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ON SOME PROPERTIES OF NORMAL MEROMORPHIC

FUNCTIONS IN THE UNIT DISC

TOSHIKO ZINNO

1. We denote by D the unit disc {z | z \ < 1} and by &> the totality

of one to one conformal mappings zr = s{z) of D onto itself. A meromorphic

function f(z) in D is normal if and only if the family {f(s{z))}Kz^j^ is a

normal family in D in the sense of Montel. We denote by 31 the totality

of the normal meromorphic functions in D. Moreover, Noshiro introduced

in [5] the notion of the normal meromorphic functions of the first category:

f(z) is a normal meromorphic function of the first category if and only if

f(z) belongs to 31 and any sequence {fn{z)} obtained from the family

{.f(is(z))}s(z )ej&' c a n n o t admit a constant as a limiting function. We denote

by SΊj the totality of the normal meromorphic functions of the first category.

For instance, Schwarzian triangle functions belong to 9l1# In §1, we shall

give a necessary condition (Th. 1) and a sufficient condition (Th. 2). for a

function to belong to 5Jl1# Further we shall give some properties of a

function of 9Ϊ1# In these proofs the Hurwitz theorem will play an essential

role.

In 1957, Lehto and Virtanen ([4]) showed that even if f{z) and g(z)

belong to 31, f(z) + g(z) and f(z)g(z) do not necessarily belong to 31. Later

Lappan ([2], [3]) gave sufficient conditions for f{z)±g{z) and f(z)g(z) to

belong to $1. In §2, we shall give a more general sufficient condition for

f{z)g{z) to belong to 91 than that of Lappan.

§1. Normal meromorphic functions of the first category

2. We consider the hyperbolic distance

dlz z)- λ log I 1 " "
Δ | 1 —

log
Δ | 1 — ZιZ^\ — \Zx Z2\

for zx and z2 in D, and the chordal distance
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and

X(a9 oo) = /1 + 1

where a and β are complex values. Put

We denote by U(z9δ) the closure of U(z9δ).

LEMMA 1. Let f(z) be a function of 9ϊlβ Then so is

This follows immediately from the definition of 9tlβ

LEMMA 2 (Noshiro [5]). Z,0£ /(z) fo <z function oj 3tl0 Then there exists a

positive number ρQ such that for any point z in D,f{z) takes every value at least

once in U{z, p0).

THEOREM 1. If f(z) belongs to 3l19 then f(z) has the following three pro-

perties :

(i) There exist a positive number pQ and a positive integer q such thai for

any point z in D and every value a,

1 < q{z, a) < q,

where q{z9 a) is the number of a-points of f(z) in U{z, ρQ).

(ii) For any two values a and β {a ψ β)9

inf d(zv(a),zμ(β))>0
v = l,2,3,.
μ = l,2,3,..

where zv(a) and zμ(β) denote a-points and β-points of f(z) respectively.

(iii) For any value a and any positive number p, there exists a positive

number mβ{< 1) such that

X(/(z), ct)>mβ in Z E D - U U(zv(a), p).

Proof of (i). Let pQ be the same quantity in Lemma 2. Then

q{z, a) ̂  1 for any point z in D and any value a. Suppose that the set
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{g(z,a); z^D and a is an arbitrary value} is unbounded. There exist a

sequence {zΛ} of points in D and a sequence {an} of values such that

(1. 1) lim q(znyan) = oo.
n—>oo

Put

'•<*> = ' ( - τ # S h )
Since /(z) belongs to %ll9 there exist subsequences {_fn/c(z)} of {/»(&)} and

{«nΛ} of {αn}, a non-constant function fo{z) and a value «0 such that

limanj, = a0 and {/Λλ(z)} converges uniformly to fQ(z) on each compact
k—>oo

subset of A Put

0*(S) = fnk (Z) - «» 4 ,

or

Then -{gk{z)} converges uniformly to gQ(z) on each compact subset of D. By

the Hurwitz theorem, the number of zeros of gk(z) in £7(0, ρ0) is not larger

than that of gQ{z) in £7(0, /o0) for every sufficiently large k. On the other

hand, since a transformation s{z) G ̂  preserves the hyperbolic distance,

the former is equal to q{zΛk9 αΛjfe). This contradicts (1. 1).

of (ii). Suppose that there exist two values a and β [a φ β) such

d(zv(a),zμ(β)) = 0 .

of Ov(α)} and {zμ(β)} such that

that inf d(zv(a),zμ(β)) = 0 . Then there exist subsequences {zQ and
l'2'3'

Put /• (2) - /Y ig + < ^ f - z« ~ g^ and t - s (z) - * + z" Bv

ζ = sn{z), 0 and ζn correspond to zή and z'£ respectively. Obviously

lim d{0, ζn) = lim d{z'n9 z") = 0. Since f(z) belongs to 3̂ 1, a subsequence
n-+oo w-»oo

ίfnk (z)} of ί/»(«)} converges uniformly to a limiting function /0(z) on each

compact subset of D. Therefore lim/Λ (ζn ) = l im/ n (0) = /0(0). On the
k->oo k^-oo

other hand, fnj£nk) = / ( < ) = β and /Λjt(0) = /(z£J = α. Hence α = β; this
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is a contradiction.

Remark. As we see above, we can derive (ii) under the weaker condi-

tion /(«) e 5B than the condition f(z) e %.

Proof of (iii). By Lemma 1, we may assume without loss of generality

that a = 0. Let {avysml be all the zeros of f(z) in D. Suppose that there

exists a positive number p such that

inf χ(f(z), 0) = 0.
oo

z<=D— u

CO-

Then there exists a sequence {zΛ} of points in D— U U{av, p) such that
v = l

l im/(zJ = 0. Put /»(z) = /Y β + g»-Λ Since /(z) belongs to $l19 there
n->oo \ 1 + ίSn2 /

exists a subsequence {/Λ A ;(Z)} of -C/Λ(z)} converging uniformly to a non-

constant limiting function fQ(z) on each compact subset of Zλ It holds

/0(0) = lim fnk (0) = lim f(znk) = 0.

Taking δ, 0 < δ < -~, sufficiently small, fύ(z) has only one zero in ί/(0, δ).

Let m be its multiplicity. By the Hurwitz theorem, the number of zeros

of fnk («) in ί/(0, δ) is equal to m for every sufficiently large k. Namely,

that of f(z) in U(znk, δ) must be equal to m for every sufficiently large k.

On the other hand, we took {zΛjfc} and δ such that av φ U(znk, δ) for all y

and all &. This is a contradiction. Thus the proof of Theorem 1 is

complete.

3. The inverse of Theorem 1 also holds. In fact, we can give its

proof assuming (i), (ii) and (iii) only for zeros and poles.

THEOREM 2. Let f(z) be meromorphίc in D. Suppose that f{z) satisfies

the following three conditions:

{ι)r There exists a positive number p0 such that f(z) takes zero and oo at

least once in U(z, p0) for any point z in D.

(ii)' Let av and bμ be zeros and poles of f(z) in D respectively, then

inf d{aV9bM)>0.
v = l,2,3,
^ = 1 , 2 , 3 , " .

(iii)' For any positive number p, there exists a positive number mp such that
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\f(z)\<mp in Z<Ξ D-Zu(bv,p)

and

|/(z)|>-i- in z e D — U U{aV9p).

Then f(z) belongs to 3t1#

Proof. Take any sequence {_sn{z)} out of £*. Put /n(z) = /(sΛ(z)).

For any fixed point zQ in D, put fΛ = sn(z0).

(a) If inf tf(£n, &y) > 0 , then U(ζwδx) c D — U £/(*„, δi), where
n=l,2,3, . . »» = i
v = l,2,3,

0 < ^ ! < - ~ - inf d(ζn9bv). By the condition (in)', /(J?) is bounded in
Z «=1,2,3,

Uiζn.δJ for » = 1, 2, 3, . Hence /n(z) is also bounded in U{z^δx) for

n = 1, 2, 3, . Thus {fn{z)} is a normal family in U{zQ9 δj.

(b) If inf d(ζn, bv) — 0, then there exist subsequences {ζn } and
n=l,2,3,.
v = l,2,3,

{.bvk} of {ζn} and {bv} such that limί/(fWfc, 6Vfc) = 0. By the condition (ii)',

inf d(ζΛt, av) > 0.

oo ^

It holds that U(ζΛt, δ2) a D — U U{av,δ2), where 0 < ^ 2 < - ^ - inf d(?n t, av).
v = l ^ A;=l,2,3,... *

v = l ,2,3, . . .

By the condition (iii)' there exists a positive number m such that

—- in z€=U(znt, δ2) for * = 1 , 2, 3,

so that

fnk{z)\ >-±- in « €Ξ ί7(20,θ2) for fc = 1, 2, 3,

Thus, {/Λ/fc(z)} is also a normal family in U(z09δ2). Therefore, there exists

a subsequence {fmjc (z)} of {fn{z)} such that {/Wfc («)} converges uniformly to

a limiting function on each compact subset of D. Since a transformation

s(z) G ̂  preserves the hyperbolic distance, it is easy to see by the condi-

tion (i)' that any limiting function of the above normal family is non-

constant. The proof is now complete.
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4. Let f{z) be meromorphic in D and let n(r,a) be the number of

^-points of f{z) in the domain {z\ \z\ < r}.

THEOREM 3. If f(z) belongs to %l19 then there exist two positive numbers A

and B suck that for every r, sufficiently near 1,

Π 9) B ^ γjίy ^ ^ A

where A and B are independent of the value a.

To get Theorem 3, we need the following

LEMMA 3. For positive numbers r and p, with 0<r<l and 0<p<d{0,r),

let θ be the positive angle formed by the real axis and the line segment, starting from

the origin^ tangent to the circle d{r,z) = p.

Then ring- ( ^ - 1) (1 - ^) .
4e2Pr

This is obtained by an elementary calculation.

Proof of Theorem 3. We shall first prove the left inequality of (1. 2).

Put

and Rn = {z; (2n — l)p0 < d{0, z) < {2n + ϊ)pQ} for n = 1, 2, 3, , where j0o

is the same quantity in (i) of Theorem 1. Let mn(ά) be the number of

^-points of f(z) in Rn and let θn be the positive angle formed by the real

axis and the line segment, starting from the origin, tangent to the circle

d(ζ2n9z) — i°o For any r, ζz<r<l, there exists a positive integer N such

that

(1.3)

Obviously

(1. 4) n(r, a) > rnN{a).

In the ring domain RN, we can take at least ~~ mutually disjoint open

discs with a hyperbolic radius p09 where [ ] denotes the Gauss sign.

Therefore by (i) of Theorem 1, we have
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(1 5>

and moreover, by Lemma 3

~ c — ^ ~ !> where C - —p——-

Thus by combining (1. 3), (1. 4) and (1. 5)

(1 - r) n{r, a)>{l- ζ2N+z)mN{a)

> 2 (c e*NP»-l Λ

It follows immediately that there exists a positive number B such that

for every r, sufficiently near 1, and that B is independent of a.

We shall now prove the right inequality of (1.2). Put D{p) = -[z;

d{O,z)<p}, A{r) = II dσ{z) = _ 2 and s0 = 11 dσ(z), where dσ{z) =
J J JL /̂  J *)

rdraff ^ Since dσ(z) is invariant by 5(2) e ^ , 50 is independent of z.
( 1 - r 2 ) 2

Obviously, for any fixed value a,

D(d(0,r) + P0)ZD U U(zu{a),pQ).
( )D(dQ>y)

By (i) of Theorem 1, each point in the domain D(d(0, r) + p0) belongs to at

most ^-pieces of the open discs in {U{zv{a), pQ); zv{a) e D(d{0,r))}. Hence it

holds

jj dσ((z)
,p0)

where r' = ^2
wnere r ^2

° - 1 + r ( ^ + 1)

We get immediately that

1-r =

where 4̂ is a constant which is independent of a. The proof of Theorem

3 is complete.
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Let T(r,f) be the characteristic function of f{z) in the sense of Nevan-

linna. By Theorem 3 and Lehto and Virtanen ([4], p. 58), we shall get

the following

COROLLARY 1. If f(z) belongs to 3l19 then there exist two positive numbers

Ar and Br such that

Br log -y- ί— +0(1) < T(r, f) < A' log ——ί— + 0(1).

COROLLARY 2. If f(z) belongs to 3l19 then for any value a,

oo

(1) Σ (1 ~~ |3 v ( 'α)l) = °°

and
oo

(2) Σ (1 ~~ \zΛ&)\)1+ < °° for any positive number λ.

Proof of (1). For any value a,

Σ (1 - I zv(a) I) ̂  Σ Σ ( 1 - 1 zv{a) I) ̂  Σ (1 - ζ*n+i)fnn(a)
V = 1 W = l 0j/(ot)Gxvn w = l

By (l. 5)

1

I f = OO.

(2). For any positive number λ and any value a,

Σ (l- |M«)l) 1 + i l

l*v(oϋ|<»

= (1 - r)1+λn(r,a) + (1 + λ) Γ (1 - t)λn{t,a)dt
Jo

By Theorem 3

SΞ A(l - r)λ + A(X + λ) ̂  ( 1 J ^ dt = 0(1).

Hence f] (1 - K ( α ) | ) 1 + i < oo.

§2. Products of normal meromorphic functions

5. THEOREM 4. Let f{z) and g(z) be two functions of 3ΐ. Let av and
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a'v be zeros of f(z) and g(z) respectively and let bv and bf

v be poles of f(z) and

g{z) respectively. Suppose that

(1) inf d(av,b'μ)*>0 and inf d{a'v,bμ)>0
V = l , 2 , 3 , . v = l ,2,3,

and

(2) for any positive number p there exists a positive number m9 such that

CO

\f(z)\ <mp in z e D — U U(bu, p),

\g{z)\<mβ in z e D - U E/(δ£, p),

\f(z)\>-^- in z e D— U U(av, p)

m

Then the product f(z)g{z) belongs to 31.

Proof, Take any sequence {sn{z)} out of £f. Put fn(z) = f{sn(z)) and

9n(%) — 9(sn(z)) f° r w = 1, 2, 3, . Since f{z) and g(z) belong to 31, it

may be assumed without loss of generality that two sequences {fn(z)} and

{gn{z)} converge uniformly to limiting functions fo(z), go{z) on each compact

subset of D respectively. For any fixed point z0 in Z), put ζn = sn{z0). We

denote by d1 the least value of inf d(aυ,ζn), inf d(bv,ζn), inf d{a',ζn)
v = l,2,3, v=l f 2,3, . v = l f2,3,
«=1,2,3,. . M=l,2,3, «=1,2,3,

and inf d(b'v,ζn).
v = l,2,3, ..
« = 1,2,3, .

(a) If dί > 0, then by the condition (2) there exists a positive number

m such that

±-< \f(z)\<m a n d - A - < \g(z)\<tn in z <= u(ζnΛ-

*) For two sequences {zn} and {Zm} of points in D, we shall define inf d(zn, z'm) = coyn = 1 J 21 31
W=l, 2. 3,

if {zn} or {a;̂ } is empty.
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for n = 1, 2, 3, . Since U f z0, —M is mapped one to one comformally

onto U(ξu,4f) by z' = sn(z), it holds

A < I /„(«)&.(*) l < ^2 in 2 e C/ (^4'-)

Thus {/n(z)0jz)} is a normal family in £/(z0, A - ) .

(b) Suppose that ^ = 0, say, inf </(«„, £») = 0. There exist sub-
n=l,2,3, •••

sequences {α,Λ} and {ζΛk} of {αv} and {ζn} such that

(2. 1)

By C o n d i t i o n (1), δ2 = inf d{av. b')>0. By C o n d i t i o n (2), fjr(z) is

^ = 1 , 2 , 3 , - .

bounded in u(ζnt9-ψj, so that flrΛjk(ίδ) is bounded in £/Yz0, A-J for every

sufficiently large Λ;. On the other hand, by (2. 1)

so that l im/Λ (20) = lim/(fn ) = 0. It follows that for every sufficiently
A;-> oo k-xx>

large A;, /Λjfc (2) is bounded in a neighborhood ί/(so> ̂ 3) of zQ. Put ^ = min

(-7Γ > 3̂) The product /Λjfc (2;)^ΛΛ (Z) is bounded in £/(«0, δ) for every suf-

ficiently large k. Thus {/Λjfc(2)^Λik(2)} is a normal family in U{zQ,δ). There-

fore, there exists a subsequence lfmk(z)gmk{z)} of {/Λ(z)0n(s)} such that

l/»tWflfffli(z)l converges uniformly to a limiting function on each compact

subset of D. The proof is complete.

6. The following Examples 1 and 2 show that Theorem 4 fails to hold

without Condition (1) or Condition (2).

EXAMPLE 1. There exist two normal meromorphic functions Tx(z) and

T2{z) such that 7\(z) and T2(z) satisfy Condition (2) but not Condition (1)

and Tλ(z)T2(z) does not belong to 31.

To give this example, we need the following

LEMMA 4. Let d be an irrational number satisfying 0 < d < 1. Then the

set {nd — [nd]}n=i is dense on the closed interval [0,1], where [ ] in { } denotes
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Fig. 1 Fig. 2

the Gauss sign, [see G.H. Hardy and E.M. Wright [1], p. 155)

Let Tx[z) and T2(z) be Schwarzian triangle functions whose fundamental

triangles are shown in Figures 1 and 2 respectively. Let their system of

triangles be those shown in [Fig. 1] for 7\(z) and in [Fig. 2] for T2(z), where

we assume Tx{0) = 0, TX(A) = T1(Λr) = ̂ 9 Tx{B) = l, T2(O) = ™, T2(C) = T2(C') = 0

and T2{D) = 1. Then Tx{z) and T2{z) belong to 3tl9 so that Tx{z) and T2{z)

satisfy Condition (2) by Theorem 1. Let ξn and ηn be zeros of Tx{z) and

poles of T2{z) on the segment {z = x + iy 0 ^L.x < 1, y = 0} respectively.

By an elementary calculation, we get d{0,ξn) = n log {1/2Γ +1̂ 3~) a n d d{0,yn) =

2n log(/2~ + 1) for w = 1, 2, 3, Since
2 log (/2 "r 1)

tional number less than 1, it follows by Lemma 4 that the set

is a positive irra-

is dense on the closed interval [0, 2 log (/2~ + 1)]. Thus it is easy to see

that there exist subsequences {ξnk} and {ynk} of {ξn} and {ηn} such that

(2.2)

Hence 7\(z) and T"2(«) do not satisfy Condition (1). The Product φ(z) = T1{z)T2{z)

does not belong to 31. In fact, if φ{z) belongs to 91, then we must have by

(2.2)

lim φ(ξn ) = lim φ(ynk).
fc»oo fc»oo
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On the other hand, φ{ζnk) = 0 and ω{Vnk) = °°. This is a contradiction.

Now we shall give our second example.

LEMMA 5 {Lehto and Virtanen [4]). Let f{z) be a function of 91. If f{z)

has an asymptotic value α, then the value a is an angular limit of f{z).

EXAMPLE 2. Let f(z) be an elliptic modular function and let g{z) be

a function of 9Ϊ1# Then f{z) and g{z) satisfy Condition (1) because f(z)φθ91

and oo. But the product f{z)g(z) does not belong to 91.

In fact, let eίθl be a point at which f{z) has an angular limit oo, let

av be zeros of g(z), and let pQ and q the same quantities as those in Theo-

rem 1. By Theorem 1, there exists a positive number M such that

(2.3) lflf(«)l>M in
v = l

Moreover, since the number of zeros of g{z) in U{z, pQ) is at most q for

every point z in D, the point eiθ* is an accessible boundary point in the

intersection / of the domain D — U U(av,-§±-) and a Stolz domain Δ at eίθκ
v=i \ όq /

Hence there exists a path Γ ending at eiθl in the domain /, so that
lim f(z) = oo. Therefore by (2. 3) lim f{z)g{z) = oo. If f{z)g(z) belongs to

z<=Γ z<=Γ

91, then by Lemma 5 f{z)g(z) must have an angular limit co at e ί β i . On

the other hand, since g{z) has infinitely many zeros in the intersection of

every neighborhood of eίθl and the Stolz domain Δ, f(z)g(z) can not possess

an angular limit at eiOl
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