ON COMMUTATIVE COMPOSITIONS DETERMINED BY THEIR ORIGINS

HISASI MORIKAWA

1. Let K be the universal domain. Let G be a finite additive group of odd order $|G|$ and $X_{a}(a \in G)$ be indeterminates indexed by the elements in G. We mean by P_{G} the projective space $\operatorname{Proj}_{k}\left(K\left[\left(X_{a}\right)_{a \in G}\right]\right)$. Denote by δ_{-1} and $\tau_{b}(b \in G)$ the automorphisms of P_{G} of which duals δ_{-1}^{*} and τ_{b}^{*} are the ring-automorphisms of $Z\left[\left(X_{a}\right)_{G}\right]$ such that

$$
\delta_{-1}^{*}\left(X_{a}\right)=X_{-a}, \quad \tau_{b}^{*}\left(X_{a}\right)=X_{b+a} \quad(a, b \in G) .
$$

For the sake of simplicity we denote briefly

$$
x^{-1}=\delta^{-1}(x), \quad x(b)=\tau_{b}(x) \quad\left(x \in P_{G}, \quad b \in G\right) .
$$

Definition 1.1 Let $e=\left(e_{a}\right)_{G}$ be a point on P_{G} satisfying

$$
\begin{equation*}
e_{-a}=e_{a} \quad(a \in G) . \tag{1}
\end{equation*}
$$

Then two points $x=\left(x_{a}\right)_{G}$ and $y=\left(y_{a}\right)_{G}$ are called to be composable with respect to e, if there exist two vectors $u=\left(u_{a}\right)_{G}$ and $v=\left(v_{a}\right)_{G}$ such that
(2) $\quad \operatorname{rank}\binom{\left(e_{-a+b} e_{a+b}\right)_{G, G}\left(y_{-a+d} y_{a+d}\right)_{G, G}}{{ }^{t}\left(x_{-c+b} x_{c+b}\right)_{G, G}\left(u_{-c+d} v_{c+d}\right)_{G, G}}=\operatorname{rank}\left(e_{-a+b} e_{a+b}\right)_{G, G}$,
where $\left(e_{-a+b} e_{a+b}\right)_{G, G},\left(x_{-a+b} x_{a+b}\right)_{G, G},\left(y_{-a+b} y_{a+b}\right)_{G, G}$ and $\left(u_{-a+b} v_{a+b}\right)_{G, c}$ are $|G|+$ $|G|$-matrices of which (a, b)-components are $e_{-a+b} e_{a+b}, x_{-a+b} x_{a+b}, y_{-a+b} y_{a+b}$ and $u_{-a+b} v_{a+b}$, respectively, $(a, b \in G)$.

Since the order $|G|$ is odd, the pair $(-a+b, a+b)$ runs over all the elements in $G \times G$. Therefore the system of equations

$$
u_{-a+b} v_{a+b}=u_{-a+b}^{\prime} v_{a+b}^{\prime} \quad(a, b \in G)
$$

implies $u_{a} / u_{a}^{\prime}=u_{b} / u_{b}^{\prime}, v_{a} / v_{a}^{\prime}=v_{b} / v_{b}^{\prime} \quad(a, b \in G)$. Namely the point $u=\left(u_{a}\right)_{G}$ and $v=\left(v_{a}\right)_{G}$ in (2) are uniquely determined by x and y as points in P_{G}.

[^0]Definition 1.2. If $x=\left(x_{a}\right)_{G}$ and $y=\left(y_{a}\right)_{G}$ are composable with respect to e, we denote by $x \circ y$ the unique point $v=\left(v_{a}\right)_{G}$ given in (2) and call it the composition of x and y with respect to e.

Proposition 1.3. If $x=\left(x_{a}\right)_{G}$ and $y=\left(y_{a}\right)_{G}$ are composable with respect to e, them it follow
(3) $\quad \operatorname{rank}\binom{\left(e_{-a+b} e_{a+b}\right)_{G, G}\left(y_{-a+d} y_{a+d}\right)_{G, G}}{{ }^{t}\left(x_{-c+b} x_{c+b}\right)_{G, G}\left(\left(\lambda\left(x^{-1} \circ y\right)_{-c+d}(x \circ y)_{c+d}\right)_{G, G}\left(x^{-1} \circ y\right)_{-c+d}(x \circ y)_{c+d}\right)_{G, G}}$

$$
=\operatorname{rank}\left(e_{-a+b} e_{a+b}\right)_{G, G}
$$

with non-zero λ, where λ depends on the homogeneous coordinates.
Proof. Replacing x by x^{-1} in (2), we know that the unique point $u=\left(u_{a}\right)_{G}$ in (2) is $x^{-1} \circ y$.

Proposition 1. 4 If $x \circ y$ is well-defined, then $y \circ x$ and $x \circ e(a)(a \in G)$ are also well-defined and they satisfy
(4) $x \circ y=y \circ x$,
(5) $\quad x \circ e(a)=e(a) \circ x=x(a) \quad(a \in G)$,
(6) $e(a) \circ e(b)=e(a+b) \quad(a, b \in G)$.

This is an immediate consequence from the relation (3).
2. Since $\left(e_{-a+b} e_{a+b}\right)_{G, G}$ is symmetric, there exists a subset H in G such that the cardinal $|H|$ equals to the rank of $\left(e_{-a+b} e_{a+b}\right)_{G, G}$ and $\operatorname{det}\left(e_{-a^{\prime}+b} e_{a^{\prime}+b}\right)_{H, H}$ $\neq 0$, where $\left(e_{-a a^{\prime}+b,} e_{a^{\prime}+b^{\prime}}\right)_{H, H}$ is an $|H| \times|H|$-matrix of which (a^{\prime}, b^{\prime})-component is $e_{-a,+b, e^{\prime}+b^{\prime}}\left(a^{\prime}, b^{\prime} \in H\right)$.

Using the inverse matrix
(7) $\left(\alpha_{a, b}\right)_{H, H}=\left(e_{-a+b}, e_{a r+b}\right)_{H, H}^{-1}$,
we can express the relation (3) by the following explicite polynomial relations:
(8) $x_{-a+b} x_{a+b}=\sum_{c^{\prime}, d^{\prime} \in H} \alpha_{c c^{\prime}, d^{\prime}} e_{-c c^{\prime}+a} e_{c^{\prime}+a} x_{-d^{\prime}+b} x_{d^{\prime}+b}$
(8') $\quad y_{-a+b} y_{a+b}={ }_{c^{\prime}, d^{\prime} \in H} \alpha_{c^{\prime}, d^{\prime}} e_{-c^{\prime}+a} e_{c^{\prime}+a} y_{-d^{\prime}+b} y_{d^{\prime}+b}$
$\left(8^{\prime \prime}\right) \quad \lambda\left(x^{-1} \circ y\right)_{-a+b}(x \circ y)_{a+b}=\sum_{c^{\prime}, d^{\prime} \in H} \alpha_{c^{\prime}, a, x^{\prime}} x_{-c^{\prime}+a} x_{c^{\prime}+a} y_{-d^{\prime}+b} y_{d^{\prime}+b} \quad(a, b \in G)$
with non-zero λ.

Definition 2.1. We denote by V_{e} the closed subscheme in P_{G} which is the Zariski-closure of all the point x such that $x^{-1} \circ x$ is well-defined and $x^{-1} \circ x=e$. We call V_{e} the projective scheme associating with e.

Using $\left(\alpha_{a, b, b}\right)_{H, H}$ we can define V_{e} as the closed subscheme defined by the relations
(9) $\quad X_{-a+b} X_{a+b}=\sum_{c^{\prime}, a^{\prime} \in H} \alpha_{c^{\prime}, d}, e_{-c^{\prime}+a} e_{c^{\prime}+a} X_{-d^{\prime}+b} X_{d^{\prime}+b}=0 \quad(a, b \in G)$ and

$$
\begin{align*}
\sum \alpha_{c \prime, a} & \left\{e_{c} X_{-c^{\prime}-a+b} X_{c^{\prime}-a+b} X_{-d^{\prime}+a+b} X_{d^{\prime}+a+b}\right. \tag{10}\\
& \left.-e_{a} X_{-c \prime-c+b} X_{c^{\prime}-c+b} X_{-d^{\prime}+c+b} X_{d^{\prime}+c+b}\right\}=0 . \quad(a, b, c \in G)
\end{align*}
$$

Under what condition on $e=\left(e_{a}\right)_{G}$ the projective scheme V_{e} is an abelian variety? This is very difficult problem, which is equivalent to giving the reasonable explicite generators of the relations between theta-constants. We shall be concerved with this problem in the next paper.

[^0]: Received February 27, 1968.

