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§ 1. Introduction

Let 5 be a locally compact (not compact) Hausdorff space satisfying

the second axiom of countability and let & be the <;-field of all Borel

subsets of S and let s/ be the <τ-field of all the subsets of S which, for

each finite measure μ defined on {S,Ssf), are in the completed afield of

& relative to μ. We denote by Co the Banach space of continuous

functions vanishing at infinity with the uniform norm and Bk the space of

bounded sf -measurable functions with compact support in S.

Let X = {xt,ζ,Mt,Px) be a standard process1) on S. Let us set

Gβ(a,B) = ^e-atPx(xt e B)dt, a^O,
Jo

where B is a Ssf -measurable set and set Gaf(x) =1 f(y)GΛ{x,dy) for each

bounded s/ -measurable function /. We say that the standard process

X satisfies the regularity condition with respect to a locally finite measure m(dx)9

if the following holds :

( i ) GQ(x, K) is bounded on every compact set when K is compact.

( i i) G*{x,K) is absolutely continuous with respect to m{dx) for each a>0

and for each x e S.

(iii) G*f(x) is finite and contiuous for each f e Bk.

We say that two standard processes on S X = {xt, ζ, Mt,Px) and

X = {$tX,MtiPx) are in the relation of duality with respect to a locally finite

measure m(dx), if each of them satisfies the regularity condition with respect

to m(dx) and it holds that for each a ^ 0

9(x)GJ(x)m(dx) =( f(x)όag(x)m(dx),
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!) For the definition see H. Kunita and T. Watanabe [3].
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where

£.(*,B) = [~e-atPM e B)dt, ό.f(x) =\ f(y)6a(x,dy).
Jo Js

Our aim is to show the following theorem.

THEOREM. Let X and JC be standard processes on S in the relation of

duality with respect to a locally finite measure m{dx). Further let us suppose that

the semi-group {Ttyt>o of X and {Tt}t>0 of % are strongly continuous operators

on Co. Then the process X is a continuous process, if and only if X is a

continuous process.

In the author's previous paper [2], we studied the process X connected

with the following strictly elliptic differential operator on the ball Ω of

Rd {d•>:?>)

D== Σ *ij(*) J\r + Σ £
ijl dXiOXj t = l

and the process X connected with the formal adjoint operator

ί)= ΣJ ./* ( a t J ( x ) - ) -
i j l OXOXj

where D is assumed to satisfy the condition (L), that is,

holds for every non-negative C2-functions v with compact support in Ω and

the coefficients {aij9 i j = 1,2, ,d} and {at i = 1,2, ,d} are bounded

and uniformly Holder continuous such that atj — aH.

By using the above theorem and the proposition in § 4, we can show

the following

COROLLARY. The process % connected with the operator D which is mentioned

above is a continuous process,

§ 2. Resolvent kernels.

Throughout this section we use the notations in H. Kunita and T .Wata-

nabe [3].

A function R^x^Λ), defined for a>0, x of 5 and A of j ^ , is said

to be a resolvent kernel if it satisfies the following conditions (a)-(d). (a).
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For each a>0 and x of S,#α(#, •) is a locally finite measure, (b). Let

/ be a bounded j^-measurable function of compact support, then RΛf is

J^f -measurable and bounded on every compact set, where we write Raf

for J/(y)Λβ( , dy). (c). The resolvent equation RJ - Rβf + (a - β)R*Rβf

= 0 is satisfied and (d). lim R*f{x) = O for each x and for each bounded

j^-measurable function / of compact support.

Since RΛ(x9A)^.Rβ(x9A) for each A of

RQ{x, A) = lim β-oi?.(B, A)

exists for each A of j y and defines a measure on

Let {mR9(x,A)'} be a resolvent kernel and m9 a measure defined over

is said to be dominated by m if, for each a>0, R^{x,A)

satisfies the condition (ii) of § 1.

{7?β(#, A)} is said to be integrable if Z?o( , ̂ 4) satisfies the condition (i) of

I I .

{Ra(x,A)} is said to be regular if, for each continuous function / of

compact support, aR^f converges boundedly on every compact set to / as

a -¥ + co.

A resolvent kernel {R(ί(x9A)'} is called the co-resolvent kernel of -[Ra{x9A)}

with respect to m{dx) if, for each /, g of Bk and for each a > O

\ f(x)Rag(x)dx =f g{x)RJ{x)dx.

A non-negative J^f -measurable function u is said to be {R,a)-excessive

if βRa+βU <ί u for all β > 0 and if lim βRa+aU = M.

Given a number α ^ O , a jointly (= Jϊf x J ^ ) measurable function

Ra(x,y) is said to be the potential kernel of exponent a if the following condi-

tions are satisfied : (a) R9(x9dy) = Ro.{x,y)rn(dy) (b) Ra.{y,dx)=R(X{x,y)m{dx)

(c) Ro.(*,y) is (i?,«)-excessive for each fixed 2/ and (d) R9(x9 •) is (i?,α)-

excessive for each fixed a?.

The following lemma is Theorem 1 in H. Kunita and T. Watanabe

[3].

LEMMA 1. (H. Kunita and T. Watanabe). Let {i?α(#,-A)> be a resolvent

kernel and ζR«(x,A)} be the co-resolvent kernel of {mRΛ{x9A)'}. Assume that



290 MAMORU KANDA

{_R*{x,A)} and {R+{x9A)} are dominated by the locally finite measure m(dx). Then

there is a unique potential kernel of exponent a for a^O.

§ 3. Fundamental lemmas.

Throughout this section we treat two standard processes on S X

= (xt9ζ9 Mt,Pt) and X = {άt9 ζ, i6Γί,PJ which are in the relation of duality

with respect to a locally finite measure m[dx) without special mentioning.

Evidently {Ga{x9A)y is a resolvent kernel and {όa(x,A)} is the co-

resolvent kernel which are dominated by m[dx) by the condition (ii) in

§ 1. Hence the following lemma is a direct consequence of lemma 1.

LEMMA 2. There is a unique potential kernel G*{x9y) of exponent a for all

Let E be an analytic set in 5 and let us set aE = inf(t > 0 , xt e E),

= + co if the set (t > O , xt e E) is empty.

The next lemma plays an essential role in this paper, which is first shown

by G.A. Hunt [1] under his assumptions (F) and (G) and P.A. Meyer [4]

has next shown it under a little different assumption. Our case follows

directly from P.A. Meyer's result.

LEMMA 3. Suppose that the semi-groups {Tt}t>o and {Tt}t>o of the processes

X and X respectively are the strongly continuous operators on Co. Then} for each

analytic set E in S9 it holds that

\8GQ{x,z)Py{&aB €= dz) =\sG0(z,y)Px(x<,E e dz)

for eaxch x and y in S.

Proof Let us note that the notion "{G9a)-excessive" is equivalent to

the notion "a-excessive with respect to {Tc" 2\ Then the semi-group {Tt} of

X and {Tty of X are in the relation of duality in Meyer9 s sense by Lemma 2.

Therefore, for each a > 0 it holds that

where PE(x9dz) = Ea{e~*'* XOE<Ξ dz)9 PE(y9dz) = Ey {e^E &<Λ e dz).

Noting that Urn Ga(x9y) t G0{x,y), we have
α->0

2) We say that a non-negative ,J^-measurable function u(x) is a-excessive with respect
to {Γ t}, if Ex(e-atu(xt)y t < ζ) ̂  u(x) for each t > 0 and lim Ex(Γatu(xt), t < ζ) = u{x).

ί0
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(1) J sGα(z, y)Pi(x, dz) <\G,{Z, v)Pa(X'M e dz),

\jGΛ{x,z)PΛ

E{y,dz)^Gls{x,z)Pv{^e e dz).

On the other hand, we have for each fixed β > 0

G«(z,y)P%(x,dz) = l i m ( G.(β, y)Pg(*. rfβ) ̂  lim ( G.(«

G0(x,z)P%(y,dz) = \im\ G.{x,z)PHy,dz)£Km\ Ga{x,z)P'κ(y,dz).

Hence by tending β to zero we can show that

(2) ( G0(z, y)P9(x*Λ e Λ) ^ lim f Gβ(a;, y)PS(α, Λ)

ί G0(α, 2)^(0;^ G dz) <lim\ G*(x,z)P*E{y,dz).

From the inegqualities (1) and (2) we can prove the lemma.

Now, let us note that {Ga(x,A)} and {(5α(#,^4)} satisfy the hypothesis {B)

in H. Kunita and T. Watanabe [3], that is, Ga(x9A) is integrable and

dominated by a locally finite measure m(dx)9 {_όa(x,A)} is regular and

ό*f, a^O is continuous and finite everywhere for each / of Bκ. Then,

by Theorem 7 in H. Kunita and T. Watanabe [3], Proposition 7. 11 in [3]

is valid for the processes X and X. Hence we have the following

LEMMA 4. If the measures μγ and μ2 define the same potential, i.e.

I GQ(x,y)μ1{dy) =\ G0(x,y)μ2(dy)9 which is integrable over each compact set, then

we have μ1 = μ2.

§ 4. Proof of the Theorem.

In this section we always treat the processes X and X mentioned in

the Theorem.

Let us assume that X is a continuous process. Since m{dx) can be

considered as a reference measure by the regularity condition, according to

Corollary to Theorem 4. 2 in S. Watanabe [5], for the proof of the con-

tinuity of the process X, we have only to show that

3) {oo} is adjoined to S and S \J {oo} denotes the one-point compactification of S. For
each function / we set f({°°] = 0.
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(3) Px{*a\. e dQ U {00} σQc< + 00) = Px(σQe< + 00), 3 e <?

for a bounded and non-empty open set Q, where Qc = S — Q. We shall

first prove the following equality

(4) \ G0(z, xQ)Px{x*Q. <= dz) = \ G0(z, x*)Px(xodQ e dz)

for each x and xQ e Q. When as is in the interior of Q, the equality (4)

holds by the continuity of the path of X. In case x e (?c U dQreg, where

Q denotes the closure of Q and dQreg denotes the set of all regular points

of dQ for X, the lef-hand side of (4) equals to GQ(x,xQ). For x e dQrea it

is clear that the right-hand side of (4) equals G0{x, x0) too. When x e Q%

by the continuity of the path we have

x*τ e dz),
JS

and by lemma 3

\ G o(z,

xQ)PJχadQ e d«) = \ Go(«,

?«) = [ G {x,
is

Noting that PXO{X<XQ e rfg) = δXo{dz), where dj.0(rfz) is the Dirac measure at

a?0, we have

\ G0{z, xo)Px(
OS

Hence the equality (4) holds on S — {dQ — 3Qreg). On the other hand we

have m{dQ - dQreg) = 0. Indeed, G0{xf dQ - 3Qreg) = 0 for each x e S,

because dQ — dQreg is a semi-polar set, therefore Ga{x,dQ — dζ)reg) = 0 for

each aj G S and α ̂  O, because Go ̂  Gα. Noting that lim aGΛf{x) = f(x)

uniformly for each / e Co, we can choose ^ function / e Co and α > O

such that G α / ( a ) > d > 0 on dQ — dQreg. Hence it holds that

O = JsGα(^,3Q - dQreg)f(x)m(dx) =

which implies m(d(? — dQreg) = 0 . Therefore the equality (4) holds (nή-

almost everywhere. Since the both sides of (4) are (G, O)-excessive, the

equality holds everywhere. Applying Lemma 3 to the equality (4), we

have
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\ Gι(x,z)PXo(ώpQ, e dz) = \ GQ{x,z)PXo(4adq e dz)9 xQ e Q,

for each x. Hence by Lemma 4 we have

PXo{&*Q. e rfz) = Pχ0(xodQ e </z), α;0 e Q,

which implies (3). We complete the proof.

§ 5. Green function and standard processes in the relation of
duality

Let G(x,y) be a Green function on the domain Ω s Rd(d^3) in the

sense of [2], p. 46, with the condition (S), i.e.,

where if is a compact set in ί2 and Cl9C2 are strictly positive constants

depending only on K. We say that G(x,y) is quasi-symmetric, if G(x9y) is

continuous in 42 x i2 except on the diagonal set and both Gf(x) and όf(x)

maps Bκ into Co, where G/(a) = ^QG{x,y)f{y)dy and 6/(a) =|Λ(5(fl5,y)/(y)rfy,

&(x9y) = G{y9x) and further G and (? satisfy the weak principle of the

positive maximum.4)

LEMMA 5. For a Green function G{x,y), with the condition (S) in Ω in the

sense of [2], there corresponds a standard process such that

This lemma is shown in [2].

PROPOSITION. For a quasi-symmetric Green function G(x9y) with the condition

(S), there correspond standard processes X = (xt9ζ9Mt9Px) and X= ($t,ζ9](ϊt9Px) in

the relation of duality with respect to Lebesque measure dx such that

Γτtf(x)dt=Gf(x), Γftf(x)dt =
Jo Jo

Further, let GQ(x9y) be a kernel for a — 0 which is constructed in Lemma 2 by

setting m{dx) = dx, then we have

4) We say that a kernel G(x, y) satisfies the weak principle of the positive maximum if, for a
continuous function / of compact support such that Gf ^ 0, Gf attains its (strictly positive)
maximum at a point of S where / is strictly positive.
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G(x9y) = G0(x9y).

Proof. The existence of such processes follows from Lemma 5. The

relation of duality between X and X is evident by the definition of G and

0. Hence it is sufficient to show G0{x,y) = G{x9y). Since G0{x,y) = G(x9y)

holds (w)-almost everywhere for fixed x {m{dx) = dx), we have only to prove

G{x,y) is {ό, O)-excessive function of y for each fixed x.5~> For each / e Bκ,

Of is {ό,O)-excessive, therefore aόaόf(x)<Of{x) for each a>0 and

hence

(5) \Q0(z9y)aO*(x9dz)<0(x9y)

holds for (m)-almost all y for each fixed x. As ό{x9y) is continuous in

y{¥= x) and I 0{z9y)a0a(x9dz) is lower semicontinuous in y, the inequality

(5) holds everywhere. On the other hand, if we set όntV(x) = min{0(x,y)

Λ n}, we have

lim \ 0(z,y)aGa(x9dz)>: lim f On,y(z)a0a(x,dz) = On,y(x).
α—>+oo J » α—>+oo J *

By tending n to infinity, we have

(6) lim \a0(z9y)0a(x,dz)^0{x,y).
α-»+oo J

The inequalities (5) and (6) introduce lim I ό(z9y)aό*(x,dz) = ό{x,y),
α-*+oo J "

which means G{x9y) is a ((?, O)-excessive function of y for each fixed x.

Thus we have proved the Proposition.

Remark. Also we can prove that G{x9y) is a (G,O)-excessive function

of α for each fixed y in the same way.
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