A of A we shall denote the solution {uA,UA) of the

universal problem of §1 (resp. the solution {uA9UA) of its commutative ver-

sion) by {A-trA, A-ΎτA) (resp. (̂ 4.-tr|, Ά-ΎrA)) and call it the trace (resp. the

commutative trace) on A. Whenever the reference to the i?-additive cate-

gory A is clear the prefix A- shall be dropped.
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(3. 2) COROLLARY. For every object A of A the morphisms trA, trA, and wA:

TrA—>TrA are surjections.

Proof. (1.7).

(3. 3) PROPOSITION. Suppose that μ is contained in the submodule of End A that

is generated by Aut A. Then for every element v of End A,

trA{μv) = trA{vμ).

Proof If μ = Σ^«i where the α* are suitable elements of Aut A then

trA{vμ) = ΣirMvai) = ΣirίtrA{a

(3. 4) COROLLARY. Let A be a finite direct sum of at least two copies of some

object A'. Then wA:TrA—>TrA is an isomorphism (i.e. the trace on A equals

the commutative trace on A).

Proof A simple matrix computation reveals that End A is generated

by Aut A. Hence (3. 3) implies that the trace is commutative. An obvious

universality argument then shows that wA is an isomorphism.

(3. 5) P R O P O S I T I O N . Let A = Ax © © Ak be a finite direct sum with i *:

Aκ > A the canonical injections and pκ: A > Aκ the canonical projections. Then

for every element μ of End A,

trA{μ) = H{trA(iκpκμiκpκ): K = 1, •••,&}

tr%{μ) = I]{trc

A{iκpκμiκpκ): K = 1, • • - , * } .

Proof. Since trA is a homomorphism from End A to Tr^ we obtain

t r A ( μ ) = J l { t Y A { i λ p λ μ i κ p κ ) \ κ,λ = l, • • • , & } .

Let y d e H o m ( 4 , i i ) , κ<λ, and denote by v the (unique) endomorphism

of A satisfying

pκviκ — i d ί ^ ) , Pχviκ — vκλy and Pχf\ήκ' — 0 otherwise,

and by a the (unique) automorphism of A satisfying

Vκ'ttiκ' — i&[Aκ') for all K, pχaiκ — vκλ9 and pχfaiκ

f = 0 otherwise.

One checks easily that

pκa~ιvaiκ = id(^4K), p^a'^vai^ = 0 otherwise.

Hence we have
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trA{iκPκ) = tr A{a'xva) = txA{v) = trA{iκpκ) + trA{iλvκλpκ)

and therefore

= 0 for i ί < L

Since we could equally well assume K > λ, the first formula of (3. 5) follows

from the first formula appearing in this proof. A similar argument establishes

the second formula.

(3. 5) generalizes the well-known fact (or definition if one so wishes) that

the trace of a square matrix is the sum of the diagonal entries. More

specifically we refer to (3. 8).

(3. 6) PROPOSITION. For every object A we have

TrA = End A/{μ — aμa'1: μ e End A & a e Aut A}V

Trc

A = End AIR{μxμ2 - μ2μx: μ19μ2 e End A]

with trA and tr% being the obvious quotient homomorphisms. In particular, TrA—

H0(Aut A, End A ).

Proof. Every 7?-homomorphism End A—>L that factors through A[A)j

A*(A) has a kernel containing every element of the form μ — aμa~ι,

μ e End A & a e Aut A, and hence the submodule generated by these

elements. Since tr^: End A—>TτA is an epimorphism due to (3.2) our

claim concerning Tr^ follows. A similar argument applies to T r | .

The fact that Tr^ is the indicated homology group is trivial since

£Γ0(Aut A, End A) = End A\I End A where / is the augmentation ideal

of the group algebra i?(Aut A) with respect to the unit augmentation (see

[8], p. 183).

(3. 7) COROLLARY. Suppose that the objects Aί9 , Ak satisfy Hom(Aκ,Aλ)=0

for all K ψ λ. Then there is a commutative diagram

®trAιr

® End Aκ > 0 TrAκ

treA,
End ® Aκ > TrΘAκ

the isomorphisms in it being canonical. Similarly for the commutative trace.

By R{ } is meant the i?-submodule generated by
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Proof Straight forward using (3. 6).

(3. 8) THEOREM. Suppose that R possesses a unit. Let A be an object for which

End A is a monogenic R-module and thus isomorphic to R[a for some left ideal a of

R. Then for every natural number k there exists a commutative diagram

k @A

End ® A > Trl

@A

- I I -
{Rlap Q >Rla + R[rxr2 - rzrx\ rl9r2 e= R]

where (i?/αP'fc) stands for the algebra of k-by-k matrices over R/a and sp stands for

the canonical image of the sum of the diagonal entries.

Proof For k = 1 this is an immediate consequence of (3. 6). For k > 1
k

we obtain due to (3. 5), putting B = © A,

where μκ is the (unique) endomorphism of B given by the relations

PκV-κiκ = PκμiKf VκrP-κiλf = 0 otherwise.

Our assumption implies that id4 generates End A as an 7?-module. Hence

an easy computation shows that for some rκ e R, μκ = rκ iκpκ holds. The

equivalence class of rκ in R/a is uniquely determined by the relation

cl(rj = pκμiκ{cl(l)). Using permutation-of-summands automorphisms of B

one checks easily that all iκpκ define the same equivalence class in A(A)IA*(A)

whence we finally obtain

trl(jκ) = Σ{riC:ic = l, , k] -tτc

B{i1p1).

This together with (3. 2) shows that Tr£ is a monogenic i?-module and there-

fore isomorphic to R/a' where a is some left ideal. Clearly we have the

inclusion

(3. 9) a + R{r,r2 - r2rx: ru r 2 e i ? ) c a'.

k

Since the canonical bijection End ©A—>(/?/α)^»^ is an isomorphism of the

canonical monoid structures and since the map sp is ''commutative" the

universality of tr£ furnishes a unique homomorphism rendering the diagram
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in (3. 8) commutative. It remains to be shown that this homomorphism is

in fact an isomorphism. Since iιpι corresponds under the canonical bijection

to the matrix with cl(l) in the left upper corner and all other entries zero

we conclude that the image of t r ^ i ^ ) equals cl(l). This in conjunction

with (3. 9) shows that we have indeed equality in (3. 9), that is that the

previous homomorphism is an isomorphism.

The bottom arrow in (3. 8) is, of course, the usual definition of the

trace for an endomorphism of a finite free module (see [13], p. 113 for the

non-commutative case).

At this point we should like to offer some examples without giving

proofs. Since the trace depends on End A and the properties of the cate-

gory Mods rather than on the properties of the category A we shall choose

for A the category Mod^ itself, R now being assumed a commutative, unital

ring, and for Horn the functor Hom^.

(3. 10) EXAMPLES, a) For any infinitely generated free J?-module M, Tr^=0.

b) In case R = Z we have

TrΦ{Z,: P all primes} = ®{Zpl P all primes}.

c) Let M be a reduced p-primary {p > 2) Z-module that is a direct sum

of countable 2Γ-modules. Then wM-TrM —>Ύrc

M is an isomorphism due

to (3. 3) as in this case every endomorphism of M is the sum of two auto-

morphisms ([9]).

d) 2>Let M be a finitely generated Z-module. Denote for every prime p

the ^-primary part of M by Mp and the free part of M by ML. Using

a few elementary matrix operations and the universality of the trace we see

that there is a communtative diagram

Endz(M. © © Mp < ) EndzM. © End^(© Mp)

ΎτM 1 > T r ^ Θ T Γ e * ,
V

with X and η isomorphisms. By (3. 7) we have

TrΘJfj> = © Tr^.

In order to determine TτMp, let N be a finitely geerated ^-primary Z-module.

The we have the a canonical decomposition

2) This example is due to Mr. E. L. Lady of UCSD.
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N = ®{nkZp4*: k = 1, , w } .

We may assume qx < < qn. Denote nkZvik by Nk. For ϊ e EndziV,

let Cjc= trNk{pk 7 ik) ^ Zp4k, computed in accordance with (3.8). Then a

matrix computation leads to

TrΛr = Zpβi © Z^2 © © Z/», rk = qk — qk-1

n n

and ti>(r) = (Σ cfc, Σ cfc, , cn),
2

were, by abuse of notation, we have written ck for the image of ck under the

canonical homorphism Zp9k -> ZprJ9 j <c k, as appropriate.

An analogous discription can be found for finitely generated modules

over a principal ideal domain or a Dedekind domain R.

§4. Traces for Endomorphisms of /2-modules.

In this section we shall deal with a special case of §3: We assume

that R is a commutative unital ring, A is the category Modβ of unital R-

modules, and Horn is the usual Horn-functor HoniR. Some of the const-

ructions and results of this section carry over to more general situations

(e.g. /^-additive categories with multiplication) as can be seen easily.

Let M be an i?-module and denote by M* its dual. Then there is a

canonical homomorphism EndRM—> End^M* that sends each endomorphism

μ into its transpose *μ. One checks quickly that the composition End^M

—>End βM*^—>TrM* factors through End^M/Aut^M. Hence there exists

uniquely a homomorphism dM: ΎrM—>Trilf* rendering

( )
RM > E n d Λ M *

(4.1) t i j

>TrM*

commutative. Similarly for the commutative trace.

(4. 2) PROPOSITION. Let M be a reflexive R-module. Then the homomorphism dM

is an isomorphism.

Proof. Stick (4. 1) together with the analogous diagram for M* and

M** and identify M** canonίcally with M. Then the universality property

of the trace implies that dM*dM is the identity. Since M* is reflexive dM**dM*

is also the identity. Hence dM*9 and therefore dMy is an isomorphism.
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(4. 3) COROLLARY. Let M be a finitely generated projective R-module. Then dM

is an isomorphism.

Proof. Any finitely generated projective i?-module is reflexive (see [5],

p. 72).

Let M and N be ivNmodules. Clearly there is a commutative diagram

of i?-homomorphisms

* EndRN > EndR(M0RN)

trM0RtrN I

where tM%N has all the expected functorial properties.

(4. 4) PROPOSITION. Let M be a finitely generated projective R-module. Then tMtN

is an epimorpkism.

Proof. If M is a finitely generated projective then End^M®^ End^iV

—>EndR{M(g)RN) is an isomorphism (see [5], p. 113). Hence (3. 2) implies

our claim.

Additional results concerning the trace on tensor products will come up

in connection with localization. Before, however, we shall deal briefly with

change of rings.

Let p: R — > S be a unital homomorphism of commutative rings. For

every i?-module M we can form the S-module ρ*M = S ®RM. One checks

easily that there is a commutative diagram

p*EndRM <^—> Endsp*M

ΎrM

where η is defined by η(μ) = 1 ® μ, ω is the canonical homomorphism, ξ is

the canonical Z-homomorphism, and the bottom homomorphism is defined

by the universality of the trace. This bottom homomorphism gives rise to

the composite 5-homomorphism (see [5], p. 121)

P*e{ρ)
e{p): ρ*TrM
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describing the influence of change of rings on the trace. Similar definitions

hold for the commutative trace, in which case the corresponding composite

S-homomorphism shall be denoted by ec{p).

(4. 5) PROPOSITION. Suppose that either S is a finitely generated projective R-module

or that M is a finitely generated projective R-module. Then e(p) as well as ec(p) is

an epimorpkism.

Proof. One checks easily that the following diagram commutes

O)

P*EndRM

P*tvM teβ*M
+ e(P) +

P*ΎrM > TrP*M

Since ω is an isomorphism under the stated assumptions (see [5], p. 124)

and since trp*^ is an epimorphism due to (3. 2) our claim concerning e(p)

follows. Similarly for ec{p).

It is of interest to know how to compute e[*τp) where p: R—>S and

σ: S—>T are unital homomorphisms. Denoting the canonical isomorphism

(σp)*N >σ*p*N by γN we obtain

(4 .6) P R O P O S I T I O N . Lei p:R—>S and σ: S—>T be unital homomorphisms

of commutative rings. Then

e{σp) = TM e(σ) σ*e(p) ϊTrM and

TM being the canonical isomorphism Tra*p*M—>Tr^p)*M (and similarly TM')-

Proof. We have the following commutative diagram

ΪEndRM σ*(ΰ

{σp)*EndRM — > σ*P*EnάRM > σ*Endsp*M

(σp)*tτM σ*p*trx σHrP*M
ψ r T Γ Λ f

 ψ &*e(p) ψ

(σp)*ΎτM ^ ^ ^ T r j f > σ*Trβ*M-

• Endτ(σP)*M
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in which, due to functoriality, the top row equals the canonical homomor-

phism (σ/?)*Endi2M—> EndΓ(<7p)*M.

A few words concerning restriction of scalars. Let again p: R — > S be

a unital homomorphism of rings. For every S-module N we can form the

/^-module p*N obtained from N by restriction of scalars to R. Again there

is a commutative diagram

r(p)

where ξ is the canonical Z-homomorphism and the bottom homomorphism

r{p) is defined by the universality of the trace. Similarly for the com

mutative trace, in which case the bottom homomorphism shall be denoted

by rc{p). Here we have

(4. 7) PROPOSITION. Suppose that p: R

and rc(ρ) are isomorphisms.

(4. 8) PROPOSITION. Let p: R-

commutative rings. Then

>S is an epimorphism. Then both r{ρ)

S and σ: S — > T be unital homomorphisms of

r{σp) =γ'M.r(ρ) - γTr

and

with the adorned fs defined in a fashion analogous to (4. 6).

Next we shall deal with the behavior of trace under localization. Let

S be a multiplicatively closed subset of R. Then the universality property

of the trace as well as of the localization at S furnishes a unique S~ιR-

homomorphism lSfM: S^ΎΪM —^Tr^-i^ rendering

Ύrs

commutative in which all undesignated homomorphisms are canonical. A
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similar definition holds for the commutative trace, in which case the bottom

homomorphism shall be denoted by ΓS,M.

(4. 9) THEOREM. Suppose that the canonical homomorphism φ: S ' Έ n d ^ M — >

E n d S - I R S ^ M is an isomorphism. Then ΓS,M is also an isomorphism. In particular

this is true if M is finitely presentable.

Proof. From (3. 2) and the above commutative diagram we take that

ΓStM is an epimorphism whenever φ is an epimorphism. Hence it remains

to be shown that ΓStM is a monomorphism. Let m be in the kernel of 1%,M

and choose -^- e S'Έnd^M such that m = {S~ιtrc

M)(-^-\. Then we have

trc

s-iMφf-^-j = 0 whence there are endomorphisms βΊ,μ" of S~ιM such that

By assumption these endomorphisms can be written in the form

« = *(-#-) a n d « =

with μ'i9μ" suitable elements of End^Λf and s*,s" suitable elements of S.
Since ψ is an isomorphism we obtain

and thus

which proves the assertion in the general case. However, if M is finitely

presentable then φ is known to be an isomorphism (see [6], p. 98).

(4. 10) COROLLARY. Suppose that the R-module M is finitely presentable. If the

prime ideal p of R is not in the support of M then (Trc

M)p = 0.

Proof. Since Mp = 0 and since t r^ : End^Mp—>Tr^ is an epimorph-

ism we conclude that Tr^p is the null module. Hence (4. 9) finishes the

proof.

(4. 11) PROPOSITION. Let M be a finitely generated projective R-module. Then

trc

M equals the composition
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Ψ~M ΪM

EndRM > M*(g)RM > im εM

where εM is the evaluation map and ψM is the canonical isomorphism. Moreover,

(Trc

M)P is isomorphic to Rp for every prime ideal p contained in the support of M.

Proof Since M is a finitely generated protective module there exists an R-

module M' satisfying M® M' — © R. There is a canonical homomorphism
q

End^M—>End R ®R which sends every endomorphism μ of M into μ®0Mr.

Using (3. 8) we then obtain a commutative diagram

®OMf q
M > EndR@R

l t r ! *
Tr^ > R

If p is in the support of M then Mp is a free (see [6], p. 143) ^-module of

positive rank. Since a finitely generated projective module is finitely pre-

sentable (see [6], p. 36) we obtain, using (4. 9), the commutativity of the

diagram

— ®O q — q

• (End sM), > (End*©/?), • End*,®/?,

RP >(Tτc

M)p % Rp >RP

One checks easily that the composition of the homomorphisms on top equals
q

®OMr. Since Mp is free and a non-trivial direct summand of ®RP we

conclude from (3. 8) that there is an element in End^M^ that via the "up-

per dogleg" of the last diagram hits the unit element of Rp. Hence the

upper dogleg is an epimorphism, and so is (Tr^)^—>RP. However, {Ύτc

M)p

is isomorphic to the canonical /^-module Rp9 a claim that is incorporated

in the last diagram. Hence a straight forward argument shows that

(Trίf)^—>RP is indeed an isomorphism, which proves one of our claims.

In order to complete our proof consider the commutative diagram

V A Φ'M1

EndRM

λ

TrM > i m εM
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By localizing it at the prime ideal p we obtain the commutative diagram

EndΛ,M, > M*®RMP

[eMp

(Tri), > i m εMp

If p is not in the support of M then (4. 10) implies that λp is an isomorph-

ism. If p is in the support of M then our previous argument asserts that

( T r ^ is isomorphic to Rp, as is im εMp. Since the upper dogleg is again

an epimorphism it follows that λp is an epimorphism. Hence, as before,

we conclude that λp is in fact an isomorphism. Therefore a well known

globalization theorem (see [6], p. 114) implies that λ itself is an isomorphism.

(4. 11) states that our definition of trace coincides with the customary

one for finitely generated projective modules (see [5]). In this connection

it should be recalled that a finitely generated module M is faithful if and

only if εM is an epimorphism (cf. [2], p. 133).

Note that the upper dogleg in the first diagram of the proof of (4. 11)

coincides with the definition of trace used in [17]. Since the proof of (4. 11)

implies that the bottom homomorphism in this diagram is an isomorphism

we conclude that our notion of commutative trace is equivalent to the one

used in [17].

(4. 12) PROPOSITION. Suppose that M is a finitely presentable R-module and that

N is a finitely generated projective R-module. Then

tkN : Tr'u ®RTrc

N — > Trc

M®RN

is an isomorphism.

Proof. Obviously tMtN is an isomorphism whenever AT is a free ivNmodule

of r a n k ^ l . For iV a free i?-module of r a n k > l our claim is implicit in

(3. 5) and (3. 8). In the general case consider the pertinent commutative

diagram

(8>Λ
* End^iV —

tvc

M®RtYc

N I I trc

M(S)RN

Since the tensor product of finitely presentable modules is finitely present-
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able (4. 9) implies for every prime ideal p of R the commutativity of the

following diagram

EndRpMp®REndRpNp — > (EndRM(g)REndRN)p > (EndRM($)RN)

T ^ ) *'" '

EndBrMp®BpNp

p

The composition of the top homomorphisms equals (g)Rp as is seen easily. Hence

the composition of the bottom homomorphisms equals tMptNp. Now, if p is

not in the support of N then clearly {tMtN)p has domain and codomain the

null module and is thus an isomorphism. If p is in the support of M then

Np is a finitely generated free i?p-module of positive rank and our previous

remarks concerning the free case imply that {tMtN)p is again an isomorphism.

Hence a well known globalization theorem shows that tMtN is indeed an

isomorphism.

(4. 13) COROLLARY. Suppose that M is a finitely presentable R-module and that

N is a finitely generated, faithful projective R-module. Then there exists an

isomorphism t:Trc

M—>Trc

M®RN such that the diagram

®N
EndRM > EndR{M®RN)

trc

M trc

M®RNψ trc

N(idN) t ψ

Trc

M •—>Tr c

M ® R N

commutes.

Proof. (4. 11) and the remark following the proof of (4. 11) imply that

for N a finitely generated, faithful projective i?-module tr^ equals the com-

position

Φ~N εN

EndRN —>N*®RN >R .

It is then clear that t = tMiN makes the above diagram commutative.

Hence (4. 12) proves our claim.
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(4. 14) PROPOSITION. Let M be a finitely generated projective R-module. Then

for any homomorphism p: R—>S of unital rings ec{ρ): p*Trc

M—>Trc

p*M is an iso-

morphism.

The proof of this last statement follows the pattern of previous proofs

using (4. 9) and shall therefore be omitted.

In view of (4. 9) it would be quite interesting to determine the trace

modules Ύτc

M for finitely presentable modules M over local rings. However,

only partial results are available here.

(4. 15) THEOREM. Let R be a {not necessarily noetherian) local ring with maximal

ideal m. Let M^ψO be a finitely generated R-module such that char (Rim) does not

divide the minimal number of generators of M. Then there is a canonical epi-

morphism Trc

M >R/m.

Proof The canonical homomorphism EndRM—>EndRί mM/mM gives

rise to a commutative diagram

End^M > Ύrc

M

i Ϊ
EndR! mMlmM — > Ύrc

MlmM

where the map on the right hand side is an i?-homomorphism with respect

to the obvious structures. M/mM is a free i?/m-module of rank equal the

minimal number n of generators of M. Since Ύrc

MlmM is isomorphic to

Rjm due to (3. 8) it remains to be shown that the lower dogleg in the

above diagram is an epimorphism. Let s ^ Rlm~Ύrc

MlmM. By assumption

we can form n^s. Evidently the trace of the homothety of MjmM by n~xs

equals 5. This homothety, however, is the image of the homothety of M

by any element r of R satisfying cl(r) = n~ιs. Hence our claim.

(4. 16) COROLLARY. Let M be a finitely representable R-module such that for some

prime ideal p of R in the support of M, char (RpjpRp) does not divide the minimal

number of generators of Mp. Then Trc

M is not the null module.

Proof (4. 9) and (4. 15).

§5. Predeterminants for Endotnorphisms in jβ-monoidal Categories.

By a monoid with zero is meant an associative, unital multiplicative

system M in which there exists a (then unique) element 0 such that 0 m
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= m 0 = 0 holds for all elements m of M. If R is an associative unital

ring then the multiplicative structure of R furnishes an example of a monoid

Rx with zero. By a homomorphism between monoids with zero is meant a

map that preserves all products as well as the zero and the unit element.

Let R be an associative unital ring. Then we shall speak of a left R-

monoid M if M is endowed with the structure of a monoid with zero and

with a left operation ω: R x M >M satisfying—with rm standing for

ω(r9 m)—

[r1r2)m = rx{}\m) , r{mxm2) — (rm1)m2 = m1(rm2)

\m — m , Orn = rϋ = 0

If A is an associative left i?-algebra with unit then the multiplicative struc-

ture of A furnishes an example of a left J?-monoid Ax. A left monoid

with zero is in the obvious manner a Z2-monoid.

By an i?-monoidal category is meant a category C together with a

covariant "structural" Hom-functor Horn: CopxC—>MonjR, MonB being

the category of left i^-monoids and their obvious homomorphisms, rendering

Horn

-> S

commutative where ] | : Mon^ > S is the standard forgetful functor. The

prime example for such categories are furnishes by partially forgetting the

structure of i?-additive categories A: in this case End A carries the structure

of an associative unital left i?-algebra whence (End A)x is a left i?-monoid.

We can now formulate the universal problem, and its commutative

companion, by substituting Mon β for Mod β in the definition given in §3.

(5. 1) PROPOSITION. Let C be an R-monoidal category. Then both the universal

problem of §1 and its commutative version admit a solution for every object of C.

Proof An easy argument involving Rx shows that every monomorph-

ism in Mon^ is an injection. Since Mon^ obviously satisfies the additional

assumptions of (1. 5) our claim is verified.

Given the object A of C we shall denote the solution (uA,UΛ) of this

universal problem (resp. the solution (ul9Ul) of its commutative version) by

{C-pdtA9 C-pDtA) (resp. {C-pdtA, C-pDtA)) and call it the predeterminant (resp.
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the commutative predeterminant) on A. Whenever the reference to the R-

monoidal category C is clear the prefix C- shall be dropped.

(5. 2) COROLLARY. For every object A the morphisms pdtA, pdtA9 and wA:

pDtA — > pDtA are surjections.

Proof (1. 7) together with the fact that epimorphisms in Mon^ are sur-

jections (an assertion that can be obtained in the same manner as in the

category of groups).

At this point a word of justification for the term "predeterminant".

For R a commutative unital ring, M a finitely generated, projective, unital

i?-module, and μ an endomorphism of M the determinant det μ e R has

been defined in [12]. The resulting map det: (End^M)*—>R has the

properties set forth in condition (iic) for the commutative version of the

universal problem in §1. Hence, if Det^ stands for the i?-monoid det(EndβM)x

there exists a unique epimorphism (and thus surjection) of i?-monoids

PM\ pDtc

M—>ΌetM rendering

(EndβM)

det

commutative. Hence pdtM as well as pdtc

M furnishes a description of the

multiplicative structure of End^M that is at least as discerning as the one

furnished by det. In general pc

M cannot be expected to be an isomorphism:

If R = Z2 and M= Z2@Z2 then Det^ = Z2 while pDtc

M consists of three ele-

ments, say, 0, 1, and 2 with 0 being the zero, 1 being the unit, and 2

satisfying 2 2 = 2 (note that precisely the elementary automorphisms are

mapped to 2 by pdtc

M).

In analogy to (3. 7) we have here

(5. 3) PROPOSITION. Suppose that the objects Al9 , Akof C satisfy Hom(AK9Aλ)

= 0 for all rc^ λ. Then there is a commutative diagram

UpdtAκ

Π End Aκ > Π pDtAκ

^ pdt@Aκ ^
End © Aκ > pDt®Aκ
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the isomorphisms in it being canonical. Similarly for the commutative predeterminant.

Proof. Straight forward.

(5. 4) PROPOSITION. Suppose that a is an automorphism of A. Then φdtAa

as well as φdtc

Aa is a unit {note that in a monoid with zero a unit is different from

0 if and only if 1 =V 0 holds).

Proof. Since pdtA is a surjection by (5. 2), pd£A(idA) is the unit element

in pDtA. Hence our claim follows routinely.

(5. 5) COROLLARY. Suppose that the automorphism a of A is in the commutator sub-

group of Aut A. Then pdtAec as well as pdtAa is the unit element in $DtA resp.

pDtc

A.

Proof. Immediate from (5. 4).

(5. 6) COROLLARY. Suppose that every endomorphism of A that is different from 0

is in fact an automorphism. Then wA: φDtA — > φDtA is an isomorphism and

φDtA — {0} is canonically isomorphic to the factor commutator group of End ^4—{0}.

Proof. Immediate from (5. 4).
k

We shall now deal with finite direct sums of the type © A. Let us

denote the canonical injection (resp. canonical projection) of the K. sum-
k k

mand into © A (resp. of © A onto the K. summand) by iκ (resp. φκ).
k

Then an element μ End © A is called elementary if there exist indices

tc0, λ0 with κ0 =*f Λo such that

φκμίκ = id^ for all K = 1, , k

= 0 for all K ̂  κQ, λ =^ λ0, κ^λ .

k

Clearly an elementary endomorphism of © A is indeed an automorphism.

We shall now list a few results concerning elementary automorphisms.

(5. 7) PROPOSITION. Let A be an object of the R-additive category A. Then for
k

every elementary automorphism a of © A with k>2,pdt^Aa is the unit element.

Proof. [3], Corollary (1. 5), (i), together with (5. 5).

The restriction k > 2 in (5. 7) is necessary as can be seen from the

example following (5. 2). Yet in special cases the assertion of (5. 7) remains

valid for k = 2:
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(5. 8) PROPOSITION. Let A be an object in the R-additive category A. Assume

that the R-algebra End A contains units ul9u29vl9v2 such that the ideal generated by

ux + u2 and vx + υ2 equals End A. Then for every elementary automorphism ε of

A + Ay pdtAΘAε is the unit element.

Proof If 1 = a{uί + u2) + b{vt + v2) in End A then

/I r\ (lu1 rbu^v^X lvλ —rau^v

\0 1/ lAo u2 j ' \0 v2

For this proof see also [3], Lemma (1. 6).

We shall now slightly modify a definition given in [3]. Let R be a

(not necessarily commutative) unital ring. Then the positive integer n0 is

said to define a right-stable range for R (in [3]: for GL{R)) if for every n>n0

and all r19 , rn e R satisfying Rrλ + + Rrn = R there exist s19 9

5W_! e R such that R(rx + sxrn) + + R{rn-ι + sn_1rn)= R holds. Similarly

one defines a left-stable range for R. Finally, 7t0 is said to be a stable

range for R if it is both a left-stable as well as a right-stable range for R.

It is pointed out in [3] that for a semi-local (not necessarily noetherian)

ring no = l is a stable range: that for a Dedekind ring n0 = 2 is a stable

range; that for a coordinate ring of a ^-dimensional affine algebraic variety

n0 = d-\-l is a stable range (see also [3], Theorem (11. 1)).

Let A be an object in the i?-additive category A. Just as in the case

of the trace there is for every n > m & canonical morphism of /^-monoids

φDt%A >φDtφA rendering the diagram

φ ^ A

(End 0 AY > VDtlA

m I i

®icL
Ψ n φdtlA Ψ

(End © A)x

commutative. Similarly for the commutative predeterminant.

(5. 9) PROPOSITION. Let A be an object in the R-additive category A. Assume

that n0 is a stable range for the ring End A and that End A is a principal ideal

domain. Then for every n > max(2, n0) the canonical morphism Ί>Dtn^A — >

φDt^A is an epimorphism [and thus a surjectioή). Similarly for the commutative

predeterminant.
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Proof. Denote End A by B. Then an endomorphism of © A is a n x n

matrix μ with entries in B. Since, by assumption, B is a principal ideal

domain Bbι + + Bbn= Bb together with bv = VJb implies Bb{ + + 5%

= Z?. Hence the procedure in [3], proof of Theorem (4. 2), a), shows the

existence of a product ε of elementary automorphisms such that

However,

O

Again by the same technique there exists an elementary automorphism ε'

such that X

Y'

0

Z'

0

•s 0

O

0

0

1

Hence (5. 7) together with an obvious induction argument implies that

φdtlAμ equals

o
pdt o >pdt\ •pdti

(5. 10)

O -I

Since every permutation matrix is a product of elementary matrices another

application of (5. 7) leads to

pdt I cv^ = pdt ^^^

which together with (5. 10) proves our assertion.

(5. 11) COROLLARY. Let either R be a (possibly skew) field and n^2 or R

(possibly a skew) field other than Z2 and n arbitrary. The% with A = ModR and

Horn the obvious functor from AopxA to Ab, pdt®A is the usual determinant (see

[1], [10]) and W®R: pDt®A—>rpDtc

n is an isomorphism.
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Proof. First we observe that under the present assumptions the require-

ment n>max(2,n0) in (5. 9) can be replaced by n>l as n>2 was only

needed for invoking (5. 7) which under our alternate assumptions may be

replaced by (5. 8). Hence (5. 9) implies that every non-zero element of

is the image of some matrix of the form

/ r O
(5. 12) 1

\ O 1

with r ^ O . Since every non-zero element of R is a unit it is clear that

pdt^R is in fact commutative and hence w^R is an isomorphism. More-

over the classical determinant assumes the same value on two matrices of

the form (5. 12) if and only if the entries in the upper left corner are conju-

gate to each other. Thus two such matrices are mapped by pdt^R into

the same element if and only if the entries in the upper left corner are

conjugate to each other. This implies that the canonical morphism p%R

pDt^R—>Ώet^R is an injection. Since detgR: {End®R)x—>Oet"R is also

a surjection our assertion is proved.

(5. 13) COROLLARY. Let R be a commutative principal ideal domain having 1 as

a stable range. If n^ 2 or if n is arbitrary while R satisfies the assumptions of

(5. 8) (imposed there on End A) then the conclusions of (5. 11) are valid.

Proof. Same as the proof of (5. 11).

In connection with (5. 13) see also [3], §5, Remark 3; and [7]; and also

[15]. For R a euclidean domain (5. 13) has been proved in [18].

(5. 14) PROPOSITION. Let R be a commutative unital ring. If n =̂= 2 or if n is

arbitrary while R satisfies the assumptions of (5. 8) (imposed there on End A) then

the canonical morphism V®R- vDt@R—>Ί^Q^®R~ R ™ an injection on the set of

those elements which are images of triangular matrices.

Proof. Using Lemma 1 of [18] the reasoning of the proof of (5. 10) shows

that with τ a triangular matrix

/ detτ lm O ̂

®R ®R\ O " 1

holds. Hence our claim follows immediately.
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§6. Predeterminants for endomorphisms of jβ-modules.

As in §4 we assume that R is a commutative unital ring. We then

deal with the special case of §5 in which C is the category Mod^ and Horn

is the usual Hom-functor HomB.

(6. 1) PROPOSITION. Suppose that M is a finitely generated projective R-module.

Then the endomorphism μ of M is an automorphism if and only if pdtM{μ) (resp.

pdtc

M(μ)) is a unit.

Proof It is an easy consequence of [12], Proposition 1. 3, that both the

set of automorphisms of M and the set of non-automorphisms of M are

submonoids of EndRM. Hence the map from End^M to the augmented

group3) of the factor commutator group of Aut^M that assigns to each auto-

morphism of M its canonical image in the factor commutator group of

AutRM and to each non-automorphism the zero element is in fact a homo-

morphism δ of monoids with zero. The ring R operates on this augmented

group through the canonical homomorphism R—^End^M, and with respect

to this structure δ is a homomorphism of i?-monoids. Therefore we have

a canonical homomorphism of i?-monoids from pDtM (resp. pDtc

M) to this

augmented group. Now, if pdtM{μ) (resp. pdtc

M(μ)) is a unit the canonical

homomorphism will send it into the factor commutator group proper. Thus

μ is an automorphism. The converse was already stated in (5. 4).

(6. 2) COROLLARY. Suppose that M is a finitely generated projective R-module.

Then the group of units of both pDtM and pDtc

M is canonically isomorphic to the

factor commutator group of AutRM.

Proof Since every unit in both pDtM and pDtc

M is the image of auto-

morphisms only the group of units in either monoid must be abelian by

the universal property (i) resp. (ίc) of §1. Therefore the homomorphism δ

constructed in the proof of (6. 1) must be an isomorphism on the group of

units.

Let S be a multiplicatively closed subset of R and let M be an R-

monoid. In the set Mx S we have the well-known equivalence relation
u{m1, Sj) ~ (m29 s2) if and only if there exists a t e S with ts^m^ =

3) By the augmented group of the group G is meant the monoid with zero that is obtained
from G by adjoining a zero element.
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The set of equivalence classes is denoted by S~λM. S"1M carries a canonical

left S'^-monoίd structure, and the assignment of S^M to M extends in the

obvious fashion to a covariant functor from Mon β to Moiis-iβ. Moreover

it is clear that the canonical map M >S"1M is a homomorphism of /?-

monoids.

As in §4 we have for every i?-module M a commutative diagram

(EndβM)x

VdtM

pDtM pdt&

S~lpDtM

in which all the undesignated homomorphisms are canonical. A similar de-

finition holds for the commutative predetermίnant, in which case the bottom

homomorphism shall be denoted by tc

StM.

(6.3) THEOREM. Suppose that the canonical homomorphism φ\ S~\EndRMY—>

{Ends-iRS~ιM)* is an isomorphism. Then tc

s,M is also an isomorphism {and thus a

bijectioή). In particular this is true if M is finitely presentable.

Proof. Clearly the proof for (4. 9) does not carry over to the present

situation. We shall now give a proof which mutatis mutandis also works

in the case discussed in (4. 9).

Let ψ: S~1(Endi2M)x •—>N be a S'1/vMiomomorphism which satisfies

Ψiμifa) = ΦίPiPi) for all μu μ2 in 5~1(Endi2M)x. Denoting the canonical i?-

homomorphism {EndRM)x >5~1(EndjRM)x by c we obtain a unique R-

homomorphism χ': pDtc

M >N satisfying ψc = lr pdtc

M. Let m,mr be in

φDtc

M such that for some s, s' in S, m = -??- holds in
s Then

there exists an element t in S with tsnί = ts'rn. Hence tslr{mr)=tsfxf(m) and,

as N is a S^tf-monoid, _χ

map χ: N by putting

Therefore we can define a

^ ^ - . Evidently X is a S~ιR-

S~ιpDtc

M is the canoni-

lr c. Since

homomorphism satisfying Xr = Xc' where cr:pDtc

M

cal ^-homomorphism. Hence ψc = X'-pdtc

M = Xc' pdtc

M =

(Endi2M)x generates S"1(Endi2M)x as a S'^-monoid we conclude that

ψ = X'S~ιpdtc

M. Uniqueness of X follows similarly. Since ψ was assumed
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to be an isomorphism this means that S~l/pdtc

M φ~ι solves the commutative

version of the universal problem for S~ιM. Hence our claim follows by

standard argument.

(6. 4) COROLLARY. Suppose that the R-module M is finitely presentable. If the

prime ideal p of R is not in the support of M then (pDtc

M)p = 0.

Proof Since Mp = 0 and since pdtc

Mp: (EndRpMp)
x >pDtc

Mp is an epi-

morphism we conclude that pDtc

Mp is the zero monoid. Hence (6. 3) finishes

the proof.

(6. 5) COROLLARY. Suppose that M is a finitely generated protective R-module.

Suppose that the prime ideal p of R is in the support of M and that either the p-

rank of M is ^ 2 or that Rp satisfies the condition of (5. 8) {stated there for End A).

Then the group of units of (pDtc

M)p is canonically isomorphic to the group of units

ofR,.

Proof By (6. 3) the group of units of {pDtc

M)P is isomorphic to the group

of units of pDtc

N where N is some finitely generated free ^-module of

positive rank. By (6. 2) the latter is isomorphic to the factor commutator

group of AutRN which, due to (5. 7), (5. 8) and [3], Theorem (4. 2), b), is

isomorphic to Rp.

(6. 6) COROLLARY. Suppose that R is a principal ideal domain and that M is a

finitely generated free R-module of positive rank. Then for every prime ideal p of R

in the support of M, {pDtc

M)p — Rp.

Proof. Since every localization of a principal ideal domain is a princi-

pal ideal domain having 1 as a stable range, (5. 13) and (6. 3) imply our

assertion.

It is clear that the aspects of §4 other than the localization principle

(4. 9) carry over to φdt and pdtc in various degrees. Details are left to the

reader.

It should also be remarked that mutatis mutandis the considerations of

§5 and §6 remain valid when the category Modβ is replaced by the category

Mod£ of null morphisms and isomorphisms of ivNmodules (Note that R is

operating on M.od%(Mί9 M2) as follows. If r e R is a unit then r operates

on "M.od%(MuM2) in the usual fashion; if r e R is a non-unit then r μ is

always the null morphism).
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(6. 7) THEOREM. Let R be a {not necessarily noetherian) local ring with maximal

ideal m. Let M=V0 be a finitely generated R-module such that with n the minimal

number of generators of M exponentiation by n maps Rim onto itself. Then there is

a canonical epimorphism φDtc

M —>{Rlm)*. In particular there is an epimorphism

from the factor commutator group of AutRM to {Rim)*.

Proof The fact that the canonical morphism 'pDtu —>{R[m)x is an

epimorphism is proved along the lines of the proof of (4. 15). This argu-

ment then reveals that already Aut^M maps onto {Rim)* via (End^M)* — >

pDt M'—>{Rlm)x. Hence our assertion follows.

(6. 8) COROLLARY. Assumptions as in (6. 7). If pdtc

M{μ) is a unit then μ is

an epimorphism.

Proof Looking at the appropriate re-interpretation of the diagram in

the proof of (4. 15) we conclude that the image of μ in EndRImMlmM is an

isomorphism. Hence an easy application of the Nakayama Lemma proves

our claim.

(6. 9) COROLLARY. Let M be a finitely presentable R-module such that for some

prime ideal p of R in the support of M exponentiation by n maps RplpRp onto itself

n being the minimal number of generators of Mp. Then pDtc

M is not the null

monoid.

Proof. (6. 3) and (6. 7).

§7. Concluding Remarks.

I. The universal problem expounded in §1 leads to another invariant for

endomorphisms of modules. Let C be the category Modi? with a commuta-

tive ring, L the category Alg# of unital i?-algebras, 1 the map that assigns

to each i?-module M the i?-algebra EndRM, and | | the standard forgetful

functor. Then the universal problem has a solution {uM, UM) for every

module M. uM clearly "combines" the properties of tr^ and φdtM. One

checks quickly that for every free i?-module M of rank =̂= 1 the universal

solution UM is the zero algebra. Since the localization principle (4. 9) car-

ries over to this case one can prove that UM is the zero algebra for every

finitely generated projective i?-module M for which every local rank is

different from 1. Hence the universal solution UM measures the deviation

of the module M from being projective.
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II. Let 2 be a species of an algebraic structure (in the sense of [4], p. 42)

in which for every principal term xt one of the internal compositions, say

T \ is singled out and in which the following is part of the axiom of Σ :

"for every i, T ί is defined throughout, is associative, and possesses a

neutral element".

Given a structure of the species Σ o n the principal sets Sl9 , Sm and

the auxiliary sets Tu , Tnf one obtains a one-object category CΣ,S,T

whose set of morphisms equals Sx x x Sm and whose multiplication is

determined, in each component, by the internal composition T \ If et is

the neutral element for T* then E = {e19 , em) is the sole object of this

category. Evidently CΣ,S,T{E) = Sxx xSm and Cl,s,τ{E) consists precisely

of those m-tuples (u19 , um) for which every ut is symmetric with respect

to T \ CΣ,S,T{E) carries also the original structure of species Σ

Denote by scΣ the species that is obtained formally from Σ by adding

to the axiom of Σ

"for every i9 each element that is symmetric with respect to ~P is

central with respect to T* " .

Let C be the category CΣ,S,T, L the category CS CΣ of structures of

species scΣ and their representations (cf. [4], p. 48), / the map that assigns

to E the canonical structure of species Σ on CΣ,S,T{E) and | | the canoni-

cal forgetful functor. If CSCΣ is complete and if | | preserves monomorph-

isms then we take from (1. 5) that the universal problem has a solution

{UΣ,S,T,UΣ,S,T) for every structure of the species Σ on the principal sets

Si, , Sm and on the auxiliary sets Tl9 , Tn. Representations between

various such structures then give rise to representations between the associated

universal solutions; this assignment obviously constitutes a covariant functor

that is adjoint to the inclusion of CSCΣ in the category CΣ of structures of

species Σ

III. Let R be a commutative unital ring, let C be the iϋ-monoidal category

associated with ModΛ, and let Horn be the usual Hom-functor Hom^. For

every i?-module M we pose now the universal problem for all morphisms v

in Moiitf with domain (EndRM)x satisfying:

M(j«i)= M(J"2) whenever there exists a prime ideal p of R and an

element a e Aut^M^ such that -&- = a -&- a'1 holds.

Again on has an obvious commutative companion to this universal problem.

As before one obtains in both cases the existence of a solution for every
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i?-module M. This solution shall be denoted by (ldtM,lDtM) resp, (ldtc

M,

lDtc

M). A number of results concerning predeterminants carry over to the

present situation. In particular the localization principle is valid for finitely

presentable modules and the analogue to (5. 14) remains true. We claim

that this suffices to prove for a commutative unital ring R whose nilradical

is zero and which satisfies the assumptions of (5. 8) (imposed there on End A)

that for any integer n the canonical morphism 1^R: IDt^ >Όet^R = R

is an isomorphism. Obviously it suffices to show that the canonical morph-

ism is an injection. Let / ldt{μ) = det(μ) = 0. Then Lemma 3 of [18]

implies the existence of a triangular matrix τ with det(r)=^0 such that one

column, say the first one, of vanishes. Hence μτ is the product of

o '

with a suitable matrix. Thus the analogue of (5. 14) shows that ldt(μ) ldt(τ)
n

= 0. If p is a prime ideal in R not containing det(τ) then —<=ΈndRp@Rp

is invertible, which allows us to conclude ^' = 0 . By the localization

principle we have then ldt[~-\ = 0 and hence the universal problem implies

ldt(μ) = 0. Next, let μx and μ2 be such that / ldt{μx) = I. ldt(μ2) =¥ 0. If p

is a prime ideal in R not containing det(μx) then both - ^ - and - ^ - e
n 1 1

p are invertible and have the same determinant. Hence

y1 belongs to SL(n,Rp) which equals [GL(n,Rp),GL{n,Rp)] due to

[3], Proposition (5.1), a). Therefore ldt~^~— Idt-^- and the universal

problem implies ldt{μλ) = ldt(μ2). Hence our claim. Clearly if we exclude

n = 2, R need not to satisfy the assumptions of (5. 8) for our claim to

remain valid.
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