THE SINGULAR MEASURE OF A DIRICHLET SPACE

MASAYUKI ITO

1. Introduction

We [4], [5] examined some properties of balayaged measures in the
theory of a Dirichlet space. In those papers, we showed that the singular
measure of a Dirichlet space plays some important roles. In this paper, we
shall precisely examine some properties of the singular measure of a Dirich-
let space. Let X be a locally compact Hausdorff space in which there exists
a positive Radon measure & which is everywhere dense in X. First we
obtain the following

(1) Let D be a Dirichlet space with respect to X and &, and let ¢ be
the singular measure of D. For any couple # and » in D such that
S, NS, =¢, the function u*(x)v*(y) in the product space X x X is o-
integrable and

(,0) = =2 [[ w@p*@)do(z, v),

where #* and v* are the refinements of # and v, respectively.
By using this result, we shall obtain more precise results than those in
[4l. Moreover we have the following

(2) Let D be the same as the above (1), and let #, be a pure potential
in D, For an open set o in X, let ¢ be the balayaged measure of 2 to
o, and let v/ be the restriction of ¢’ to w. For any pure potential u, in
D and any open set v contained in the complement CS, of the support of
#, v' is absolutely continuous for & if and only if the projection of the sin-
gular measure of D to X is absolutely continuous for é&.

Next we shall examine total masses of balayaged measures. The result
in this paper is better than the one in [5].

Finally we shall obtain more precise results in the case of a special
Dirichlet space. Especially the following result is important.

Received February 17, 1967.
1) For a é-measurable function f, S; means the complement of the largest open set @
such that f(z) =0 in o.
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For any special Dirichlet space D, » is always absolutely continuous
for &.

2. Preliminaries on Dirichlet spaces

Let X be a locally compact Hausdorff space in which there exists a
positive Radon measure ¢ which is everywhere dense in X (i.e., &w) >0 for
any non-empty open set o in X). Let Cx be the space of finite continuous
functions with compact support provided with the topology usual. Accord-
ing to Beurling & Deny [2], we define a &-Dirichlet space on X.

Derinition 1. A Hilbert space D = D(X; ) is called &-Dirichlet space
(simply, Dirichlet space) on X if each element # in D is locally &-summable
(simply, summable) real-valued function® in X and the following three con-
ditions are satisfied:

(D. 1) For any compact subset K of X, there exists a positive constant
A(K) such that

[, lu@lae@) < a0 v |

for any « in D.
(D. 2) Cx N Dis dense both in Cx and in D.

(D. 3) For any # in D and any normal contraction T on the real line R,
T-u is contained in D and ||T-ul|<| =

In the above (D. 3), A transformation 7 on R into itself is called a
normal contraction if it satisfies the following:

T) =0 and |Ta, — Ta,| < |a, — a,|

for any couple @, and 4, in R. Two functions which are equal locally al-
most everywhere (simply, a.e.) for & represents the same element in D. The
norm of D is denoted by | #|, the associated scalar product by (u,v).
Similarly as Beurling and Deny [2], we define potentials in D.

2) Beurling & Deny [2] first assumed that each element # in D is a complex-valued func-
tion in X. Put D, = {Re u; uceD}. Then D, is a Dirichlet space in our sense. Conversely,
let D be a Dirichlet space in our sense. Put D’ = {u 4+ iv; u, veD}. Then D’ is a Dirichlet
space in Beurling & Deny’s sense. In potential theory, it is sufficient to assume that each #
in D is real-valued, because important potentials, i.e., balayaged potentials, equilibrium po-
tentials, -+ are all real-valued.
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DerINITION 2. An element # in D is called a potential in D if there
exists a real Radon measure # in X such that

(f,0) = | fla)dn(a)

for any f in C, N D. Such an element # is denoted by u,. Especially
if # is positive, #, is called a pure potential in D. By Definition 1, (D. 1),
for each bounded measurable function f with compact support, there exists
a unique element #, in D such that

(v,uy) = Sv(x)f (x)d&(w)

for any v in D.
Beurling and Deny [2] showed the following important representation
theorem.

ProrposiTioN 1.  For a Dirichlet space D on X, there exist a positive measure
v in X, a positive Hermitian form N(f,9) on Cx N D and a positive symmetric
measure o in X X X— 35 (6 is the diagonal set of X X X) such that

(f,9) = S fodv + N(f,9) + SS (f(x) — f() (g(%) — g(¥))do(2x, y)

Sor any couple f and g in Cx N D. Here N(f,9) has the following local character:
if g is constant in some neighborhood of the support S, of f, then N(f,g) vanishes.

ProrosiTioN 2.  For a Dirichlet space D on X, the above representation is
unique.

Proof. Suppose that there exist another positive measure ' in X,
another positive Hermitian form N’(f,g9) on Cx N D with the above local
character and another positive symmetric measure ¢/ in X X X — § such that

(£, 9) = | r9a» + N'(7, 9 + {{ (7@ — @) (9(2) — gt (,9)

for any couple f and g in Cx, N D. Since Cx N D is dense in Cy, the set
{f(®)g(y); f,4€ Cxk N D, S, NS, =¢}

is dense in Cx(X X X—4)» For any couple f and g in Cx N D with
Sf n Sy = ¢ ’

3) Ckg(X x X — 98) is the space of finite continuous functions in X X X — & with compact
support provided with the topology of uniform convergence.
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(f, 9 = — 2| f@gw)dola,v) = — 2| F@gw)do (@, ).

Hence the equality o =" holds. Next we shall show the equality v =",
It is sufficient to prove the equality

Sfdp=Sfdu’

for any f in Cx N D. Similarly as in the proof of Theorem 1 in [4], there
exists a function ¢ in Cx N D such that g(x) =1 in some neighborhood of
S;. The Hermitian forms N(f,g) and N’(f,g) having the local character,

(f,9) = | 7 av+ [{ @) = @) (0(2) — 9otz 9)

=7 a + ([ @) = ) @) — sw)do (2, ).
Therefore the equality v = holds, and hence

N(f,9)=N'(f,9)
on Cxn D. This completes the proof.

DeriniTioN 3. The above measure » in X is called the equilibrium
measure of X (with respect to D),® N(f,g) is called the local form of D and
the positive measure ¢ is called the singular measure of D.

3. Some lemmas
In order to obtain our first main theorem, we need the following lemmas.

LemMa 1. Let D be a Durichlet space on X. For a compact set F, and a
closed set Fy in X with Fy N Fy=¢, let wuu—n, be the condensor potential with
respect to Fy and Fo%  Then wu,~u, is contained in the closure of the following
subset E,, of D:

E o ={feCcnND; flx)=1on F, and f(x) =0 on F,}.

4) Beurling and Deny [2] remarked that for any non-decreasing net (@,)qc, Of relatively
compact open sets tending to X, the equilibrium measure of o, tends vaguely to v. Hence
we say that v is the equilibrium measure of X.

5) Beurling and Deny [2] showed that for any couple of open sets »; and @ in X, o,
being relatively compact, there exists a potential u, ., in D satisfying the following:
0wy y, =<1, upy -y, (%) = ¢ ae. in w; and g, is a positive measure in X supported by @;.
We [6] formed a similar potential in D for a compact set F; and a closed set F,. This poten-
tial is called the condensor potential with respect to @, and @, (or F; and F).
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Proof. We put

E ,={feCxnND; flx)=1 on F, and f(x)=<0 on F,r.

Then E,, is a closed convex set and non-empty, because Cx N D is dense
in Cx. Let u,, be a unique element in E;, whose norm is minimal in
E,,. Similarly as Beurling and Deny’s Condensor Theorem, we obtain
that #,,, is equal to a potential #, in D and p* (resp. ¢°) is supported by
F, (resp. F,). By the condition (D. 3) in Definition 1, 0<u,,<1 and
u%o(x) =1 ppp on F; for i =1,0,9 where u%, is the refinement of u, .7
Next we shall show that #u-u, = #,,,. By Beurling and Deny’s theorem,®
there exists a sequence (#u,) of linear combinations of pure potentials in D
such that (#.,) converges strongly to #,, as # —> 4 o and

Su, € F, U Fy.
Then we have
Il 21,0 17 =n1_iglo (t1,05 Uhar) = 1}1_{130 (Upr—po 5 Un,)
= (Wpr—puay Us,0) < || U~ || = I 21,011
because
wh—u(®) =1 ppp on F, and u},_,(2) =0 ppp on F,.

That is,

loeg,0ll < || #u1— 1o

By the definition of the condensor potential, we obtain that #,,= tu—su, .

Finally we shall prove that #,,€ E;,. By the above assertion, there exists
a sequence (f7) in E;, N Cg such that (f}) converges strongly to #,, in D.
Let T be the unit contraction on R,® and put

fal@) =T-fi().

6) A property is said to hold ppp on a subset E in X if the property holds u-a.e. on E
for any pure potential #, in D such that S, C E.

» Cf. [2], pp. 209-210.

8 Cf. [2], p. 214.

9 We say that the projection on R to the closed interval [0, 1] is the unit contraction on
R. Cf. [6].
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Then f, is contained in E,, and (f,) converges strongly to u,, in D as
n—> + oo, because (|| f,ll) is bounded and

laoll = lim I £5 1= Bm || £l

This completes the proof.
Similarly as in the case of a special Dirichlet space, we obtain the
following

Lemma 2. Let D be a Dirichlet space on X and o be the singular measure of
D. For any compact set K in X and any open neighborhood » of K,

SS do(®,y) < + .

K x Co

Proof. We take another open neighborhood " of K such that o’ Cw.
Let u, be the condensor potential with respect to K and Ce’ and let (f,)
be a sequence in Cx N D such that (f,) converges strongly to u, in D as
n—>+co and

0< fu(z)<<1, fa.(x) =1 on K and f,(z) =0 on Co’.

Let (K;),.; be a non-decreasing net of compact subsets in X tending to X

and put
K,=K;NCo.

Similarly as above, we can take a non-decreasing net (g,) in Cx N D such
that

S CCo’, 0=<g,=1 and g,(x) =1 on K,.

Then for any =,

[ dow, =] ru@a.wdoa,v)

Kx Ka

=1
- 2 (fn’ga)'

Consequently we have
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|| dotwn=— L w00 =L {a@de).
K x Kq

The total mass of the positive measure £~ being finite, we obtain that

SS do(x,y) < —%—Sd#‘< + oo,

K x Co

This completes the proof.

3. First main theorem
Now we define the projection of a singular measure of a Dirichlet space.

DermniTiON 4. Let o be the singular measure of a Dirichlet space D.
For a compact set K in X, the projection ox of ¢ to CK is the positive
measure in CK defined as follows:

| raoc = | rwdota,v)
for any f in Ck(CK).

LemMA 3.  Let o be the singular measure of a Dirichlet space D. For a
compact set K in X and an element u in D such that KN S, = ¢, the refinement
u* of u is ox-integrable.

Proof. 1t is sufficient to prove that there exists a pure potential #, in
D such that the inequality ox< # holds in an open set o contained with
its closure in CK. We take a couple of open sets o, and o, with disjoint
closures, o, being relatively compact and holding the following inclusions:

0, DK and 0,2 &.

Let #u-4 be the condensor potential with respect to o, and w,. Then by
the results in the preceding paper,’ #., and wuu, are elements in D. Simi-
larly as the above lemmas, there exists a sequence (f,) in Cx N D such that
(fn) converges strongly to #u—u, as n—> + o,

0<f.<1, fa(2)=1on K and f,(2)=0 on &.

For any f in Cx N D with support in o, we have

10) Cf. Levy-Khinchine’s theorem in [2] and [3].
1) Cf. Lemma 1| and Lemma 3 in [5].
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[ [ rwasw, 0 <|| faw r@idste, ) = = 3£, 72)

for any n. Making # tend to infinity, we obtain that

SKS fly)do(z,y) = — % (fy tur—m) = ”;—Sf duy,.

Cx N D being dense in Cx, we obtain that aKé% ¢, in . This completes
the proof.
By the above lemma, we obtain the following

TueoreM 1.  Let D be a Dirichlet space on X and o be the singular measure
of D.  For any potential u, in D, let 1V be the restriction of p to CS,,. Then

dp®(@) = — -+ | uw)data, v)

in CS,,. Furthermore for any couple of elements wu, and u, in D such that
Sul n Su2 = ¢, we obtain

(1) = — 2 || wt(@)usw)dote, v).

Proof. First we suppose that #, is bounded in X. By the conditions
(D. 2) and (D. 38) in Definition 1, there exists a sequence (f,) such that (f,)
converges strongly to #, in D as n—> + oo, (f,) is uniformly bounded and
Sy, is contained in a fixed neighborhood N of S,,. We take any fixed
element f in Cx N D such that S; c CS.,- We may assume that the above
function f, has the support in CS;. Then

(f, £) = = 2{{ ful@) f@)dotz, ).

By Lemma 2 and Lebesgue’s bounded convergence theorem, making » tend
to infinity, we obtain

() = —2 || wt@) rw)do(w, ).
That is,

[ 7 arw = —2 ([ r@utw)doa,v) .
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Next we shall prove the general case. We may assume that «, is non-
negative, because in the general case, u; and u; are potentials in D. Put
U, o(x) = inf (u,(x), n).

Then u, , is contained in D and by the above assertion, we have
W 1) = =2 || F@ug @) do(@, 1) 2

Since the sequence (u,,,) converges strongly to #, in D® and the sequence
(#,,.(2)) is non-decreasing, making » tend to infinity, we have

[ 7 e = @or) = =2 | f@utw)doa,v).

Let’s show the second part of our theorem. First we assume that Sy,
is compact and u,(¥) is non-negative. = Then we can take a relatively
compact open set o, and an open set o, such that

51052=¢, Su1Cw1 and Su2Cw2.

By Lemma 3, we can define a positive measure o4,, in o, such that

| 7 dows = || r@usw)date, 9)

for any f in Cx with support in ;. Let’s show that the function u% is
ou,;-measurable. By the properties of the refinement, there exists a non-
increasing sequence (w,) of open sets contained in , such that «% is con-
tinuous on Co, for any = and

lim cap (w,) = 0.1

7n — o

We take an open set w; such that

0, Co; and o, N w; = ¢.
Let #u, be the condensor potential with respect to w, and ws;. Then

1
2

[, down = — 1 ump ) = T N |1+ N 211

12) Cf. Proposition 1.

13) Cf. Lemma 4 in [5].

14) For an open set o, the capacity cap(w) of w is defined as follows: cap(w)=inf{ | «|?;
u(x) =1 a.e. in w}, cap(w)=-+co if such elements don’t exist.
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Since the sequence (|| #, ) converges to 0 as n—> + o, u} is o4, 1-measur-
able. If «% is bounded, our conclusion is evident. Put

ui,n = inf (u{, n), w3, =inf(u7,n).

Then the sequences («},,) and («7,, are non-decreasing and contained in
D. By the above assertion,

() = =2 [ wth @t w)do(a, )
and
(5, ) = — 2 {[ ansi@)ut@)dota, ).
Making » tend to infinity, we obtain
(w1, u) = — 2 [{ ut@ut)dota, y) and (u,u) = — 2 ([ arr@)usw)dota, v) .
That is, we have
() = — 2 || wtt@)usw)dota, ).

In the case that «, is general, by the above assertion, we have

(1, t0) = (0, u3) — (00, u3)

I

— 2{{ wt@uirw)dota, v) + 2 {{ wti@)uzy)do(s, y)

ll

—2 [ ut@usw)dota, v).

Thus we prove the case that S., is compact. We shall prove the case that
Su, is general. Similarly as the above, we may assume that #, and u, are
non-negative. We take a non-decreasing net (w,),_, of relatively compact

open sets tending to CSy,. We put F, = Co,. Let #;, be the projection of
u, to DF, where

D ={u,: a potential in D, S,C F.}.

Then u} . is non-negative.’™ Furthermore we put

15) Similarly as in [2], p. 214, we obtain the following result: #*(x) =0 ppp on the spect-
rum of « implies ¥ >=0. Cf. [5].
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_ ’
Uy,o = Uy — Uy,

By the above assertion,
(1,00 ) = — 2 || 4t s(@)us()dola, y) .

The net (u7,,) tends to 0, and hence the net (#,,) tends strongly to «, in
D. Hence we can choose a subsequence (u,,,) of (u,,) such that (,,,)

converges strongly to #;,. By Fatou’s lemma, we have

[ st@ur@ido, 9) < lim (|t @us@)dot, y)

n—>» o0
=lim "‘—1—(“1,%’ Uy) = — —12“(”1”‘2) .
n— oo

On the other hand, since u¥(x) — u* ,()=0 ppp in X for any a€ I,

|| sr@uswidote, ) = [| ut c@usw)dote, v).

Consequently we obtain

() = — 2 {{ ut(@)usw)do(z, )

This completes the proof.

Applying this theorem, we obtain the following corollary.

Let F be a closed set in the product space X X X. The z-section F,
of F means the projection {#} X XN F to X, and for an arbitrary subset
A of X, the A-section F, means the union erA F,.

CoroLLARY 1. Let D be a Dirichlet space on X, and let ¢ be the singular
measure of D.  Given a symmetric closed set F in X X X containing the diagonal
set 6 of X X X, the following two conditions are equivalent.

(1. 1) For any pure potential u, in D and any open set o contained in CS,,
let uy, be the balayaged potential of u, to . Then

S#’ (e Fca, n 5.
1. 2) S,c F.

In the preceding paper [4], we proved this result in the case that F is
regular, i.e., F, is compact for any x € X and the point-to-set map: x—>F,
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is continuous. Let’s prove this corollary. First we shall prove the implica-

tion (1. 1)> (1. 2). Suppose that S, « F. Then there exist two functions
f; and £, in C% N D such that

S, N Fs, = ¢, SpN Fs, =¢
and

SS f1(z) foly)do(x, y) > 0.6

Hence there exists a pure potential #, in D such that S, c Sy, and

[§ i) — ug) fw)dota, 9) >0,

where u, is the balayaged potential of #, to CSr,.  On the other hand,
since

NSr=4¢,

S(“u‘",u')

we have

2| (utte) — @) oo (@,9) = | Au(@)dr @) =0,
because

S/A’C stl

by our assumption. This is a contradiction. The proof of the implication
(1. 2)=> (1. 1) is evident by the fact that u,(x)— uw(x)=0 a.e. in o and
Theorem 1. This completes the proof.

In order to characterize the absolute continuity of balayaged measures,
first we give the following definition.

DerFiNiTION 5. Let ¢ be the singular measure of a Dirichlet space D.
We say that the projection of ¢ to X is absolutely continuous for & if for
any compact set K in X, the positive measure ¢z in CK is absolutely con-
tinuous for £.

Remark. 1If o is absolutely continuous for & x &, the projection of s to

16) Cf. [4], Lemma-6.
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X is absolutely continuous for &  But the converse is not valid. We can
easily construct a counter example.
Another corollary of Theorem 1 is the following

CoROLLARY 2. Let D be a Dirichlet space on X and o be the singular
measure of D.  The following two conditions are equivalent.

(2. 1) For any pure potential u, in D and any open set o contained in CS,,
let uw be the balayaged potential of wu, to w. Then the restriction of ' to o is
absolutely continuous for &.

(2. 2)  The projection of o to X is absolutely continuous for &.
Proof. First we shall prove the implication (2. 1)c> (2. 2). For a com-
pact set K in X, it is sufficient to prove that the positive measure ox is

absolutely continuous for & in any open set o such that @ ¢ CK. We take
another open set o, in X such that

Kco, o,Nw=4¢.

Let u,,_,, be the condensor potential with respect to o, and o. By Theo-

rem 1, for any f in C; with support in @, we have
| £ dox= {[ r@ut,s, )o@, v) = L 5 d.

That is, the inequality ox é% ¢, holds in . Since uy is contained in D
and p, is the balayaged measure of 7, to w, we obtain that g is absolutely
continuous for £ in 0.

Next we shall prove the converse. First suppose that Ce is compact
in X. By Theorem 1, the restriction #/ of p’ to w satisfies the following:

[ awe =2[ 7@ (tw) - wt @)dotz, 9)
for any f in Cx with support in ». Hence it is evident that the condition
(2. 1) is satisfied if wuj(x) — u} (x) is bounded. In the general case, we put
un(2) = inf (u,(x) — uw(x), n).

Then #, is in D. By our assumption, for any compact set K in X such
that ¢ K) =0 and KC o,
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[ [uz@rdota, 9 =o.
Making » tend to infinity, we obtain
|| i) — e @) dota, ) =0,

and hence p’(K) =0. That is, p'® is absolutely continuous for ¢. Next
we shall prove the case that o is general. We take a decreasing net (w),er
of open sets such that Ce, is compact in X for any a7l and it tend to
o. Let wuu, be the balayaged potential of u, to o,. Then the positive
measure p,* is absolutely continuous for &.  Since the net (#4,) is non-
decreasing and converges strongly to u., there exists a subsequence (u,‘;") of
(uu;) which is non-decreasing and converges strongly to #. as n—> 4 oo.
Similarly as the above calculation, we obtain that p/** is absolutely con-
tinuous for ¢.

This completes the proof.

4. Second main theorems

In this section, first we shall examine some properties of equilibrium
measures and equilibrium potentials in a Dirichlet space.’> We shall prove
the following lemmas.

Lemma 4. Let D be a Dirichlet space on X. For an open set o in X, the
equilibrium potential u, of o exists in D if cap (0) < + oo.

Proof. By the definition of the capacity, the set
E,={uec D; u(x)=1 a.e. in w}

is non-empty and closed convex subset of D. Similarly as Beurling & Deny
[2], a unique element whose norm is minimum in E is the equilibrium
potential of w.

Lemma 5. Let D be a Dirichlet space on X. For two open sets o, and w,

17) Let D be a Dirichlet space on X. Beurling and Deny [2] showed that for any rela-
tively compact open set o, there exists a pure potential #, in D such that 0<%, <<1, u, =1
a.e. in o and S, Cw. This potential %, is called the equilibrium potential of w and this
positive measure v is called the equilibrium measure of w.
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in X such that o, C o, and cap (w,) < + o, let u, and u,, be the equilibrium

potentials of w, and w,, respectively. Then, for any Borel set A contained in o,
v (A) =v,(A4).

Proof. It is sufficient to prove that for any f in Ci N D with support

in o,
Sf dulZSf dv,,

because Ck(o;) N D is dense in Ck(w,).’®> Using the domination theorem,
we obtain that

Up, =y, and S c Co,.

(Up, ~tp,)

Then by Theorem 1, we have
[ 7 dm—{r am=2({ s @) — ut, )o@, ) =o0.

This completes the proof.

By Lemma 4, for any open set  in X, there exists a positive measure
v supported by ® such that for any net (,) of relatively compact open sets
contained in o tending to o, the equilibrium measure v, of ®, converges
vaguely to v. We say that this positive measure v is the equilibrium
measure of . Similarly as the above, wé obtain the following

Lemma 5'.  Let D be a Dirichlet space on X.  For two open sets o, and
wy such that o, C w, (cap (w,) is finite or not), let v, be the equilibrium measure of
w; for i =1,2.  Then for any Borel set A contained in o,

v(A) =v,(4) .

This follows immediately from the above lemma. By the above two
lemmas, we obtain the following corollary.

CoRrOLLARY 3. Let D be a Dirichlet space on X.  Suppose that for any
relatively compact open set o in X, the equilibrium measure v of w is absolutely
continuous for & Then, for any open set o in X, the equilibrium measure v of o

18) Because the closure of Cg(w;) N D by the norm of D is a Dirichlet space on ;. Cf.

[5].
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s absolutely continuous for & Especially the equilibrium measure of X is absolutely
continuous for &.
Similarly as in Theorem 1, we obtain the following theorem.

TueoreM 2.  Let D be a Dirichlet space on X, and let v, o be the equilib-
rium measure of X, the singular measure of D, respectively. For an open set o in
X with cap (w) <+ co, let p be the equilibrium measure of o and p be the
restriction of p to .  Then

[ au =2{f 7@ wite) — wtv) do@,9) + | 5 dv

Jor any f in Cx with support in w.  Furthermore, for any couple u, and u, in D
such that wuy(x) = ¢ a.e. in some neighborhood of Suys

(1) = ¢ | ut(@)au(@) + 2 [ wt(@)@tle) — ws@)dolz,v),

where ¢ is constant.

In order to prove this theorem, we need the following lemma.

Lemma 6.  Let D be a Dirichlet space on X.  Given a relatively compact
open set o in X, let u, be the equilibrium potential of o. Then there exist un-
refinement u’, of wu, such that the equality w}(x) =1 holds everywhere in o.

Proof. It is sufficient to prove that for any open set o, such that
o, C o, the equality ujf(x) =1 holds everywhere in w;,, By Lemma 1, there

exists a sequence (f,) in Cx N D such that (f,) converges strongly to u, as
n—>+ oo, 0< f,<1 and f,(x) =1 in o, for any n. We may assume that

S 4N fan = FalF< o0

By the definition of the refinement, the sequence (f,) is uniformly conver-
gent to u} in CE,, where

B = :Qk Ei zni‘jk {& € X; | fanl(®) — fal@)] >1/2"}

for any integer n.  The inclusion o, © CE, exists for any integer #, and
hence we obtain that #}, is continuous in o, and the equality #%(x) =1 holds

everywhere in ;. This completes the proof.
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Remark. The above lemma is valid for any open set o with finite
capacity.

Proof of Theorem 2. Let o be the open set in our theorem. For any
f in Cj supported in o, let o, be a positive measure in CS, similarly as
in the proof of Theorem 1. By Lemma 1 and Theorem 1, the function
1 — u}(x) is os-integrable. Let (f,) be a sequence in Cx N D such that (f,)
converges strongly to #, in D as n—> + o0, 0< f(#)<<1 and f,(x)=1 in
some neighborhood of S, for any ». Then by Beurling-Deny’s representa-
tion theorem, we have

(fur £) = | s@ast@) + ([ £0) — 7@Nula) = Fa@Ndol, v)

= | r@av@) + 2| r@0 — ru)dota,v) .

By Lebesgue’s bounded convergence theorem, we obtain that
| r@dp@) = @, 1)
= [ r@av@ +2{{ 7@ - utwidae, )
= [ r@av (@) + 2 || r@ute) — wpw)dotz, v).

From this equality, we obtain the first required equality. Let’s prove the
second part of our theorem. We may assume that «} is equal to ¢ every-
where in some neighborhood  of Sy, . Similarly as the proof of Theorem

1 and the proof of the first part of our theorem, we obtain

() = ¢ | at (@) dv () + 2 [ ut(@)@t(o) — wtw))dola, v) .

In the above equality, the v-measurablity of «* is followed from Lemma 5.
This completes the proof. '

As an application of the above theorem, we obtain the following theo-
rem. This result is more precise than in [5].

Tureorem 3. Let D be a Dirichlet space on X and v be the equilibrium
measure of X. For a pure potential u, in D such that Sd,u< + o and an open

set o in X such that cap (Co) < + co, let uw be the balayaged potential of wuu to
o. Then
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S (@) — uk () dv () = Sd,, - S dy.
Furthermore, for a non-decreasing net (K,),c; of compact sets in X
tending to X, let uu, be the balayaged potential of #, to w, = CK,. Then

the net <Sd‘u;)aeI is non-increasing and

S wk(x) dv (z) = X dy— au,
where

a,= lide,u{,.

el

Before we give the proof of this theorem, we remark the following

COROLLARY 3.  Let the notations be the same as in the above theorem. For
any pure potential w, in D with Sd;z< + oo and any open set w in X such
that cap (Co) < + oo, de = S dy' (resp. de >Sd,u’) if and only if v =0 (resp.
v is everywhere dense in X).

The proof of this corollary is immediate from the above theorem. This
corollary was partially proved in [5].

Proof of Theorem 3. First we shall prove the case that Ce is compact
in X. We take a non-decreasing net (w,),c; of relatively compact open
sets in X such that o, D Co for any a €I and the net (o,) tends to X.
Then, for any a € I, we have

(1 — oty ) = | (W) — el (@))dpra(a)
= S (ug(x) — ufy (x))dv(x) + 2 SS (wi(2) — ujir () (g (2) — uj,(y))do(, y)

= S (ufi(2) — uf(@))dv (x) + 2 SS (wh(e) — ulp(2))(1 — uj,(y))do(x,y) .

Since the net (1 — #},),cs i1s non-increasing and tends to 0 in X, the second

part of the last hand converges non-increasingly to 0. Hence we have

i (s — sy ) = | (k@) — ule))d(a).
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On the other hand, the net (#u,),c; tending non-decreasingly to 1 in X, we
obtain that

{‘ig} (s Upe) = Sdﬂ, Eg} (U arg) = Sd,u’.
That is,

[ uto) — wtenavie) = [ ap = ap .

Next we shall show the case that Cw is general. We take a decreasing
net (0,),c; of open sets such that Co, is compact and o, D 0 for any « € I,
and that the net tends to ». Let »* be the restriction of » to some fixed
open set containing Co with finite capacity. By Lemma 5, a potential u,’
exists in D. Hence

[ Gut@) — @)y @) = | (i) — g, (@))dv'()
= (Up — Uplyy Uyr) —> (U — Uy Uyr)

= (wi(x) — ui(x))dv(z),

because the net (ux — uu,),e; converges strongly to #x— uw, in D, where pj

is the balayaged measure of p to w,. On the other hand, similarly as the
proof of theorem 1 in [5],

iy st =
Thus the first part of our theorem is proved and the second part can be
obtained by the usual limiting process. This completes the proof.

Evidently we know that a. vanishes for any pure potential #. in D
when X is of finite capacity. But we don’t know the condition which au
vanishes. Finally we remark that similar theorems as Theorem 1 and Theo-
rem 3 hold for a condensor measure.

6. Special Dirichlet spaces

First, according to Beurling and Deny [2], we define a special Dirichlet
space.

DerFmniTioN 4. A Dirichlet space D = D(X; €) is said to be special if X
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is a locally compact abelian group, & is the Haar measure of X and the
following condition is satisfied:
(D.4) For any # in D and any # in X, the function U,u is in D and
NU,u |l =llull, where U,u is the function obtained from # by the translation
2 (e, Uguy) =uly —x).

In the case that D is a special Dirichlet space on X, Proposition 1
reads as follows:

ProrosiTioN 3. Let D be a special Dirichlet space on X.  Then there exists
a positive constant ¢, a local form N(-,-) on Cx N D and a positive symmetric
measure o' in X — {0} such that

(f,0) = c | fg de + N(£,9) + [[ (F& + 0= 7 (@N0(@ + ) — gle)do’ (W)de()

Sor any pair f and g in Cx N D.  The above representation is unique.

Proof. By Proposition 1, there exist a positive measure » in X and a
positive symmetric measure ¢ in X X X — 4 such that

(£,9) = | r9 av + N7, 9 + [[ (£ @) = F@G (@) — 9w dota, )

for any pair f and ¢ in Cx N D. We take an increasing net (K,) of com-
pact sets in X which tends to X and an increasing net (g,) of Cx N D such
that 0<g,(z)<1, g.(®) =1 on K, for any a« € I and the net (g,) tends to 1
in X. We know the existence of this function g, by the condition (D. 2)
and (D.3). For any fin Cx N D and any % in X,

hnIl (f’ ga) = S f d"'! hn} (Ua:fy U:pgc) = S U.z-f dv,
and hence

Sf du=§szdv.

Consequently dv = cd&, where ¢ is a non-negative constant. Next we shall
examine the singular measure ¢ of D. For any f and g in Ci such that
the support S,,, of the convolution fxg doesn’t contain the origin 0 of X,
the transformation

71— [ f@)9w)dstz, v)
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is positive linear. In fact, suppose that fi*g9,< fi*g,. For any % in C%
such that S, N S,z,gz =g,

[§ £irgun)do (@, 9) = [§ foa(@1r@dotz, v)

= ([ rea@n@do (@, 9) = [ rwerh@w)dotz, v).

Making % vaguely tend to the unit measure ¢ at 0, we obtain

[§ ri9@)dotz, ) < [ £@0@)dotz,v).

The well-definedness of the above transformation is evidently followed by
our assumption, i.e.,

|| r@9wdote,v) = [ 7@ + 209ty + 2idota, 9)

for any =z, in X.  Since the totality of such functions f+g is dense in
Ci (X—{0}), there exists a positive measure ¢’ in X — {0} such that

[ ot do @) = {{ r(@)otw) dota, v)

for any pair f and ¢ in Ck such that S, NS,=¢. The symmetricity of
o follows from the simmetricity of . Consequently

] £ @ + na@ias W)ae@ = [| r@ew)dota,v).
The uniqueness of the. singular measure of D follows from the equality
[§ (@ +0) = r@ele + v) - gla)de @)de(x)
= ([ @) = r@e@) - gw)dotz, v)

for any pair f and g in Cx N D, and hence the proof is completed.

In this case, we call the above positive measure ¢’ the singular measure
of D. Furthermore the local form N(-, ) satisfies the following condition:
N(f,9) =N{U,f,U,g9) for any pair f, g in Cx N D and any ¢ in X. Hence
the above proof is one of Levy-Khinchine’s theorem.!> Then we obtain the
following corollary.

19 Cf. [2], [3], and [4].
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COROLLARY 4. Let D be a special Dirichlet space on X.  The above positive
constant ¢ doesn’t vamish if and only if Dc L® and the mapping: f—> f on D
info L* is continuous.

The proof is evident by the above proposition. As another application
of the above proposition, we obtain the following

THEOREM 4. Let D be a special Dirichlet space on X, and let o be the
singular measure of D. For any pure potential u, in D and any open set o contained
in CS,, let u, be the balayaged potential of u, to o, and let p' be the restric-
tion of p' to o. Then p'® is absolutely continuous for .

Proof. By Theorem 1,

Sf d,u’=—(u,‘—u,/, f)

= ZSS (ul(x + y) — ufi(x + y)) f(2)do(y)dE(x)

for any f in Cx N D with support in . Now the function

Fuolw) =2 | @iw +9) — ulia + y)doly)

is a locally summable function in o, and hence ¢’ is absolutely continuous
for &, This completes the proof.

Similarly as in Theorem 4, we obtain that 2/ is a function of class
C~ in o if and only if ¢ is a function of class C* in R™ — {0}, where D is
a special Dirichlet space on the n-dimensional Euclidean space R"(n=1).
(CL.[7D)
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