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ON THE SINGULARITY OF GREEN FUNCTIONS

IN MARKOV PROCESSES

MAMORU KANDA

§0. Introduction

In the previous paper [6] we have discussed Markov processes in Rd

with the Green function G {x, y) satisfying Cι ——^--T^^Γ ^ G (x, y)
\ x y \

^ C2 —j j-^-^- (0< a 5^2, Cλ<C2 are positive constants), and showed that
I x y\

the regular points of its process are the same as those of α-stable process.

The present article is closely related to the previous one. We shall discuss

several properties of Markov process, including those of regular points,

which are sharply influenced by the singularity of the Green function at

diagonal set. The singularity we will be concerned with is more general

than that of previous one, but it is closely related to that of Riesz kernel.

Then, our results may be considered as a generalization of the facts which

appear in the relation between the Riesz kernel and stable process. For

this purpose potential representation of the hitting probability plays an

important role, which we shall show under certain uniform condition about

singularity of the Green function instead of duality condition.

The author wishes his thanks to Prof. H. Kunita for his valuable sugges-

tions.
§1. Notations and main results

Let Rd(d^3) be the d-dimensional Euclidean space and Ω be a domain

in it. Let oo be adjoined to Ω and Ω U {°o} be its one-point compactifica-

tion. We denote by & the topological Borel field on Ω U {oo}. We

introduce several spaces of functions on Ω\ Bκ = the space of bounded J%?~

measurable functions of compact support, Cκ - the space of continuous functions of

compact support in Ω and Co = the space of continuous functions vanishing at infinity.

An extended real-valued function G(x, y) on Ω x Ω is said to be a kernel

on Ω, if it is non-negative, continuous except at the diagonal set on ΩxΩ.
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Further we assume that G maps Bκ into Co, where Gf(x) = \ G(x,y)f(y)dy.

We say that a kernel G{x,y) on Ω satisfies the complete maximum principle, if

for any constant <2^0, / and g e CJ, the inequality

holds everywhere, if it holds on the support of /, where C£ denotes the set

of non-negative functions of Cκ.

In this article we consider a kernel G{x,y) which has singularity φ{\x—y\)

at x = y, more precisely, for each x0 there exists a ball Oa.o centering at xQ

and

G(x,y) = C(x,y)φ(\x-y\),

where C{x9y) is bounded on Oχ0 x Ox0 and inf C(a;,#)>0, where \x — y\

denotes the distance between x and y and 0XQ denotes the closure of Ox0.

In this case we say that G(x, y) is a kernel with singularity φ. We always

choose a function φ which shows the singularity of a kernel from one of

the following classes;

Φ = the space of non-negative, continuous and monotone decreasing functions <p(t)

defined for sufficiently small t > 0 such that Km φ{t)=+oo, f td~ίφ(t)dt< + oo9

ί-»o Jo

Φi = the space of functions φ{t)^Φ for which there exists an integer p , 0<p<d,

such that tpφ(t) is monotone increasing for sufficiently small t>0 and
lim tpφ{t) = 0,
t->o

Φf = the space of functions φ(t) defined for all t > 0 and of the class Φx such

that, if we set G{x,y) = <p(\x — y\), G is a kernel on Rd satisfying the

complete maximum principle.

Now we shall prepare the notations of Markov processes. Let ω be a

function [0, +co)->Q{j {oo} such that it has right-continuity and left hand

limits everywhere and if ω{t) — oo, then ω{tf) = co for all V ^ t. Let us set

ζ{ω) = inf{/^0, ω[t) = oo}, = +oo if there are no such t. Let W be a set

of ω's mentioned above. Then W is closed under the operation of the shift;

ω-*θtω, t^O, where {θtω) (s) = ω(t + 5). F is the <τ-field in W generated

by sets {ω(t)^A}9 t^O, A G J ^ , and Ft is the σ-field in Wt={ζ>t}

generated by the sets {ω{s)<ΞA, ζ>t], O^s^t, A(Ξ &'. Let {Px, X<ΞΩ]

be a family of probability measures on (W9 F) such that PX(B) is ^-measur-

able in x for each fixed B e F. We denote by M the intersection of all
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P^-completed <τ-fields of F, where Pμ( ) denotes the measure defined by

\ Px{ )μ{dx) for any measure μ and, by Mt the o -field formed from Ft and

all null sets of M[Wt], where M[Wt] is the restriction of M to Wt. The

system X = {xt, ζ, Mt, Px) is called a Hunt process if it has the strong Markov

property and the quasi-left continuity of sample functions. A Hunt process

X— (%t> ζi Mt, Px) is called a Feller process if its semi-group {Tt} is a strongly

continuous operator on Co. For a nearly analytic set E, we define the

hitting time by σE = inΐ(t > 0 , xt (= E), = +00 if there are no such t. Then

σE is a Markov time and we call Px{σE< + °°) the hitting probability of E.

A kernel G(x,y) on Ω is called the Green function of a Feller process

X = (xt, ζ, Mt, Px) on Ω if it satisfies

for every function / of Bκ. The Green function G(x,y) is called quasi-

symmetric, if ό{x,y) = G(y,x) is a kernel on Ω which satisfies the complete

maximum principle.

In §2 we shall study the following potential representation theorem of

the hitting probability, which has been studied in the works of Ito-Mckean

[5], G.A. Hunt [4], M.G. Sur [14] and H. Kunita-T. Watanabe [10], etc.

In their works it seems that some condition about duality is necessary

intrinsically. Here we shall show that, if we require certain uniform con-

dition about the singularity of the Green function instead of the duality

condition, the method of representing the hitting probability as a potential

discussed in H. Kunita and T. Watanabe [10], is applicable with some

modifications. Then we have the following

THEOREM 1. Let X= (xt, ζ, Mt9 Px) be a Feller process on Ω which has

the Green function G{x9y) with singularity φ e Φ. Let K be a nearly analytic set

with compact closure in Ω. If we assume the condition B, [see the supplement),

i) then there exists a measure μκ whose support is included in K such that

P*(σκ<+oo) = \jΩG(x,y)μκ(dy)

for any x e Ω, where K denotes the closure of K.

ii) Furthermore, the measure μκ is unique if one of the followings are satisfied:

a) X is a continuous process,
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b) G(x, y) is quasi-symmetric.

In §3 we construct a Feller process on Ω whose Green function is a

given kernel satisfying the complete maximum principle with singularity

φ G Φ (Theorem 2).

§4 is devoted to studying some properties of capacitary measure μκ{dy)

in case the process X has the quasi-symmetric Green function. Most of

these are modifications of Hunt's results [4] to our setting and these are

used in the later discussions.

In the remaining sections we show some applications of Theorem 1 and

2. O. Frostman [3] has shown that the Riesz kernel with exponent a > 2

does not satisfy the maximum principle. This corresponds to the fact that

e~const. |z|*? a>2, cannot be a characteristic function of a distribution func-

tion. In §5 we extend this fact to a kernel with singularity φ e Φ in the

following form by using Theorem 1 and 2.

THEOREM 3. Let G{x,y) be a kernel with singularity φ e Φ on Ω and let

C(x9y)(=—,| x_ n j can be considered as a continuous function on a suitable

neighborhood of each diagonal point. Then, if G{x,y) is a quasi-symmetric Green

function it is necessary for φ(t) to satisfy the following inequality

φ(r) < Jβ- \πφ(2r sin 4-) ήnd~2θdθ
/jr Jo \ 2 /

for each sufficiently small r > 0 and each constant MX>Γ (-—) r( ~ ) .

In the case when the singularity function φ satisfies the above ine-

quality for Mi = Γ (—) Γ ( ) , we cannot say, in general, whether the

theorem is valid or not. But if we assume that the Green function G(x,y)

with singularity φ is written as the difference of x and y, the above theo-

rem is still valid even for Mx = r(~-)r(
d ~ 1 X

It is well known that a Feller process corresponding to the Riesz kernel

with exponent a (stable process) is not a continuous process in case 0 < α < 2 .

In §6, we shall extend this fact to the following form.

THEOREM 4. Let X be a Feller process having the Green function which

satisfies the same assumptions as those of Theorem 3. If it holds the following

inequality
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φ{r) < - ^ t - Γ φ(2r sin -^-) άn*-2θdθ < +
yπ Jo V Δ /

sufficiently small r, where M2 is a positive constant strictly smaller than

p-)Γ( A , X ύ woί # continuous process.
Zl ' \ Zl '

The above Theorem will conclude naturally that any Feller process

with singularity t*~d, 0<a<2, or, more generally, t<x~d (log ~ -j , 0< α < 2 ,

is not a continuous process under the continuity assumption on C(x,y).

We shall give a theorem about regular points which is an improvement

of our previous result0*0 [6] and will be proved in §7.

T H E O R E M 5. Let X1 = (x\, ζ1, M\, Pi) and X2 = {x2, ζ\ M2, Pi) be Feller

processes on Ω having the Green function Gι{x,y) with singularity ψ1 of Φx and,

G2(x,y) with singularity ω2 of Φl9 respectively. Suppose that ^fl is monotone

non-decreasing for sufficiently small t. If we assume the condition B for X1 and X2,

i) then, a point x0 is a regular point of B for X1, if it is a regular point

of B for X2, where B is a compact set.

ii) Further, suppose that ψx and <p2 belong to the class Φf and ^ηy decreases

to zero as t tends to zero. Then the regular points of B for X2 are included in the

regular points of B for X1 in the strict sense, more precisely, there exists a compact

set B such that some points of B are regular points of B for X1 but no point of B

is a regular point of B for X2.

The above theorem is applied to the (quasi-) difFusion corresponding to

the strictly elliptic differential operator of the second order with Dini con-

tinuous coefficients in the strict sense.

We shall finally give an example of Feller process in R3 whose Green

function is a kernel with singularity ta~3 log^, l<a^2 in §8.

§2. Potential representation of the hitting probability

Throughout this section we shall consider a Feller process X=(xt9ζ,Mt,Px)

which has the Green function G{x,y) with singularity φ <= Φ without special

mentioning. Let us set G«f{x) = V e~atTtf{x)dt for each a^O. Then

*) We have to point out the incorrectness in our previous paper [6]. In the formula
(4.19) of [6], "analytic set E" should be replaced by "compact set E". Hence Theorem
4.2 of [6] is true for a compact set.
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{Gα} is a resolvent on Co such that lim aGaf = f for each bounded con-

tinuous function /. A positive universally measurable function u is said to

be (G,a)-excessive if βG*+βU<u for all β>0 and if ΓimβG^^ = u.

We shall first prepare some lemmas for the proof of Theorem 1.

LEMMA 1. G{x,y) is a (G,O)-excessive function of x for each fixed y.

This is shown in [7].

Remark. Let //bea measure such that u{x) = I G{x,y)μ{dy) is bounded.

Then u{x) is superharmonic in Ω, that is, for each domain Q c Ω, Exu{xτQ)

^ u(x), where τQ = inf (t ^ 0 ; xt £ Q).

LEMMA 2. Z^ί K be a nearly analytic set with compact closure. Then

Pχ(σκ < + °°) is (G, O)-excessive and further it is harmonic in Ω-K, that is, for each

domain Q c Ω-K, EJPX {σκ < + oo)) = PJσκ < + oo) under the condition B.

Proof. This is a direct consequence of the strong Markov property.

LEMMA 3. Let {Gn} be a sequence of compact sets such that Gn^Ω, Gnz^K

for each n. Then we have, under the condition B,

YimEx{PXaGc{σκ< + oo)) = 0 .

Proof We shall prove this in the same way as Lemma 3 in M.G. Sur

[14]. Noting that Ex{PXσ^ (σκ <+<*>)) = Ex{Px(σκ(a>ϊG) < + oo)) = Px(σκ< + oo),

we have for n > /

Ex(Px<JΰCn(σκ< + oo)) = Ex{EXaQSPX(jG (σκ< + oo))}

= Ex{Ex{PXσGί {ύ)+^c j (σκ < l ι l

= Px(σGcn + σGι (ω* β J < ζ), θtω = ωt

On the other hand, let ζn{w)^ σGcn +σGι{ω^Q9\ we have

Ex ( \Gι+iG(x$n,y)dy ) ̂  ί op,(f n < ζ),

where ^ = min_ f G(x, y)dy > 0 . (Since! G(x, y)dy is continuous in Gtc:Gι+1,

min_\ G{x,y)dy is attained at some point x0 of Gz. It is clear that
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I G{x0, y)dy > 0. ) We have also
JG7+1

Es\\ G{x(,,y)dy\ = Ex\\ζ Xσ Λxt)dt}^Ex\\ζ Xσ Λxt)dt\

where z e is a characteristic function of G(+1. Noting that G maps Z?x

into Co, the last expression tends to zero as n -> + oo, which implies

Hence lim £.(P β («τx< + oo)) = o.

LEMMA 4. ί//zώr ^^ J^^Z^ assumption in Lemma 3, zê  have

for almost all y in Gc

n*

Proof. Let / be any function of Bκ vanishing in Gn. Then we have

\QEsG(xaβ%,y)f(y)dy = Ex[EXaQc(^~f{xt)dt) = Ex[\+^e f(^)dt )

= Ex [ ^~f(xt)dt] = \QG(x,y)f(y)dy

for each x in Ω. Hence we complete the proof.

LEMMA 5. Let us fix a point x0 and a ball V containing xQ. Then there

exists a ball U(x0) which centers at xQ with U{x0) c V such that it holds

G(x,y)>ExG(xTv,y)

for each (x9y) e U(xQ) X U{x0), where τv = inf (t ^ 0 ; xt φ V).

Proof If we choose a ball U{x0) such that U(x0) c OXQ Π V we have

G{x,y)>,mϊ(X,ty,)<Ξθχ^XOχ^C(xr

9y
r) ^(diameter of U(x0)) for each {x,y)<EU{x0)

xU{x0), and ExG(xτv9y) ^supyf^U(X(i)tX^VcG{xr

9y'). Hence the lemma holds

if the diameter of U{xQ) is sufficiently small.

Proof of (i) of theorem 1. We shall first show that there exists a positive

measure μκ{dy) such that

Px(σκ< + °°) = \ΩG(x,y)μκ(dy)

holds everywhere on the similar way as in the proof of Prop. 7. 6. in H.
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Kunita and T. Watanabe [10]. Let us set u(x) = Px{σκ<+<χ>) and un=nGnu,

where Gnu{x) = Ex (\ e~ntu{xt)dt). Then un increases to u with n, because

u is a (G, O)-excessive functions, and by using Dynkin's formula and noting

Lemma 3, we have un{x) = Gfn{x), where fn{x) = n(u(x) — un{x)). As

Gfn(x)<l and inf \ G(x,y)dx >dB > 0 for each compact set A, B such
y&A JB

that Ad A! c B, Bψ φ, where B denotes the set of interior point of B and
o

A! is a fixed compact set in B, we have

£/# I G{x, y)fn\V)dy ^ 5̂ 1 fn(y)dy,

B JA JA

where V(B) is the volume of B. Therefore there exists a subsequence of

measures {fnjx)dx} and a measure μκ(dx) such that Hmk^+OQ[g{χ)fnk(χ)dx

= \ gi^^Kidx) for each g e Cκ. Now, let h be a positive function of £#,

then, noting that Gh(x) (= I G{x,y)h{y)dy, 6{x, y) = G{y,x)) is continuous,

we have

I h{x)u(x)dx = lim \ h{x)Gfn(x)dx

(2. 1)

^ J β Oh(x)μκ(dx) = Jβ Gμκ(x)h(x)dx, Gμκ(x) - j f l G(x9y)μκ(dy).

Let Gw be a sequence of compact sets mentioned in Lemma 3, then we

have

ί h{x)u(x)dx= lim ( h{x)Gfn(x)dx

^ lim [oA(a5)L G(x,y)fUt(y)dydx

+ lim \oh{x)\ ,G{x,y)fnk{y)dydx.

Noting Lemma 4, we have

the right-hand side of the above equality <\ΩGμκ(y)h{y)dy

+ lim [nh{x)dx\cExG(xaGc9y)fnk(y)dy

— \Ω Gμκ(y)h(y)dy
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Therefore by Lemma 3, we have

(2. 2) \Ωh(x)u(x)dx^ΩGμκ(y)h(y)dy.

Hence we have by (2. 1) and (2. 2)

Gμκ(x) = u(x), almost everywhere.

Since Gμκ(x) and u{x) are (G, O)-excessive, the equality holds everywhere.

We shall next show that μκ concentrates on K. Let A be a compact

set in K% it is sufficient to show that μκ[A) = 0. Now we shall assume

that μκ(A)>0. Let xQ be a point of A such that for every neighborhood

Q of #o μκ(Q)>0 and let us choose a ball V c Kc whose center is xQ and

fix them, then we can choose a ball U(x0) which centers at xQ such that

the inequality of Lemma 5 holds for each {x,y) e U(xQ) x U{x0). Therefore

we have

and noting that u2(x0) = I J,G(xt,y)μκ(dy)^: EX(su2{xτr),

U{XO) = ίί̂ OJo) + W2(tf0) > ^ 0 { ^ i ( ί C r F ) + ^2(^^κ)} = EXQU{Xτv),

which contradicts the fact that u{x) is harmonic in Ω — K. Hence μκ(A) = 0.

Generally it is open whether the measure μκ{dy) is uniquely determined

or not. But in case the process is continuous we can show the uniqueness

of μκ{dy). Before the proof we prepare a lemma.

LEMMA 6. Let μ be a positive measure such that Gμ is bounded and E be

a nearly analytic set in Ω. Then \-G(x,y)μ{dy) is harmonic in Ω — E, if the

process X is continuous.

Proof Let Q be an open set in Ω — E. By the continuity of the path

we have Px{xτQ G δ Q u {°°}) = 1, so ExG{xτQ,y) is continuous in Ω — Q with

respect to y, where x is in the interior of Q. Hence ExG{xτQ,y) = G{x,y)

holds for every points y of E, because it holds for almost all y in Qc.

(See Lemma 4).

The first half of proof of theorem 1, (ii). We assume the condition (a).

Let μκ(dy) and μ2

κ(dy) be measures concentrating on K such that
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u(x) = \ G{x, y)Pκ(dy) = I G{x,y)μ2

κ(dy) for all x. It is sufficient to show

that for each open set Ω "D Q we have

\QG(x,y)μ1

κ(dy) = \QG{x,y)μ*κ(dy).

Let C be a compact set in Q and let us set ϋ(a) = 1 G(x, y) μ\ (dy)

— \ G(x, y) μ\ (dy), then υ(x) is superharmonic in Ω — C, because

S G(x9y)μ2

κ(dy) is harmonic in Ω—C. Furthermore #(#) is superharmonic

in Q, because it holds that

v(x) - \QG(x,y)μί

κ(dy) - \ΩG(x,y)μ2

κ(dy) + \g_c

= - ( \ΩG(x, y)μi(dy) - 5QG(α;, y)μ

1

κ(dy)) + Jβ_

and the first term of the right-hand side is harmonic in Q. Therefore

υ{x) is superharmonic in Ω. So we have Exv(xτβn) <v(x) for each compact

set Gn such that Gn\Ω. Noting Lemma 3, we have v{x)^0. As C is

arbitrary, it holds

\QG{x, y)μ1

κ(dy) ^ J Q G(a, y)μ2

κ(dy).

We can also prove that

The case where b) is satisfied, will be discussed at the next section.

§3. Construction of Feller process having the Green function

'with singularity

Our aim of this section is to show the following Theorem.

THEOREM 2. For a given kernel G{x,y) with singularity φ e Φ which satisfies

the complete maximum principle, there exists a Feller process whose Green function is

G(x,y).

Proof, This Theorem is an extension of Theorem 1.1 in [6]. The

proof carried out with only obvious modifications of Theorem 1. 1. if we

note the following: Let Q (resp. Qf) be a ball with radius r (resp. 2r) which

centers at x0. Then we have
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a) sup ί p( | α -y\)dy = \nφ{\x0-y\)dy,

SU

b) 1 ^ _

for each function φ e <P, if 0 ' is sufficiently small. The equality a) can be

shown by a simple culculation. The inequality b) is proved as follows;

l ί » o - y \ ) d y

- y \ ) d y

<_ i . <P(r)W(Q') ~ V(Q)} _ i , o«

where F(0) denotes a volume of <?.

Remark 1. An important example of a Feller process having Green

function G{x,y) is a process corresponding to the kernel G(x,y) = φ{\x—y\),

where φ e ΦJf. We shall give an example of a function φ(t) <a ΦX

M in i?3

whose singularity is £3~αlog— in §8.
T

COROLLARY. Let X= (χt, ζ, Mt, Px) be a Feller process which has quasi-

symmetric Green function G{x,y) with singularity ψ e Φ. Then there exists a Feller

process X- ($t, ζ, Mt, Px) which has Green function ό(x,y)(= G{y,x)) such that

\Ωf(x)G.g(x)dx = \Ω

holds for each f,g<^ Bκ. and a ^ 0.

We call the process X the dual process of X. Our processes X and

X are in the relation of duality in Meyer's sense. (See [12]. ) Hence we

have the following

LEMMA 1. [Hunt). Let X and X be Feller processes in Corollary, Then we

have
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\ΩG{z,y)Px(x*E e dz) = ^G(x,z)Py(χΰE e rfs)

for each nearly analytic set E.

Proof This is shown by G.A. Hunt [4] under Hunt's hypothesis (F)

and (G). Further, P.A. Meyer [12] showed it under a little weaker con-

ditions. Our lemma follows directly from P.A. Meyer's [12]. (See also [7].)

§4. Capacitary measures for a Feller process having the quasi-

symmetric Green function

Throughout this section we always consider a Feller process X = (xt9

ζ, Mt9 Px) having the quasi-symmetric Green function G{x9y) with singularity

φ and its dual process X= {xt9 ζ9 iCΓt, Px) without special mentioning. We

study some properties about capacitary measures which are analogous to

those of G.A. Hunt [4], We first note the following

LEMMA 1. The capacitary measure is uniquely determined.

Proof Our case can be treated in the general setting of H. Kunita

and T. Watanabe [10] (See also [7]). Hence the measure is uniquely de-

termined by its potential (See Prop. 7. 11 in H. Kunita and T. Watanabe

[10]).

Let E be a nearly analytic set. We say that a point x is a regular

point of E for X (resp. X)9 if Px(σE = 0) = 1 (resp. Px(σE = 0) = 1) and an

irregular point of E for X (resp. X), if Px{σE = 0) = 0 (resp. Px(σE = 0) = 0). In

the following a regular (resp. irregular) point of E for X is called simply

a regular (resp. irregular) point of E and a regular (resp. irregular) point

of E for X is called simply a co-regular (resp. co-irregular) point of E.

We denote by Erβg

9 Eco~reg

9 Eirreg and Eeo'irreg the set of all the points

which are regular, co-regular, irregular and co-irregular of E respectively.

Nextly we prepare some elementary properties about capacitary measures.

LEMMA 2. For each nearly analytic set E with compact closure and for each

ε > 0, there exists a nearly analytic set F such that E c Freg and Pμ{σE < + oo) +

ε^tPM{σF< + oo) for each measure μ with μ{E Π Eιrr) = 0, where F may depends

on μ.

Remark. Lemma 2 is also shown for the Feller process which has a

locally integrable Green function in the sense of P.A. Meyer [11], (See the

proof C) of Theorem 3. 5 in [11]).
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LEMMA 3. For each nearly analytic set E with compact closure, the capacitary

measure μE(dy) is concentrated on E U Eco~reg.

Proof. The proof is same as that of G.A.Hunt [4], Prop. 18. 4. We

omit it here.

Remark 1. Using Lemma 3, we can easily see that μE{E) = μE(E) on

the same way as in G.A.Hunt [4], p. 175.

Now we shall show two properties about capacitary measures for the

process which satisfies Hunt's condition (H):

if F is compact and μF(F) > 0, then some

point of F is a regular point of F.

Under the condition (H) it holds that μκ (K Π Kco~ίrr) = 0 for each

nearly analytic set K with compact closure, (note that K f) κco~irr is im-

measurable for any bounded measure μ. ) Indeed, if we assume

μκ(K ΠKco-i

l

rr)>09 there exists a compact set Q c: K Π Kc0~ίrr such that

μκ{Q) > 0, which means μQ(Q) ̂  μκ(Q) > 0.

Then some point of Q is a co-regular point of Q (of course it is a co-

regular point of K), which is a contradiction.

LEMMA 4. Under the condition {H)9 for each compact set K, there exists a

sequence of nearly analytic sets {Qn} such that Qn\,K, Qfi°~
re° z> K and it holds

Proof Let Q be a bounded open set which includes K. Then, for

the capacitary measure μQ(dy), we can choose a sequence of nearly analytic

sets {QJ with QniK, Q 3 Qn9 Q™-reg 3 K such that

by Lemma 2 because μQ(K Π Kc°-ίrr) < μκ(K Γ\ Kco~irr) = 0. On the other

hand we have

\nPx(σQ< + co)μQn(dx) =

oo)μQ(dy)
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and

μκ(K) =

LEMMA 5. Under the condition (H), for each compact set K, we have

μκ(K) = SUp v(K),

veMκ

where Mκ = {measure v, Gv ^ 1, S(v) (= support of v) c K}.

Proof For a sequence of {Qn} in Lemma 3 and v G MK, it holds

{x)μQn (dx)

= ( Py(dQn< + «>)v(dy) = v(K).
J K

Hence, noting Lemma 3, we have μκ{K) ^ sup v{K). Since it is clear that
v<=Mκ

μκ(K) ^ sup v(K), we finish the proof.
V€ΞMK

It is unknown whether Hunt's condition (H) holds for general Feller

process having the quasi-symmetric Green function with singularity φ e Φ.

But in special case we can show that (H) holds by proving the continuity

principle (Hunt's condition (I), [4]).

LEMMA 6. Suppose that the function ψ belongs to the class Φlm Then the

condition (H) holds. {Hence the condition (B) holds).

Proof i) We shall first show the following. Let μ be a bounded

measure with compact support S(μ), such that Gμ is bounded, then, for

each /^-measurable subset Q of S{μ) which is contained in some ball Q with

radius ~ - (r denotes a strictly positive constant such that φ(t) is defined

on (0, r] and tpφ{t) is monotone decreasing), it holds that

(4.1) ( G(x,y)μ(dy)<L- sup ( G(x', y)μ(dy), ^x^Ω,

where L is a positive constant independent of Q (dependent on Q and μ).

Let V be a -^--neighborhood of Q, then, for each χϋ (=V — Q9 there exists

a p o i n t y o ^ Q s u c h t h a t i n f \ x Q - y \ = \ x 0 — y o \ a n d 2 p φ { \ y ΰ — y \ ) ^ φ{\xQ—2/1),

b e c a u s e \ y Q — y \ <\yΰ — x o \ + \xQ — y \ < 2 \ x Q — y \ , y e Q. H e n c e w e h a v e
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sup . -C(x,y) .
, y) μ(dy) < ^ψQxQ

 Γ 2* . \QG(y0, y)μ(dy).
inf . -C(x,y)
tx,y)&QxQ

For each point a e f we have, noting Q c j /
c o " r e g

( ( G{x,y)μ(dy).

H e n c e (4. 1) is proved.

i i) . By using t h e inequal i ty (4. 1) we shall show t h e following. Let μ

b e a m e a s u r e m e n t i o n e d in i ) . If Gμ is cont inuous o n S{μ), it is cont inu-

ous everywhere. Since Gμ is cont inuous on S{μ)c, we h a v e only to show

t h a t Gμ is cont inuous a t dS(μ). L e t x0 e dS(/0 a n d {Qn(x0)} b e a sequence

of o p e n balls such t h a t Qn{%o)^%o, then we have

and the both sides are continuous on S{μ), because

and Gμ is continuous on S(μ) and \ G{x,y)μ{dy) is lower semi-continu-

ous. Hence, by Dini's theorem, its convergence is uniform on S{μ), which

means

O, uniformly on S{μ).

Hence the proof is completed. (The proof of ii) is due to S. Watanabe [15].)

iii). Using the result of ii) we can show that the following condition

(/') weaker than Hunt's condition (/) holds for the potential in (i) on the

same way as in G.A. Hunt [4], p. 195.

(/'); For each ε > 0 there exists an open set Q such that μQ{Q)<ε' and the

restriction of Gμ to Ω — Q is continuous.

iv). From (/') we can also show that the following condition (Kr)

weaker than Hunt's condition [K) holds on the same way as in G.A. Hunt

[4], p. 197.
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Let Gμ be a potential mentioned in (/').

{K')\ Then, Gμ{xt) is continuous whenever x(t,w) is continuous for almost all

w with respect to Pf-measure, where Pf( ) = \ Px( )f{x)dx and f(x)

is a non-negative bounded measurable function with compact support.

v). That {K') implies (H) can be established by the same way as in

the proof (a) of Theorem 6. 5 in P.A.Meyer [13]. (See also S.Watanabe

[15]), p. 34).

§5. Maximum principle and the singularity

This section is devoted to the proof of Theorem 3. We prove it by

the contradiction. Without special mentioning the process X = (xt, ζ, Mt9 Px)

we concern is a Feller process having the quasi-symmetric Green function

G{x,y) with singularity y ε Φ and the sets we concern are assumed to be

sufficiently small.

Let εdQ(dy) be the uniform measure on the surface 3Q of a ball Q

whose total mass is 1.

If we set

= Ύ- /ί n Γ φ(2r s ί n 4-) ήVπ pi a — 1 \ Jo V 2 /

x e dθ),

where r is the radius Q, then we have the following

LEMMA 1. If L is finite, it holds

where mx = infXty)ξΞθ^XOχC(x,y), m2 = supCXty)(ΞθχoXθχQC(x,y). (Here a ball Q

centering at xQ is assumed to be in some OXQ. )

Proof The first inequality is proved as follows.

εdQ{dQ) ^

= m1 L- μdQ{dQ).



GREEN FUNCTIONS IN MARKOV PROCESSES 37

We shall next show the second inequality. By the remark of Lemma 2 of

§4, for any ε > 0 there exists a nearly analytic set E such that Ereg D dQ,

Q + oo) < PXQ(σdQ < + oo) + ε.

Since we may assume that

φ(r)- ε^i

sup \ φ( I x - y I )εdQ{dy) ^ L(l + ε),

the following inequality holds

^ ^ - \oPx{σE<
fn-2 * -L* J ^

Noting that

m2 φ(r)

we have

L \ φ(r)

Since ε is arbitrary, we finally obtain the second inequality.

Proof of Theorem 3. Suppose the kernel G(x,y) of Theorem 3 satisfies

the complete maximum principle, then there exists a Feller process whose

Green function is G{x,y) by Theorem 2. Therefore it holds by Lemma

1 in §4

l^Pχo{σdQ< + oo) = \,ΩG(xQ9y)μdQ(dy)

= mx φ(r) μdQ(dQ)

for each ball (? c 0Xo with radius r which centers at cc0. Hence by

Lemma 1 we have

1 *(-£•)'"M -r
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Noting that C{χ9y) is continuous in {x,y), we can choose a sufficiently

small ball Q such that (-g*-)2 > J~- Γ ( | - ) Γ ( rf ~ X )"*, where Λί, is a

constant mentioned in Theorem 3. Then the above inequality implies

Mx ^ φ(2r sin -~λ sind~2θdθ > ίπ~φ{r),

which is equivalent to the inequality in Theorem 3.

Remark 1. There exists a case in which Theorem 3 holds for

Mx =r(—^rC d ~ 1 )" 1 » In fact, if G{x,y) is a function of the distance

between x and y and if p(|# — y\) = G{x,y) satisfies the inverse inequality

of Theorem 3 with Mt = Γ ( ~ ) Γ (~^-~^) \ then G(x,y) does not satisfy

the complete maximum principle.

COROLLARY. When d>a>29 a kernel with singularity ta~d is not

a quasi-symmetric Green function under the continuity assumption of

Proof. We may apply Theorem 3 by taking φ(t) = ta~d, but the

culculation of Γ-function is not easy. So we prove this as follows.

Noting that d ta~d<0 for 2<a<d, where Δ is the Laplacian, we have

<p{\%o~y\)εdQ(dy) >L. On the other hand, we can show by an element-

ary culculation that L~Λ φ{\x0 — y\)εdQ(dy) is a constant independent of

Q. Hence the inequality in Theorem 3 does not holds.

§6. Continuity of sample paths and the singularity

In this section we shall prove Theorem 4. Let us first note the fol-

lowing lemma.

LEMMA 1. Let X= (xt, ζ, Mt9 Px) be a Feller process on Ω such that each

point is not a trap. If almost all paths starting at xQ are continuous, for each

positive number ε there exists a ball Q such that PXo(σdQ < + oo) > 1 — ε holds for

each ball Q c Q.

Proof Now if we choose a sequence of open balls {Qn} with radius

n"1 which centers at x0, almost every path meets some dQn (dQn depends

on the path w) by the continuity of the path, because PXQ(ζ > 0) = 1.

Noting that the sequence of events {σdQn< -f <*>} is increasing by the con-
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tinuity of the path, if there exists some constant ε > 0 such that Pχo{σdQn

< + co) < l — ε for each n, then it holds that P*0(U {σdQn< + oo)) < 1 — ε,
n

which contradicts the above statement.

Proof of Theorem 4. We use the same notations as those of the proofs

in §4. If the inequality about φ(t) in Theorem 4 holds, we have

Hence it holds that

-~^\ΩG(x09
^φ{r) mx μdQ(dQ) ^ φ(r) L"1 < M2 Γ

Using the continuity assumption of C{x,y) we have

for each sufficiently small ball Q centering at x0, which implies that the

process is not a continuous process by Lemma 1.

PROPOSITION. Let X be a Feller process which has the Green function with
t1~d

singularity φ e Φ. If the process X satisfies Hunts condition (H) and — ^ r - is

monotone increasing, then X is not a continuous process even if L in Lemma 1 of

§5 is infinite.

Proof It is sufficient to show that μQQ{dQ) — 0. If we assume that

there exists a capacitary measure μdς>(dy) such that μdQ(dQ) >0, some points

are regular points of dQ for X by the condition {H). Using the result of

Theorem 5 which will be shown in the next section, such a point is a

regular point of dQ for the symmetric stable process Xs with exponent 1.

But 3Qreg is empty for Xs. Thus we have proved the theorem.

COROLLARY. Let X be a Feller process having the Green function G(x,y)

with singularity ta~d. Under the continuity assumptions on C(x,y), if 0<a<2,

X is not a continuous process.

Proof. Since X satisfies the condition (H) in case 0 < a < 1 (for the

proof see Proposition in §7), X is not a continuous process by the above

proposition because -j^zrd~ = /1~αt if a<l. Let us set φ{t) = t*~d, then

for the case 2 > « > 1 there exists a constant K< 1 such that
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- y\)εdQ{dy) < K'L.

Indeed, we have only to note that Δ-tct~d>0 for 0 < α < 2 and that

\Ω<p{\x—y\)εdQ{dy) = L on dQ9 L^^ΨUXQ — y\)εdQ(dy) is constant independent-

ly of a choice of a ball Q centering at x0. Hence by the continuity of

C(%9y)(=—π ~Π~) W e S e e t ' i a t t ' i e m e c l u a n t y about φ in Theorem 4
holds for φ(t) = Γ~d in case K α < 2 .

Remark. It is well known that to the Riesz kernel with exponent 2-

Newtonian kernel-, there corresponds Brownian motion. But to general

kernel with singularity t2~d a continuous process does not always corres-

pond. We shall give such an example in R*.

Let us set

where t_^r~1 denotes the inverse Fourier transform and 1 < β < 2. Suppose

for a moment that G{x,y) is a kernel in iv?3 with singularity t2~d, d = 3,

which satisfies the complete maximum principle. (The proof will be given

in the next paragraph.) Then the Feller process whose Green function is

the above G{x,y) is not continuous. Indeed, since | # | 2 + \x\^ is a nega-

tive definite function there exists a generalized Laplacian A such that

= - {\x\* + \x\*)dx,

and further we can see that

A*u(x) = C1 Δ - ̂ ( ^ ) + ̂ 2 { i ? 3_ r o ) j u{y + x ) ~ u(x) - _Σ - ~ ^ - u { x ) ( ? < -

f(y)dy, f(y)dy; Lέvy messure for β-stable process,

where Δ is the Laplacian and C19 C2 are strictly positive constants suitably

chosen. As A is not a local operator, the process corresponding to G(x,y)

is not a continuous process.

It remains to show that the kernel G(x, y) has singularity φ e Φ and

satisfies the complete maximum principle. Since it holds that

•v x r 2 Γ'1 sin2πrG(x'y) = i ^ )
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we can see that by the second mean value theorem

v)
V) \x~y\ '

where C(|x|) is bounded in R\ The continuity of G(x,y) except at the

diagonal can be proved easily. By Lemma 1 in the latter section 8, G(x,y)

is positive almost everywhere and so positive everywhere. Furthermore, by

Lemma 2 in §8, G(x9y) satisfies the complete maximum principle.

§7. Regular points and the singularity

The results in this section are improvements of our previous one [6].

We shall first show that the Wiener test holds in the following sense.

PROPOSITION. (Wiener test). Let X— (χt, ζ, Mt9 Px) be a Feller process

satisfying the condition B on Ω which has the Green function with singularity ψ.

Suppose © G Φj. Then a point xQ is a regular point of a nearly analytic set B for

X, if and only if

where Bk = x; —.ξ+r < \x — xΰ\ ^ —^- Π B and μBκ(dy) is the capacitary measureΓffC + 1 =Ξ I " ^ 0 1 = ί 9 ^

of Bk.

Proof This proposition can be proved by the same method as that of

Theorem 4. 1 in [6], if we only note that l<-~-~~-<2p. We omit the
φ(t)

proof here. We also note that

t^ ί 1

if and only if

! •

Proof of i) of Theorem 5. We shall first prove the Theorem for a

compact set B in general case. Let the sequence {Bfc} be the sequence of

sets defined in the previous proposition and μλ

Bk(dy) and μlk{dy) be capacitary

measures of Bk for X1 and X2 respectively. Then we can choose a sequence

of nearly analytic set {Gk} such that G\eQ Ό Bk9 φ2 {diameter of Bk) X φx {dia-

meter of Bk)~ι <2φ2 (diameter of Gk) x φx (diameter of Gk)~λ and such that
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Pi.("β,< + ™)^PΪS°B>< + °°) + -ψ- \v (-2V-)) ' ( n o t e t h a t B* i s compact).

Hence, for Bk with sufficiently large suffix k, we have

<Pz(diameter of BH)

9l(diameter of Bk)
* (dυ)

where Ct and C2 are strictly positive constants which can be chosen in-

dependently of k. Note that

φz(diameter of Bk) ( 2 \ / 2 \

where p2 is a strictly positive constant that tp*<p2(t) is monotone increasing

and lim tp^φ2(t) = 0. Then it holds that

Finally we have

§ Pi(2-Vt(G*) ^ C3^2(2-")μl t(Bk),

where C3 is a strictly positive constant. Since 2 P I ( ~ F ~ ) ^ (G*) and

Σ Pχ^ok < + °°) diverges simultaneously^ the proof is complete, if we note

that ^Pio(aak< + 00) = + 00 if and only if Σ f t . f a ^ + °°) == + °°

Before the proof of ii) of Theorem 5 we shall prepare two results from

potential theory. Let E be a bounded Borel set, and let us put

Vφ(E) = inf ( sup f φ(\x -y\)μ(dy)\,

where L^ = {measure μ, S(μ) c £, JK(^) = 1}. Then we define the ^-capacity

Cφ(E) of £ as follows;

1). Vφ(E) = + 00 = φ C^(£) = 0
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2). Vφ(E) < + oo = > φ(Cφ{E)) = V^(E).

LEMMA 1. (£. Kametanϊ). Let <p(t) e ΦJ W A(/) = —Jrv-. Then, for each
φ(t)

bounded Borel set E, Λh(E) < + oo means Cφ{E) = 0, where Ah{E) denotes h-

Hausdorff measure of E.

For the proof, see S. Kametani [16], (Also see S.J. Taylor [17].)

LEMMA 2. [S.J. Taylor] Let φx and φ2 be functions of class Φt and

^ Then, if

lim inf -&W = 0
Ψ2{t)

holds, there exists a compact set E such that Λh{E) = 0 and Cφi(E) > 0 .

For the proof see S.J.Taylor [17].

LEMMA 3. Let Xψ be a Feller process in Rd whose Green function

G(x9y) = φ(\x — 2/1), where φ(t) e Φf (see remark 1 in §3). Then, for a compact

set K, we have

μ*κ(K) = o <=> σ(κ) = o,
where μφ

κ(dy) denotes the capacitary measure of K for Xφ.

Proof If we assume that μφ

κ{K)>09 then the measure βκ(dy) = μφ

κ{K)~1

μφ

κ(dy) has total mass 1 and it holds I φ{\x — y\)βκ{dy) <—φ (jr, . Hence

Vφ{E)< + ™, which means Cφ{K)>0. Conversely, if we assume Cφ{K)>0,

then there exists a measure μ whose support is in K and \ φ{\x — y\) μ{dy)

< Vφ{K) + ε < + co for each ε > 0. Hence, if we set β(dy) =

\φ{\% ~ y\)μ(dy) ^ 1 + e and support of β cz K, which means μφ

κ{K) > 0 by

Lemma 5 in §4, because Xφ satisfies the condition {H) by Lemma 6 in §4.

Proof of ii) of theorem 5. By Taylor's theorem (Lemma 2) and Lemma

1, there exists a compact set K such that Cφ* (K) = 0 and C*Ί (K) > 0, which

means μγ{K) = 0 and ju (̂ϋΓ) ^ 0 by Lemma 3. Since A7i and Xφ* satisfy

Hunt's condition (H), some point is a regular point of K for Xφ* but no

point are regular points of K for Xψ*. Noting Theorem 5, i), the state-

ment also holds for X1 and X2.
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EXAMPLE. Let ^ be a differential operator in Rd{d^3) of the form

^ -jL^* > - w + i t w * } ^ 7 - c{x)

Here ,£§? is assumed to be strictly elliptic, i.e.

^ Σ α«(α;UΛ ^ μ Σ if, A* >o,

and

|^(a;) |<M, 0 < C 0 ^ C ( α ; ) ^ M , lim sup Γ A"1- w(a?, h)dh = 0,

where M and Co are positive constants and w{x,h) = sup |αϋ(#+2/)—#*./(#) I
ί i, |y|<Λ

N.V. Krylov has shown that on a suitable domain Ω there exists a Feller

process which is a quasi-diffusion Feller process connected with £& having

a Green function G(x,y) with singularity t2~d. (See N.V. Krylov [8], [9],

Th. 4). Hence, by Theorem 5, a point is a regular point of a compact

set for the above quasi-diffusion process, if and only if it is a regular point

of the same set for the Brownian motion.

As another application of Theorem 5, we shall give a sufficient condi-

tion such that Hunt's hypothesis (H) holds, making use of singularity func-

tion.

PROPOSITION. Let X be a Feller process which has the Green function G(x, y)

with singularity φ <E Φf. Then X satisfies the condition (H), under the condition (B).

Proof. Let Xφ be a Feller process whose Green function Gφ(x,y) =

φ(\x — y\). Then Xφ satisfies the condition (H) by Lemma 5 in §4 and,

for each compact set, its regular point is also a regular point for X and

converse is true. Therefore we have only to show that, for each compact

set K, μκ(K) > 0 means μφ

κ{K)>0, where μκ(dy) and μφ

κ{dy) are the capa-

citary measures of K for X and Xφ respectively. Let {Qn} be a sequence

of nearly analytic sets such that Q^°~re0 3 K and μφ

Q {Qn)iμφ

κ{K) (see Lemma

3 in §4), then we have for sufficiently small K

- C
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= C'μκ(K), C, 0 0 ,

which means that μκ{K)>Q implies μψ

κ(K)>0.

-=-J flog —J

In this section we shall give an example of a kernel with singularity

φ satisfying the complete maximum principle which is not a type of Riesz

kernel. For this purpose we use Deny's result [1], Let K be a measure

in Rd. We say that K satisfies the b day age principle, if for any compact set

C and for any measure μ of compact support, there exists a measure μ

whose support is in C such that

(Bx) K*μr^K*μ in Rd;

(B2) K*μ' = K*μ on C

(B

where * denotes the convolution operator. The measure μ is called the

balayaged measure of μ on C.

LEMMA 1. (J. Deny). Let us set

where μ{ds) is a measure whose support is contained in the closed interval [0,2] and

j ^ denotes the Fourier transform in Schwartz's sense. Then K is a measure which

satisfies the balayage principle.

For the proof, see J. Deny [1],

LEMMA 2. Let K be a measure of function type φ(x)dx, where φ{x) is a

non-negative, locally integrable function such that φ(x) = p(|ccl) and dx is the Lebes-

gue measure. Then, if K satisfies the balayage principle, it satisfies the complete

maximum principle.

Proof Let / and g be non-negative continuous functions with compact

support such that the inequality
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holds on the support of / , where is a an arbitrary but fixed non-negative

constant. We shall show that the above inequality holds everywhere. Let

δx be a Dirac measure at x and σ be its balayaged measure on 5(/)(= sup-

port of /) , then we have

K*f(x) = \Rdfiy) (K*δx) (dy) = \Rdf{y) (K*σ) (dy)

- y\)dy

-v\)g(y)dy + ά.

The proof is completed.

Let us now set

2, *; i n t e g e r ^ 1 .

In the 3-dimensional Euclidean space R* we can easily show that i^, fc is

absolutely continuous with respect to the Lebesgue measure. Further, we

can show that the density function ψ such that G(x9y) = ψ(\x — y\) is a

—-) ίlog-y-J which satisfies the complete

maximum principle. Let us first note the following well-known result on

Fourier transform: Let f(x) be a measurable function on Rd such that there

exists C > 0 and a positive integer / and \f(x)\ ^ C | a ? | ι holds for large \x\.

Suppose further that f{x) is only a function of \x\.

Then, it holds

\ A J d _ 2 (2π\x\s)ds, (in £f%

where / d_2 is the Bessel function of order "7 . The next equality

follows immediately from the above formula.

l<a<29 k>l9atK ^\1Πη
A-+oa \X I Jo uk

where

\
o

We divide the above integral into three parts as follows;
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= fV2fc+i; - T 7 — r - sin(2πi#|r)dr,

2

S 2ftΛ»

* -

1 \ *-l

sin

s ί n {2π ι x i

For 0 < r < 1 we have

t-iίr) = A

Moreover we have

(8. 1) Uk(r) =

a*r w k
log r log r

k + l
r=l.

2

Therefore we have for r < ( }+1 j α < 1

^ ( r ) = -«^=i
i - αV _«. 1

log

Hence it holds that

dr

where Kx is a positive constant which is independent of x.

It is clear that there exists a constant K2 which is independent of x

such that

\C2\<K2,

because 11 and
Uk(r) is continuous in \( 1 V

L\ 2fc+1 / '
e2tt! .

— ί — ) α ~ 1 ] . Now we shall estimate C3. We shall first note that ^ ^
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is monotone increasing for r > 1. Indeed, as we have for 0 ^ 5 < 1 and

— S k

1 ) 2
}fc ~ (α - 1 ) 2 '

2

i t h o l d s f o r r > ( ^ )

= {"""'sr-^s + Vfds - Γ (1 - s)rs-2sfc

Jo Jo
ί/s

= Γ 5(«r - 1)2{(« - 1)5
Jo {« ~ 1)

-i χ

Hence we have by the second mean value theorem

where ϋΓ3 is a positive constant which is independent of x. Therefore we

have

where KA is a positive constant independent of #. In the following we

shall show that there exists a strictly positive constant K5 such that

(8. 3) lim K

It is sufficient to show that

(8. 4) lim fi , , = Kt.

By the change of the variable we have

Y

ί/*(r)
sin 2π | a? | r dY = [ \χ\ x sin (2πr)
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We shall first show that for any given ε > 0 there exists a constant Ar

(independent of | # | < — J such that

(8 5)

for each

- sin {2πr)dr < ε

and Ά'>A'. If we choose A' > l \~oT^ϊ

*s a m o notocically decreasing function of r on [Af, +00]

by (8. 2). So by the second mean value theorem we have

UJ-£'T) '

Let us note that

£/(r) =

(logr)1

0

r = \

r = 0.

Indeed, using the equality (3. 1), we can get the above equality by the

induction. Therefore we have for 2 ̂  a > 1

\Ci'\<2A
/ log-

Ί - o c m I

fc!
( * - / ) !

Hence, if we choose ^ such that ~\~ > Σ «Λ"' (log AT1 fc!

it holds for 131 < JL
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f ) Λ

^ 4A'1-α(l + (log 2)"1 log >Γ) -A_.

Hence (8. 5) holds for sufficiently large yΓ. In the following we shall fix

such A', and show

(8. 6) lim •(^ΊΪTΓ IΪ

= \A —JΓ- r1'* sin 2-izr dr > 0.
Jo or

The left-hand side of (8. 6) equals to

Mm r
»ι-»o J^ i

1 - • r1"* sin (2πr)

sin

Noting that

w -
+ ί-

f o r

we see that

\~T~J
•k\

1 - 1-<x sm: (*)
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where KQ is independent of x and r and Xίe2kk\μ]>A,} is a characteristic

function of [e2kkl\x\, A'). Hence we can obtain the equality (8. 6). We

can also show that Ka,k is continuous except at the origin, so it is non-

negative because it is positive almost everywhere. (Remark that Ka,k is a

measure.) Hence Ka,k is a kernel with singularity (-?-) (log-4-) which

satisfies the complete maximum principle. (Note Lemma 2. )
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SUPPLEMENT

It is clear that the theorem 1 also holds under the condition B for the Feller process
on Ω which hsa a Green function G(x,y) such that, for each ball OnClΩ with radius

— , lim ( inf G{x,y)) = + oo. The proof is the same as that of theorem 1.
n n->ce\Xiy^<=onxOn t

Here, by the condition B, we mean

holds for x e Ω — G, where K (resp. G) is a nearly analytic set (resp. open set) with com-

pact closure in Ώ such that Ka G. For example, a continuous Feller process satisfies the

condition B.




