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§ 1. Introduction

M.S. Pinsker [3] has given a general method of calculating the ε-entropy

of a Gaussian process and obtained, for example, an exact proof of the

estimate for the ε-entropy of the ordinary Brownian motion B(t), 0 ^ t < 1,

which was presented without proof by A.N. Kolmogorov [1]

In this article, we estimate the ε-entropy of the Brownian motion with

the multidimensional spherical parameter, by using the expansion of the Brownian

motion with a multidimensional parameter by H.P. McKean [4] and by

generalizing the Pinsker's method of calculating the ε-entropy.

Let X{A, ω), A e Ed (^/-dimensional Euclidean space), ω e Ω (P), be a

Brownian motion with a parameter space Ed, that is, {,X{A), A e Ed}

forms a Gaussian system and

1) E[X{A)] = 0 for every A,

2) X(O) = 0, where O is the origin of Ed,

3) E[(X(A) - X{B))2] = dis {A, B), where E(X) and dis {A, B) denote the

expectation of a random variable X and the Euclidean distance between

A and B, respectively.

We shall call X{A) when the parameter A is restricted to the unit

sphere1) S^"1 in Ed the Brownian motion with the d-dimensional spherical parameter

and denote it, as in the preceding case, by X(A), A e S*"1.

The ε-entropy Hε(X) of the process X(A) is defined as follows:

Let ε > 0 be arbitrarily fixed, and consider an approximating process X'(A)

for the process X{A) on S4'1 satisfying the condition of reproducing accuracy,

(1)

Received March 8, 1967.
χ) Without loss of generality we may consider the unit sphere only.
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where da is the uniform probability measure on S*"1. Then, the ε-entropy

of the process X(A) is defined as

(2) He(X)=inΐI(X',X),

where I{X'9 X) is the amount of information contained in a process Xr with

respect to the process X and the infimum is taken for all processes X'

satisfying the condition (1).

Our aim is to prove that the ε-entropy of the Brownian motion on

Sd'x is of order e'2Cd'u (Theorem 2);

(3) He(X) = 0{e-2Cd~Ό).

It seems to be interesting to note that the ε-entropy (in Kolmogorov-

Tihomirov's sense, cf. Kolmogorov-Tihomirov [2]) of the space of -~-Holder

continuous functions of (d — l)-variables with the sup-norm has the same

order O(β-2C<f"1}).

The author is greatly indebted to Professors T. Hida and N. Ikeda

for their kind suggestions and constant encouragement.

§ 2. The generalization of Pinsker's method
Pinsker's method of calculating the ε-entropy of a Gaussian process with

one dimensional parameter is as follows: Let X(t), 0<t^LT, be a

Gaussian process with mean 0 whose covariance function r{s, t) = E[X(s)X(t)]

is continuous in (s, t). Then the ε-entropy Hε{X) of the process X(t) is

given by the formula

where λt (i = 1,2, ) are the eigen-values of the integral operator with the

kernel r(s, t) in L2[0, T], λx ̂  λ2 ̂  ^ 0, and θ is determined (uniquely)

by the equation

(5) 2)

2) By Mercer's theorem

= [T r{t,t)dt < oo.
Jo
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The right-hand side of the relation (4) also equals to the ε-entropy of the

infinite dimensional Gaussian random variable X* = (X*, X*, )3) •

(6) X*=\T

9i(t)X(t)dt* ( 1 = 1 , 2 , . . . )
Jo

where φ€(t) is the eigen-function of the integral operator corresponding to

the eigenvalue λt and JE[X? X*] = λ&j.

As an example, if in particular the sequence Xx ̂  λ2 ̂  ^ 0 of the

eigen-values of the integral operator with the kernel corresponding to a

Gaussian process takes the form: λk = ck~s{s > 1 ; k = 1,2, ), then, the

e-entropy of the process is

(7) Hs(X) = O{ε * - i ) .

Now, we proceed to a Gaussian process X(A), 4̂ e S^"1, with mean 0.

Assume the continuity of the covariance function r(Λ, B) = E[X{A) X{B)] in
oo

ςd-i χ ςd-1^ s o 2 χi i s finite (see the discussion in the footnote 2)) where λi9
i = l

i = X, 2, , are the eigenvalues of the integral operator with the kernel

r{A,B) in Lz{Sd~1,dό). Then, the following entirely analogous result holds,

and we state it as a theorem.

THEOREM 1. The ε-entropy He(X) of the above Gaussian process X{Λ),

A e S*-1 is

(40 Hs(X)=±^log^-

where λi(i = 1,2, ) zeώA j ^ ̂  ^2 = ' ^ 0 βr̂  eigen-values of the integral

operator and Θ is determined by the equation (5). The right-hand side of the relation

(4') equals also to the ε-entropy of the infinite dimensional Gaussian random variable

X = (X19Xt, ):

(60 X*t = ^d_i9l(A)X(A)da(A) (i = 1,2, )

3) The ε-entropy of X* is defined as He{X*) = inf I(X*9X*) where the infimum is taken

for all infinite dimensional approximating random variables X* =̂  (X*t X*, * * ) satisfying

the condition: pE[(XΪ - X?)2 ] ̂  ε 2 .
4 ) This (Bochner) integral is determined as an element of L2(Ω) .
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where <Pi(A) is the eigen-function of the integral operator corresponding to the eigen-

value λi, and E[X* X*] = Xfa .

Proof The proof is quite similar to the proof for one dimensional

parameter case dealt by M.S. Pinsker [3], except for the construction of the

process I ([3], formula (132)). The proof, however, can be carried out by

using the extension theorem of Urysohn, so that we shall not continue the

proof further.

§3. The main result
We are now in a position to prove our main result.

T H E O R E M 2. The ε-entropy of the Brownian motion with the d-dimensional

spherical parameter is of order e-
2 C d '^;

(8) HS(X) = O(ε-2<d~Ό).

Proof According to H.P. McKean [4] the Brownian motion with the

d-dimensional parameter can be expanded as a sum of mutually independent

Gaussian processes associated with spherical harmonics. We state this ex-

pansion and some related results with the Gaussian process X{A), Ae. S**"1.

(9) X(A) = Σ ΊSxkiD hL(A), A €Ξ S*-1

«>o ι=ι

where hι

n(A) is a spherical harmonics of degree n satisfying

c f 1, if / = k, n = m

(10) hl(A)hί(A)dσ(A) =
J s < ί"1 { 0, otherwise,

D(n) is the dimension of the vector space spanned by all the spherical

harmonics of degree n,
(11) D{n) = (2n-2 + d) An^J+^L (d^29 n^ θf

and xι

n{l) {n ^ 0 , 1 ̂  / ̂  D{n)) are mutually independent Gaussian random

variables which can be expressed in the form

(12) xUD s xι

n = C(d) Γ Cn{u)dBl(u).
Jo

For d = 2 andw=0, /)(«) = !.
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The processes Bl{u) {n ^ 0, 1 < I < D(n)) appeared in the above expression

are mutually independent standard Brownian motions and

ί cos~ ŵ

# n (cos θ) ύnd~2 θdθ
Vxo, w w - -J> ^ , n ^ 0

I ήnd-2θdθ
Jo

d-2 I d-2

with pΛ(cos θ) = Cn

2 {cosθ)/Cn

2 (1), where C*( ) is the Gegenbauer poly-

nomial and C(d) is a constant depending only on d .

By the expansion (9) and by the independence of the random variables

xι

n with E[xi] = 0 ( n ^ O , l<l^D{n)) we easily see that the covariance

function of the process X(A) is expressed in the form

(14) r{A, B) = Σ 1&? ^[(^^)2] fcί(Λ) Λί(B).
n>0 / = 1

Using this, Mercer's expansion theorem shows us that the eigen-values

λι

n{n ^ 0,1 ^ / ̂  D{n)) of the integral operator with the kernel r{A, B) are

equal to E[{xι

nf]. Therefore, if we know the amount E[(xl)2] we can obtain

the s-entropy of the Brownian motion with the parameter space 3d"1 by

the formula (4'). In fact, we can prove in the following that for large

n, £[(tf£)2] = 0{rrd), 1 ̂  / < D{n), holds. Once the result is shown, then

just by renumbering the double sequence of random variables x\, x\, x\,

• , # ? α ) , x\, into the ordinary sequence x[, x"2, , while keeping

the original order, we can easily apply Theorem 1 in § 2. If x'k, for

large Jc, corresponds to the original random variable a?#(l ̂  M< D(N)),
N

then by the relation Σ nd~2 — OiN^1) (this nearly equals to k) and by the
w=0

1

formula (11) (D(n) = 0{nd~2) for large w), we obtain TV = O(k d~ι), so that

= 0(k d ~ 1 ) . Then, by this and the formula (7), fol-
2

lows the desired result He(X) = O(e " ^ Γ " 1 ) = Oίε"2^-15

Therefore, in the following, we are to prove that

(15) E[(xί)2] = O(n-d), 1<1< D(n)

holds for large n.
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First of all, we show the formula (15) in case the dimension d = 2 and

3, and then, generalizing it, we proceed to prove the formula (15) for

d ^ 4, that is, (I) in case d is an even integer and (II) when d is odd.

In case d — 2, pn(cos θ) in the expression (13) turns out to be cos nθ, so

that Cn[u) — —-— sin {n cos"1^). From this we have,
nπ

E[{xl

nf] = — £ - Γ sin2 (n cos'ιu)du
n^π Jo

π

= z I sin2 nθ sin 0 d0
n2π Jo

While in case d = 3, pΛ (cos 0) = Pn (cos 0), hence we have

Cn(u) = -ί- J P " - 1 ^ ----Pn fi(^) w here Pn( ) is the n-th Legendre polyno-

mίal. Then, by the orthogonality of the Legendre polynomials, we obtain

] = (2tt + l ) 2 ί Γ {Pn+1 {UW dU + Γo (P»-ά

In case d^4, by the formula (12), we have

= (a constant depending on d only) X \ Cn

 2 (1)
d-2 ϊ -2

Jcos-^

and this expression becomes,

d-2

0(w- 2 d + β) x I K J ^
d~2

for large n, since C ^ ~ (1) = Γ^r{d-2) =

To prove ^[(a;^)2] = 0{n~d), we must show that the above integral (we

denote it by Id) is of order 0(nd~e).
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(I) The proof of the fact that Id = 0{nd'G) for d = 2p + 2 (p ^ 1,

integer).

First we estimate the integrand of the above integral. Let the follow-

ing integral be denoted by Ip[u),

I (u) = \cos'lu Cn

 2 (cos θ) ύnά-2Θdθ = (cos~ lwC£(cos θ) sin2pθdθ.
Jo Jo

T h e integrand CJ(cos0) sin 2 p0 of the above integral becomes, by using the

recurrence formula for the Gegenbauer polynomials

(16) sin2 θCv

n

+1 (cos θ) = - ± — Un + 2v)Cv

n{co$θ)-{n+ϊ) cos θ C£+1(cos0)J

and the formula sin 6 Ci(cos θ) — sin (n + 1)0,

Cp{cos 0) sin2p0 = sin2 0C?(cos 0) sin2(p-Ό0

(n+2(p-l))CΓ1(cos<

YP ί̂ 4p(ft)sin 0 sin(;

+Aζ{n)cos2θ sin^ sin (n+3)θ+ +Λl(n) cosp-^sin/?sin (n+p)θ

where A*{ή)9Al(ri)9 9Ap(n) are polynomials of n of order (p — 1). Noti-

cing that sin 0 sin (w + 1)0, cos0sin0sin(n+2)0, and cosp~1βsinθsin{n + p)θ

are all expressed as the linear combinations of cos nθ, cos (n + 2)0, ,

cos (n + 2p)θ, we can show that the integral becomes

(17) 7,(10 = Σ - f Ά sin (n + 2i)cr, a =

where fij, & = 0,1, , p, are polynomials of n of order at most (p — 1).

Therefore, changing the variable of integration into a, and making use of

the fact

7Γ

( 2 sin (n + 2ft)α sin (n + 2/)α sin
Jo i ITT Ϊ

1 — A\JC — //

we have

+

= Γ {/p(w)}2 rf» = t 2 ί ΣJ ^fa^y sin (n + 2fe)« I' sin ada
Jo Jo I k=o ft "T" ̂ i/C '
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n)BΊ(n) n

sin (n + 2k)a sin (n + 2l)a sm αt/α2 , fffif
k,l = 0 \fl ~Γ ΔK) (H

The last estimation is valid if the coefficient of the term w2p~4 never

vanishes, that is, if at least one of the coefficients of the term n1*'1 of the

polynomials Bv

k{n) {k = 0,1, , p) does not vanish. But this is true, for

example, Bp

0{n) has non zero coefficient of nv~x .

(II) The proof of the fact that Id = O(nd~6) for d = 2p + 3 (p ^ 1,

integer).

Similarly to (I), we denote the following integral by Ip{u),

d-2 p+~

I (u) = [cos'luCn

 2 (cos θ) ήnd-2θdθ = f c o s" l wC r t

 2 (cos θ) sin2p+1θdθ
Jo Jo

then, by the relation

(18)

i

for the half-integer Gegenbauer polynomial Cn

 2 and the associated Le-

gendre polynomial Pζ+P, we have

where c{d) is a constant depending on d. By definition,

and by changing the variable of integration into x = cos θ, we get

From this, the desired integral IΛ is

£ ( p ^ l l j - P ) ί + 2 )

(19) - 4p j | (1 - uΎ -ξ-^P^iu) [\\(1 - a2)*'1 d ^ Ptl+P(x)dx}du
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To estimate these integrals, we first express (1 — u2)p • . p Pn{u) in

terms of Pn(u) and Pn-i{u). For this purpose, we make use of the recur-

rence formula of the Legendre polynomials (1 — x2)P'n{x) = niPn-^x) — xPn{x))

and the differential equation derived from the Legendre's differential equa-

tion

(20) (1 - xη - £ ~ Pn(x) - 2(k - l)x -^=r- Pn(x)

+ (n + (Jc-D) (n - (ft-2))- fχ*_2 Pn(x) = 0, (ft ^ 2 ) .

For any p ^ 1, we have

(21) (1 - uΎ -f^ Pn(u) = P^WQn-Uu) + Pn(u)QnιP(u)

where Qn-ltP[u) and Qn,p(u) are polynomials of u of the form

(22) Qn-i.pM = P Σ C,WW

fc, QntP(u) = ±Dk(n)uk.
fc=0 fc=0

The coefficients CQ(n) 9Cx{n), , Cp^(n), Z>0(n), A(w), , Dp(n) have the

following properties: (i) Cp-^n) =^0, Dp{n)^0 (ii) they are the poly-

nomials of n with the order at most p (iii) if p is an even integer,

then DQ(n) is the polynomial of order p and if p is odd, C0(w) is the

polynomial of order p . By these facts and by the property of the Legendre

polynomial: \ -{Pn(x)y dx = 0{n"γ) for large n, we can easily show that the
J 0

first integral of the right-hand side of the equality (19) becomes,

" u Ύ Hu*-* Pn+p{u) Γ d u =!!(1 ~ u 2 ) 2 1 ( 1 •"w2)P"1 in*-* Pn+p{u)

= 0{n2Cp-») OitΓ1) = O(nd- 6).

For the second integral of the right-hand side of (19), we have

~ "!)* - & - F""{u) I SI *(1 -xΎ" S=<- ?.
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The first term of the product on the right-hand side of the inequality, by
d-6

the above result, has the order 0{n 2 ) and the integrand of the second

term can be evaluated as follows:

S ! χ 2 d x " S ! ( ( l ~ a j 2 ) p " 1 ΊS^ Pn+p{x) ϊdx=0{nd~β)

Hence the second integral is at most of order O(nd~β). As for the last

integral of the equality (19), by a similar approach, we estimate it to be

at most of order 0{nd~β). This proves the desired result for d = 2p + 3(p^ l ) ,

and thus we have proved the theorem completely.
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