ON COMMUTATIVE COMPOSITIONS DETERMINED BY THEIR ORIGINS

HISASI MORIKAWA

1. Let K be the universal domain. Let G be a finite additive group of odd order |G| and $X_a(a \in G)$ be indeterminates indexed by the elements in G. We mean by P_G the projective space $Proj_k(K[(X_a)_{a \in G}])$. Denote by δ_{-1} and $\tau_b(b \in G)$ the automorphisms of P_G of which duals δ_{-1}^* and τ_b^* are the ring-automorphisms of $Z[(X_a)_G]$ such that

$$\delta_{-1}^*(X_a) = X_{-a}, \quad \tau_b^*(X_a) = X_{b+a} \quad (a, b \in G).$$

For the sake of simplicity we denote briefly

$$x^{-1} = \delta^{-1}(x), \ x(b) = \tau_b(x) \ (x \in P_G, \ b \in G).$$

Definition 1.1 Let $e = (e_a)_G$ be a point on P_G satisfying

(1)
$$e_{-a} = e_a \quad (a \in G).$$

Then two points $x = (x_a)_G$ and $y = (y_a)_G$ are called to be composable with respect to e, if there exist two vectors $u = (u_a)_G$ and $v = (v_a)_G$ such that

(2)
$$\operatorname{rank} \left(\frac{(e_{-a+b}e_{a+b})_{G,G} (y_{-a+d} y_{a+d})_{G,G}}{{}^{t}(x_{-c+b}x_{c+b})_{G,G} (u_{-c+d}v_{c+d})_{G,G}} \right) = \operatorname{rank} (e_{-a+b}e_{a+b})_{G,G},$$

where $(e_{-a+b}e_{a+b})_{G,G}$, $(x_{-a+b}x_{a+b})_{G,G}$, $(y_{-a+b}y_{a+b})_{G,G}$ and $(u_{-a+b}v_{a+b})_{G,C}$ are |G|+|G|-matrices of which (a,b)-components are $e_{-a+b}e_{a+b}$, $x_{-a+b}x_{a+b}$, $y_{-a+b}y_{a+b}$ and $u_{-a+b}v_{a+b}$, respectively, $(a,b \in G)$.

Since the order |G| is odd, the pair (-a+b, a+b) runs over all the elements in $G \times G$. Therefore the system of equations

$$u_{-a+b}v_{a+b} = u'_{-a+b}v'_{a+b} \quad (a, b \in G)$$

implies $u_a/u'_a = u_b/u'_b$, $v_a/v'_a = v_b/v'_b$ ($a, b \in G$). Namely the point $u = (u_a)_G$ and $v = (v_a)_G$ in (2) are uniquely determined by x and y as points in P_G .

Received February 27, 1968.

DEFINITION 1. 2. If $x = (x_a)_G$ and $y = (y_a)_G$ are composable with respect to e, we denote by $x \circ y$ the unique point $v = (v_a)_G$ given in (2) and call it the composition of x and y with respect to e.

Proposition 1. 3. If $x = (x_a)_G$ and $y = (y_a)_G$ are composable with respect to e, them it follow

(3)
$$\operatorname{rank} \begin{pmatrix} (e_{-a+b}e_{a+b})_{G,G} (y_{-a+d}y_{a+d})_{G,G} \\ t(x_{-c+b}x_{c+b})_{G,G} ((\lambda(x^{-1}\circ y)_{-c+d}(x\circ y)_{c+d})_{G,G}(x^{-1}\circ y)_{-c+d}(x\circ y)_{c+d})_{G,G} \end{pmatrix}$$

$$= \operatorname{rank} (e_{-a+b}e_{a+b})_{G,G}$$

with non-zero λ , where λ depends on the homogeneous coordinates.

Proof. Replacing x by x^{-1} in (2), we know that the unique point $u = (u_a)_G$ in (2) is $x^{-1} \circ y$.

Proposition 1. 4 If $x \circ y$ is well-defined, then $y \circ x$ and $x \circ e(a)$ $(a \in G)$ are also well-defined and they satisfy

- $(4) \quad x \circ y = y \circ x,$
- (5) $x \circ e(a) = e(a) \circ x = x(a) \quad (a \in G),$
- (6) $e(a) \circ e(b) = e(a+b)$ $(a, b \in G)$.

This is an immediate consequence from the relation (3).

2. Since $(e_{-a+b}e_{a+b})_{G,G}$ is symmetric, there exists a subset H in G such that the cardinal |H| equals to the rank of $(e_{-a+b}e_{a+b})_{G,G}$ and $\det(e_{-a'+b'}e_{a'+b'})_{H,H}$ $\neq 0$, where $(e_{-a'+b'}e_{a'+b'})_{H,H}$ is an $|H| \times |H|$ -matrix of which (a',b')-component is $e_{-a'+b'}e_{a'+b'}$ $(a',b') \in H$.

Using the inverse matrix

(7)
$$(\alpha_{a',b'})_{H,H} = (e_{-a'+b'},e_{a'+b'})_{H,H}^{-1},$$

we can express the relation (3) by the following explicite polynomial relations:

(8)
$$x_{-a+b}x_{a+b} = \sum_{c',d' \in H} \alpha_{c',d'} e_{-c'+a} e_{c'+a} x_{-d'+b} x_{d'+b}$$

(8')
$$y_{-a+b}y_{a+b} = \sum_{c',d'\in H} \alpha_{c',d'} e_{-c'+a} e_{c'+a} y_{-d'+b} y_{d'+b}$$

$$(8'') \quad \lambda(x^{-1} \circ y)_{-a+b}(x \circ y)_{a+b} = \sum_{c', d' \in H} \alpha_{c', d'} x_{-c'+a} x_{c'+a} y_{-d'+b} y_{d'+b} \quad (a, b \in G)$$

with non-zero λ .

Definition 2.1. We denote by V_e the closed subscheme in P_G which is the Zariski-closure of all the point x such that $x^{-1} \circ x$ is well-defined and $x^{-1} \circ x = e$. We call V_e the projective scheme associating with e.

Using $(\alpha_{al,bl})_{H,H}$ we can define V_e as the closed subscheme defined by the relations

(9)
$$X_{-a+b}X_{a+b} = \sum_{c',d' \in H} \alpha_{c',d'} e_{-c'+a} e_{c'+a} X_{-d'+b} X_{d'+b} = 0$$
 $(a, b \in G)$

and

(10)
$$\sum \alpha_{c',d} \{ e_c X_{-c'-a+b} X_{c'-a+b} X_{-d'+a+b} X_{d'+a+b} - e_a X_{-c'-c+b} X_{c'-c+b} X_{-d'+c+b} X_{d'+c+b} \} = 0. \quad (a,b,c \in G).$$

Under what condition on $e = (e_a)_G$ the projective scheme V_e is an abelian variety? This is very difficult problem, which is equivalent to giving the reasonable explicite generators of the relations between theta-constants. We shall be concerved with this problem in the next paper.

Institute of Mathematics Nagoya University.