
ON OSCULATING SYSTEMS OF DIFFERENTIAL

EQUATIONS OF TYPE (N, 1, 2)

HISASI MORIKAWA

The main subject in the present article has the origin in the following

quite primitive question: Linear systems of ordinary differential equations form a

nice family. Then, from the projective point of view, what does correspond to linear

systems ?

An osculating system of ordinary differential equations of type (Nf 1,2)

means a system of differential equations

/ y«o, v«i \
(*) d e t ^ , / „ . . = F*.. β l ( « , y β , . . . , y N ) ( 0 < a o < a , < N)

\ du ' du I

such that FaOt α i (0 < a0 < ax < N) are quadratic forms in yΰ, . . . , yN. If

a vector (φQ, . . . , φN) is a solution of (*), then for any holomorphic function

ψ the vector {ψφQ, . . . , ψφN) is also a solution (*). Hence the map: u ->

(<Po{u), . . . , ΨN{U)) into the projective ΛΓ-space PN has a nice meaning. We

shall call such a map a projective solution of (*). From the projective point

of view, roughly speaking, the system (*) is equivalent to the following systems

VN)

where F*tβ + Fβ,« = 0 (0 < α, /3 < iV). The initial variety W%? at a regular

point &o for (*) means the set of all the point x in the projective TV -space PN

such that there exists a holomorphic projective solution of (*) with the initial

point x at u = u0.

Then the following comparative table shows that osculating systems of

type {N, 1,2) together with their projective solutions give an answer to our

primitive question.
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THE COMPARATIVE TABLE

Linear system
N

A linear transformation

> Σ

maps a linear system to a linear

system.

The singularities of a solution are

the singularities of the coefficients

For each regular point uQ there

exists a holomorphic map ψ into

GL{N)V such that ?(«) = 0(κ)& is

the unique holomorphic solution

with the initial point x at u = uQ.

If the coefficient matrix A = {a*,β{u))

is a constant matrix, then the map

φ is the exponential homomorphism:

Osculating system of type (N, 1,2)

V*;
det

\ du ' du I \u > Vo> > VN)

(0 < a0 < «! < iV).

A projective automorphism
ΛΓ

λ - 0

maps an osculating system of type

(Λf, 1,2) to an osculating system of

type (N, 1,2).

The singularities of a projective

solution are the singularities of the

coefficients in F*,β (0 < a, β < N).

For each regular point uQ there

exist a neighbourhood [/ of uQ and

a holomorphic map Φ: U X TF^} ->

PΛr such that (i) for a fixed #0 i n

W^ the map: u->Φ(u,x0) is a

unique holomorphic projective solu-

tion with the initial point xQ at

u — uQ and (ii) for a fixed regular

point ux in ί/ the map: x-¥Φ{ulyx)

is a biregular birational map of the

initial variety W(^J onto the initial

variety W{^.

If the coefficients in FΛ,$ (0<α, /3<iV)

are constants, there exists an analy-

tic homomorphism p of the additive

group C into a commutative alge-

braic transformation group acting

on TF(^)2) such that

Φ{u, x) =

GL{N) means the general linear group of degree N.
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§1. Osculating systems of differential equations

1.1 An osculating systems of type (N, r, s) means a system of ordinary

differential equations

V**, , V*r

(1) det
du ' ' '

dry*.

dy«
du

dur ' • ' dur

= Fa0 *τ(U,Vθ, - - , VN)

such that F«o, .., «r (0 < aQ< . . . < ar < N) are homogeneous forms of

degree s in yQ, . . . , yN. For each permutation π on {0, 1, . . . , r} we put

F α π c 0 ) α π ( r ) = Sign (ττ)Fαo , . . . . α, (0 < « 0 < < <*r < N)

and, if 3̂0 > > iSr are not all different, then Fβ0 βr = 0.

PROPOSITION 1. Solutions of an osculating system (1) satisfy the following sys-

tem of algebraic and differential equations

(2), Σ (- D V A Λ 0 . ,_ ! . . ,+! . r + 1 = 0 ,
Λ — U

(3)

r + l

r + l

. . . < « r + 1 <i\

. . . . . . flr+1=O,

. . . < βr+1 < ΛΓ/

2) TFC

O

F) means the initial variety at w = 0 . The initial varieties for the system with
constant coefficients are coincide with WC

O

F:>.
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Proof. The relation (1) implies

0 = det du " ' " du

dur

r+ 1

α o < . . .

Similarly we can prove (2)l9 . . . , (2)r. The relations (3) are the Grassmann

relations between {r + 1) x (r + l)-minor determinants of the [r + 1) x (N + 1)

matrix

Vo, . , VN

dyN

du ' ' ' du

dryN

\ dur ' ' ' ' ' dur

LEMMA 1. If the system (1) is type {N,r9r+1) and {φ0, . . . , φN) is a solution

of (1), then for any holomorphic function ψ the vector (ψφQ, . . . , ψφN) is also a

solution of the system (1).

Proof From the definitions it follows

ψφ«0, , ψφ*r

det
du

dr(ψφ«Q)
du r >

d(ψφa,
du

dr{ψφ<

•)

dur

= φr+1 det
du ' • ' du

drψ«r

duτ ' ' duτ

= ψr+1Fa.o ocr(w, <Pt , . . . , <pr) = Λ o <*r(W,

(0< α o < . . . < α r < i V ) .

DEFINITION 1. 4̂ projective solution of an osculating system (1) of type

(iV, r, r + 1) is a map φ: u-±{φQ{u), . . . , φN(u)) into the projective iV-space

P^(C) such that {<ρύ{u), . . . , ΨNW) is a solution of the osculating system (1).
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Let o be an element in PGL(N+l,C)V and (p«,β{σ)) and (p*,&(a~1)) be

the representatives of a and a~ι in GL(N + 1, C) such that

(4) (P βi*'1)) = (P βW)-1.

Putting

= det

and

(5) yN)

. . .<i9 r<ΛΓ^

Fλo,..
N

.,λr{u, Σ
0

N

> Σ
v = 0

we have an osculating system of the same type

(6) det

dur

du

dry*r

dur

, . . . , yN)

If the osculating system (1) is type (N, r, r + 1), the transformed osculating

system (6) does not depend on the choice of the representative {p*,&{oj) of a

in GL{N+1,C).

LEMMA 2. Let {p*,β{σ)) be an element in GL{N + 1 , C). Then a vector

N N

{<Po, , ΨN) is a solution of (1) if and only if ( Σ Ί*o,λ{σ)φλ, . . . , Σ PN.λW<Pλ)

is a solution of the transformed osculating system (6) .

Proof From the definitions it follows
3) PGL(N+1) means the projective transformation group acting on the projective N—

space
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det

= Σ Ί*<*Q , • - , o r; λ Q , . . . , λr(σ) d e t

o < λ0 <. .. < λr < N

= . Σ i0 < ΛQ < . . . < λr < N

= *(F)*o..
N

•,*λu , Σ 2
λ = 0

du ' • • • '

dur
dur

. . . <ar<N).

1.2. Osculating systems of partial differential equations are defined

similarly. Let ξj, . . . , ζn be indeterminates and Dξ be the sum Σ ξt -J-.
i = i o^i

Put

(7) det

, . . . , du " " '

. . . <ar <N).

An osculating system of partial differential equations of type {N, r, s) is a

system of partial differential equations
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(8) Ph dy.,, . . . , y*r, --

IT

homogeneous forms of degree 5 insuch t h a t i<V0 ar; h ιr

2/o > , VN

For the sake of simplicity instead of (8) we shall denote

(9) det

\

D r

ξ ( y a o ) , . . . , Dr

$(y*r) I

= F α o , . . . , r (fj, . . . , ξn\ux, . . . , un, y0. . . , yN)

with homogeneous forms

•Fα. . . . . . α r(f! , . . . , f » | « i , , M», 2/0, , VN)

h In

Σ
+ + In -

Then a solution (< 0̂, . . , ΨN) of (9) is also a solution of (8) if and only if

it is a solution of the specialized system of (9) with respect to any specializa-

tion Of (£0 , . , £n)

1.3 At the end of this paragraph we shall show some typical examples

of osculating systems for N — 2.

An osculating system of type (2, 1, 2).

dy1

( i )

du ' du

2/o > 2/2

det

det

\ U3

2/1, 2/2

- y\
du ' du
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If we put

HISASI MORIKAWA

Σ

Σ
—_
Σ

then the projective solutions of (i) are given the theta maps φa: u-+($0(τ\u),

-9i(τ\u),-92{τ\u)). The projective solution φa is an analytic homomorphism of

the additive group C onto the abelian variety Y% + Y\ + Y\ — 3λY0YiY2 = 0

with the origin φa(0) = (^o(r|«),^i(rl«),^|(r|a)).4)

An osculating system of type (2,2,3).

If we put

det
d d d

μ =

then

(ii) det

), $z(τ\u)) satisfies the osculating system

> 2/2

dy2

du 9 du ' du

d2y d2y d2y2

du2 ' du2 ' du2

because the inflex points on Yl + Y\ + Y\ —

nine points

(0, 1, - 1 ) ( - 1 , 0 , 1) ( 1 , - 1 , 0)

( 0 , 1 , a) ( α , 0 , l ) ( 1 , a, 0) (α3 = 1)

( 0 , 1 , a) ( ά , 0 , l ) ( l , α , 0 )

= 0 are the following

See [2] p. 440-448, [6] p. 191-198.
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and the theta function ΌQ{T\UY + -9ι{τ\u)3 + #|(r|w)3 has the exact nine zero

points al9 . . . , a9 such that ($*(τ\at)9 #i(τK)> #|(H#ί.)) (1 < i < 9) are the

above nine infex points.

An osculating system of type (2,1,3).

Let V be a non-singular plane curve of order four. Then the genus of V

is three and there exist a Fuchsian group Γ on the upper plane

H = {τ\Imτ > 0 } and a base of automorphic forms {φ*, φly φ2) of

weight 2 with respect Γ such that the map: τ-*{φQ(τ)9 ψι{τ)9 φ2{τ)) a covering

map of H onto V. Since it is easily observe that

d e t

dτ

a r e a u t o m o r p h i c forms of weight six, t h e r e exist cubic forms FQΛ, FO>2,

Flt2 in 2/0, Vi, 2/2 wi th c o n s t a n t coefficients such t h a t (φQ, φl9 φ2) is a

solution of t h e osculat ing system of type (2,1,3)

/ 2/<*o, 2/αi \

( i i i ) d e t ^ α o ^ < X 1 = F a . ( ) , o . 1 ( y Q , y ί 9 y 2 ) ( 0 < « 0 < a x < J V ) .

§2. Projective solutions of osculating systems of ordinary diffe-

rential equations of type (iV, 1, 2).

2.1 In the following three paragraphs we shall be concerned with an

osculating system of type (N, 1,2)

/ 2/αo, 0*1 \

(10) d e t d y a o d y < χ i = Fαo, α o (^ , 2/o, . . . , VN) ( 0 < α o < α 1 < AT).

\~dtT1 ~dΰ~)

DEFINITION 2. Let uQ be a regular point of all the coefficients in the

quadratic forms Fa,β{u, 3/0, . . . , VN) in (10). Ϊ Γ ^ denotes the set of all the

point x in the projective AΓ-space PN{C) such that there exists a holomorphic

projective solution of (10) with the initial point x at u = uQ. We call W^

the initial variety at uQ for the osculating system (10) of type (N,l,2).

It will be shown later that the initial varieties for an osculating system of

type (iV, 1,2) are projective algebraic varieties in the projective iV-space PN

which are biregular birationally equivalent each other.
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Before going to the existence theorem of projective solutions, to make

clear the base of the argument, we shall recollect Cauchy's existence theorem:

T H E O R E M ( C A U C H Y ) . 5 ) Let f(u, yx, . . . , yN) (1 < a < N) be holomorphic

functions in a neighbourhood of {uQ, ax, . . . , aN). Then there exist holomorphic

functions φx{u, xx, . . . , xN), . . . , ΨN{U, xl9 . . . , xN) in a neighbourhood of

( « 0 , f l 2 , . . . , aN) such that {φ^u, x1, . . . , xN), . . . , φN(u, x1, . . . , xN)) is the

unique holomorphic solution of the system

~ Λ Γ = Mu>Vι' ' ' ' ' V N ) ^ ^ a < N ^

with the initial value (xl9 . . . , xN) at u = u0.

T H E O R E M 1. Let u0 be a regular point of all the coefficients in quadratic forms

Fo.0, Λ1(u , yQ, . . . , yN) (0 < aQ < ax < N) and a = (α 0 , . . . , aN) be a point on the

initial variety W^ at uQ for the osculating system of type (AT, 1,2)

det
V**

, . . > VN) (0 < aQ < «! < N).

du ' du

Then there exists a unique holomorphic projective solution φ(u, a) = {φQ(u, a), . . . ,

φN{u , a)) of the system with the initial point a at u = u0. Moreover φ(u , a) depends

analytically on the initial point, i.e. when a$^0, there exist holomorphic functions

φ*{u, xQ, . . . , xp-x, Xβ+i, . . . > XN) in a neighbourhood of {uQy aja0y . . . ,

aβ.Jap, aβ+Jaβ, . . . , aNlaβ) such that, if (x 0 , . . . , χ&_x, 1, xβ+1, . . . , χN) is

also a point on W(fQ\ then (ΨQ{U,XQ,. . . , xp-ι, Xβ+i, . . . , xN), . . . , φβ-i(u, xQ,

XQ, . . . , x&-i, »j9+i > , ^N)) ^ a unique holomorphic projective solution of the

osculating system with the initial point {x0, . . . , Xβ-X, 1, Xβ+1, . . . , xN) at u = uQ.

Proof Since a is a point on W^, there exists a holomorphic projective

solution {φQ, . . . , φN) with the initial point a at u = u 0. By virtue of

Lemma 2 we may assume without loss of generality that φQ{u) — aQ =V 0. Put

Φa = <pJ<Po (0 < α < iV). Then from Lemma 2 it follows

( φ*o> Φ*\ \

dφ«0 dφa! = ^ * o , i(« , Φo> . . . , ΦN) (0 < α 0 < « ! < J/V)

/

See [4] p. 29-46.



ON OSCULATING SYSTEMS OF DIFFERENTIAL EQUATIONS OF TYPE ( N , 1 , 2 ) 2 6 1

Hence

a* I ***** \
(*) - ^ - = d e t dφQ dφa = Λ . . ( κ , 1, φl9 . . . , ΦN) (Ka<N).

du ' du

Therefore, by virtue of Cauchy's Theorem there exist holomorphic functions

Ψ*(u > # i , . . , %N) ( K α < iV) in a neighbourhood of (uQ, ajao, . . . , aNlaQ)

such that (φxiu, xx, . . . , xN), . . . , ψN(u, ίcx, . . . , &#)) is the unique holo-

morphic solution of the system (*) with the initial value [xx, . . . , ##) at

u = uQ. Since (<pQ(u), . . . , ΨN{U)) and (1, ̂ (w, fli/tfo> > «W ô) ? >

0JV(W, «i/«o> , ONI^O)) are the same projective solutions for the osculating

system in a neighbourhood oΐ uQ, it follows the uniqueness of holomorphic

projective solutions. If (1, xl9 . . . , xN) is also a point on TF , then by

the same reason as the above (1, ψλ{u, x1, . . . , ##),. . . , φAu > %i ? > XN))

is the unique holomorphic projective solution of the osculating system with

the initial point (1, xl9 . . . , xN) at u — uQ. This completes the proof of

Theorem.

2.2 It will be shown that singularities of osculating system of type

(N, 1, 2) are the singularities of the coefficients of the system. Therefore, if

all the coefficients are holomorphic, the projective solutions are analytic maps

into the projective spaces. We shall first estimate the radii of convergence

for power series solutions of the following differential equations

dya, N N

(11) —JTΓ- = Σ ha; λ, μ{u)y λy + 2 {ha; λ, θ{u) + ha; 0, λ{u))y , + ha; 0, θ{u)

(1 < a < N).

PROPOSITION 2. Let K be a positive number not less than 1 and

(#o> tfi,o> > fftf.o) be a system of complex numbers such that the functions

ha; λ, μ(u) (1 < a < N; 0 < λ , μ < N) are holomorphic u — uύ and

\aΛ.o\<K,

\ha;λ,μ{uQ)\<K,

\ K n ( 1 < α < ^ ° < ^ μ<N;n = l, 2 , 3 , . . . ) .

Let 7 be the radius of convergence for the power series solution

oo oo
( Ŝ~̂  n (ti — \^ Ŝ~̂  n ( ΊM \ 7t \

n = 0 n = 0
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of (11) with constant term (# 1 | 0 , . . . , aNf0). Then it follows

1)2K2 '

Proof. Putting <pΛ(u) = 2 «<*,n(̂  — wo)
Λ and φ^ = d^n

(1< α < N; n = 0, 1, 2, . . .)

we have

1 ( Ό , N

oc Of? ^ O

- f f v

D !

i rf-«A ,

(ΛΓ+1)2 Σ Σ ^ - z

/ o o

We shall prove the following inequalities by the induction on n

(*) \a«,n\<?>n{N + lYnK*n~l (1< α < JV; n = 0, 1, 2, . . . ).

This is true for n = 0. Assume the inequalities for 0, 1, . . . , n. Then it

follows

Σ Kn~ι+1K2l+23ι{N+ΐ)21

Σ

t !n + 1 /Σ
o

/ = 0



ON OSCULATING SYSTEMS OF DIFFERENTIAL EQUATIONS OF TYPE ( N , 1, 2) 263

Sn(N + IJZίn+D/pCn + D + lΛ _
3{N+ΐ)

< 3n+ί{N + i)2(^+1)/^2(^+1)+1

 #

This proves the inequalities (*). Hence it follows

ϊϊϊn|«JΓ ' <3{N+l)2K2.
n —> oo

Therefore by virtue of Cauchy-Hadamard Formula6) we have the estimation of

the radius of convergence

3{N+l)2K2 4(N+1)2K2 '

Let M be a complex analytic manifold and M = U U(/ί) be a covering

of M by coordinate neighbourhoods £/W with analytic parameter uW. An

osculating system on M of type {N, 1,2) means a collection of osculating systems

d e t

on C/̂ ) such that

^ S ^ ^ 2/o, . . . , yN)

on

THEOREM 2. Let M be a complex analytic manifold of dimension one.

Let φ: u->(φQ(u), . . . , <PN{U)) be a projective holomorphic solution at u0 of

an osculating system of ordinary differential equations of type {N, 1, 2) and

ω: [0, 1]->M be a path on M such that ω(0) = ̂ 0 and α)(ί) (0 < t < oo) are

regular points for all the coefficients of the osculating system. Then there

exists the analytic continuation of φ along the path ω.

Proof. Let φ be a holomorphic projective solution at uQ and ω: t

be a path on M such that ω(0) = u0 and ω(ί) (0 < t < oo) are regular points

6) See text books on Advanced calculus.
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of the all the coefficients. Let tt be the supremum of t such that the pro-

jective solution ψ has the analytic continuation to ω{t) along ω. Then it is

sufficient to show tλ < oo . Assume for a moment that ίx = oo . We shall

show a contradiction. Let u be a holomorphic local parameter in an open

neighbourhood U of ω{tx). We denote by

d e t

N

(0<aQ<a1<N)
du du

the osculating system with respect to the local coordinates u. The open

neighbourhood U may be regarded as metric space with the metric \p,q\ =

\u(p) — u(q)\, where u(p) means the value of u at p. Since the projective

solution φ is not holomorphic at ω(t^), there exist β and t2 such that φa / <p$

(0 < a < N) are holomorphic at u = ω{t) for t1> t > t2 and at least one of

Ψ* I <Pβ (0 < « < >̂V) are not holomorphic at ω(ίi). Let F be a compact

neighbourhood of ω(t^) contained in U such that the coefficients hΛtβ;λtμ {v)

are holomorphic at each point in V. Then from the Cauchy-Hadamard

Formula we have a positive number p such that

lim
dun — ( 0 < a,β;λ,μ < JV)

for each point z; in the compact set F . Hence there exists a positive

number K such that

1 d»hΛtβιλJυ)

n\ dun

, \hΛtβ.λJυ)\<K,

<Kn (0 < a, β, λ, μ < N n = 0,1,2, . . .

for each point υ in F . Let p — ω{t3) be a point on the path such that

ω(t) e F for t 1 > t > t , , (t, >t3> t2)

and

Then there exists β such that φΛ / φβ (0 < a, β < iV) are holomorphic at M = ω(ί

and \φ*lφβ(ω{tz))\< 1<K. Hence, applying Proposition 2 to the system
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Vβ = 1

I y*> Vβ \
αet 1 dv „ T^ I \

1 = - -±±- = F*,β{u, yQ, . . . . yN)
\ du du I

we observe that <pα / ψβ (0 < a < N) are holomorphic in the open ball of radius

[4(N + l^K2]'1 with the center ω{t3). Therefore φ^lψβ (0 < a < N) are also

holomorphic at ω(fj), namely the map φ into PN is holomorphic at ω{tx).

This is a contradiction to the assumption of tx.

§3. Initial varieties

3.1 We shall show that the initial varieties for osculating system are

projective varieties which are biregular birationally equivalent each other.

Let L be the field over C generated by the coefficients in Fα,j3(0< a,β<N)

and all their derivatives and D be the derivation of the field L{YX / F o , . . .,

FJV/FO) such that the restriction of D on L coincides with the derivation

d4~du and

Put

S..0;n=Sβi0;n(f«,rβ, . . . , YN) =

T9.β;n=T:β;γ(u, F o , . . . Λr

N) = YIYT2 D

(0 < α, ̂  < TV; w = 0,1, 2, . . . ) .

LEMMA 1. S*,β;n, T«,p;n{0 < α, β < N w = 0,1, 2, . . .) flre homogeneous

elements in the polynomial algebra L[YQ, . . . , YN] such that

deg Sa,β;n= 2ft + 1 ,

flfeg T«,β;n= 2ft + 2,

(12) 5.^;n + l -

(13) Γ..β;» + 1 = Yβ[Έo

JΣ^f~Fλ,O + F β - ^ 1 ^ ] - (ft + 2)Fβ.θT*.β;n

(0 < α, ̂  < N ft = 0,1, 2,
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Proof. Since F*,β{0 < a, β < N) are quadratic forms, Sa,β;o = F<* and

Tα./S o^ F*,/3(0< <x,β<;N) are forms in L[F0, . . . 9YN] of degree one and

two, respectively. Therefore it is sufficient to prove (12) and (13): We

assume that Sa,β;n and T*,β;n are homogeneous polynomials in YQ, . . . ,YN

of degree 2n + 1 and 2n + 2, respectively. Then from the definitions it

follows

= Γ g
du

= o aFί ' du Jo,Fo / L̂  = o aFί ' du J

0

Hence we have

rn + 2
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Σ Q — g y y — Fx.o + F o ^ p J - (n

Yβ\\ Σ

Fλ>° + Y'—duJ

(0 < α, j9 < N » = 0,1, 2, . . . ) .

This proves (12) and (13). Further more it follows

«,β;n= 2(w + 1) + 1,

*,β;n = 2{n + 1) + 2.

We shall prove that the initial variety W^p is a projective algebraic

variety. A projective algebraic variety W in PN is called the projective

algebraic variety corresponding to a homogeneous ideal a in C[YQ, . . . . YN]

if W coincides with the set of all the point x in PN such that fix) = 0 for

every / in α .

THEOREM 3. Z^ί α^p έ^ ίfe homogeneous ideal in C[YQ, . . . , F^] generated

by homogeneous forms

S«,β;n + l{uo,YQ, . . . ,YN) — Y0Ta,β;n{uQ,Y0, . . . ,YN)

(0<a,β<:N; w = 0,1, 2, . . . ) .

Then the initial variety W^ at u0 for the osculating system (1) of type

(ΛU2)

/ 2/α0 , y91 \

det j ^ ^ ^ ^ ^ = — F*,β(u, y0, . . . , yN) (0 < aQ) ax < N)
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is the projective algebraic variety corresponding to the homogeneous ideals

Proof. Since uQ is a regular point of all the coefficients in ,τF*,β

(0<a,β<:N), by virtue of (12) and (13) the coefficients in S*,β;n, Ta,β;n

(0 < a, β < N n = 0,1,2, . . .) are holomorphic at uQ. Hence Sa,β;n + i {u0,

YQ, . . . , YN) - Y0T«,β;n(uQ, Fo,. . . , YN) {0<a,β<N; n = 0,1,2, . . .) are

homogeneous elements in C\Y^ . . . , YN]. Let V be the projective variety

corresponding to α ( F ) . We shall show W^p c F . Let # be a point on

and φ(u, x) be the holomorphic projective solution at u0 such that

φ(u0, x) = x. By virtue of Proposition 1 we may assume without loss of

generality that xβ ψ 0 (0 < β < AT), where α = (a?0, . . . , ##) Then from

Theorem 1 it follows

de. j ^ ^ . ^ l . Λ ^ - J J . Λ
ψβ

du

Since

du

(0 < a < iV),

there exists a specialization of L[YιlYQ, . . . , FΛr/F0] onto

such that (FJFo, . . . , YNIY*)-±(<P\I<P*> , ΨNI<PO) and the derivation Z>

corresponds to the derivation -$—. Therefore, applying this specialization

o n S<t,β; n + i — F 0 T α > ^ ; w , w e h a v e

<P(Γ ( 2 n + 3 ) [Sα,/3;tt + l(<Pθ> . . <PN) ~ <PΌ T9,β; n {φQ , . . . , ^jy)]

d/w' du
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On the other hand φ(X(uQ) ~ xa =V 0 (0 < a < N), hence we have

> > XN) ~ XQTct,β;n (XQ , . . . , Xtf) = 0

(0 < α, β < N n = 0, 1, 2 , . . . ) .

This means x e V, namely WίF

Q

y aV. We shall next prove Wf^ 3 V.

For a given point x = (xQ, . . . , xN) on V we shall construct a holomorphic

projective solution φ such that <p(&0) = % By virtue of Lemma 2 we may

assume without loss of generality that xa =% 0 (0 < α < AT). From the Cauchy

Existence Theorem there exists a unique holomorphic solution (φo,β(u), . . . >

φNβ{u)) at &0 of the differential equations

with the initial condition (φ9,β(uo)9 . . . , φN,β(uQ)) = (xj Xβ, . . . , XN I %β

Therefore it is sufficient to show that

P«.0 = «̂>o / ̂ .o (0 < α, i3 < N),

because

= - Λ 0 ) βl(κ, ^o, . . , ΨN) (0<aQ<aί<N).
_dφ_*o _dφ*ι I

du ' du I

The specialization

implies the relation

and the specialization
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implies another relation

dun + 1 du

= Dn(F

- φόtβTatβ;n{φ9,09 . . . , φNJ (0 < α, β < iV n = 0,1, 2 , . . . ) .

O n t h e o t h e r h a n d , t h e p o i n t # belongs to F , h e n c e it follows

—, , , ^ o i . . ^ , . . . ,

Since x0Xβ^rO, we have

[St.β n + l-YoTa.β n]^ x * ) = 0 ( 0 < « , j3 < i V Λ = 0 , 1 , 2 , . . . ) .

This shows

Since φa,J ψβ,o and ^α>^ (0 < α, β < N) are holomorphic at &0> it follows

<P<*,o / ̂ ,̂o = <̂χ./3 {0 < a, β <: N). This completes the proof of Theorem.

3. 2 Applying Chow's theorem7) we shall show that projective solutions

induce biregular birational transformations between the initial varieties.

T H E O R E M 4. Let M ( j P ) be the set of all the regular points of the coefficients

in an osculating system of type (N, 1,2)

/ 2/*o , y*i \
det = F « o > ex! (M, 2/O , . . , VN)

dy«9 dy«L

\ du ' du I
(0

7) See [1] p. 893-914.
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on a complex analytic manifold M of dimension one. Assume M^F) is a connected

open set in M. Let (M ( j P ),p) be the universal covering space of M(F) with

the canonical map p: M ( F ) -> M ( F ) . The osculating system can be naturally considered

as an osculating system on M^F\ Then each point ύ0 on M^ there exists a unique

holomorphic map

Φa0: M^xW^-±PN

such that 1° for a fixed point xQ on the initial variety IFχ2 o ) at p(uQ) the map

u -+Φao(u, xQ) is the projective solution with the initial point xQ at p(u0), 2° for a

fixed uλ on M^ the map %-ϊΦuo(al9x) is a biregular birational map of the initial

variety W^ onto W$i0,

3° Φa^u^Φΰ^u,, x)) Φuo{a, x) {uQ, ul9 u €= MCF\ x G Wc
pf20 )).

Proof The uniqueness of Φa0 is a consequence of the uniqueness of

the projective solution with the given initial point. It is sufficient to prove

that for each point uQ on M ( F ) there exist a positive number r and a unique

holomorphic map ΦUo: B{r,u0) x Wc^ -*PN such that for a fixed xQ in W^

the map u ^Φuo{u,xQ) is a projective solution with the initial point x0 at

u0, 2° for a fixed uλ in the open ball B(r9uQ) the map x ->Φuo(uly x) is a

biregular birational map of the initial variety W^ onto W^, 3° φUl(u, φUo

{ul9 x)) = φuo{u, x) (u9 ux e B(r9 uQ), x e W^). Let φuo(u, x) be the holomor-

phic projective solution at u0 with the initial point x. Then for every

point ux in a small neighbourhood of uQ φuo{u, x) is regarded as the pro-

jective solution at ux with the initial point <puo{ul9 x), hence by the uniqueness

property it follows

φUl(u, φuo(uly X)) = φUQ(u, X) .

By virtue of Proposition 3 for each point u0 X x0 in uQ X WζQ there exist a

positive number r{tQ, xQ) and a neighbourhood Ux0 of xQ in W^ such that

the map φUo: u X x ->ψu^u, x) of B(r(uQ,xQ),uQ) x Uχ0 into PN are holomor-

phic, where B{r{u0, xQ), uQ) is the open ball of radius r(uQ, xQ) with the center

uQ with respect to the metric \u — uγ\. Since W^ is a projective variety,

it is a compact subset in PN. Hence there exist positive numbers r

and a such that if \ux — uQ\<. s the map u x x->φUl{u9x) is a holomorphic
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map of B{r, ux) x W^ into PN. For fixed x0 on Wc

tf
} the map u -»

<put{u, xQ) is obviously the projective solution at uQ with the initial point xQ.

Let u2 be a point satisfying 1&2 — uQ\ < Min is, -?>-Π Then the map

x -*φuϋ{u2, x) is a holomorphic map of the initial variety W^ into W^ .

We shall prove first that this map is biholomorphic. Since u X y -> φu2{u, y)

is holomorphic in J5(r, #2)
 x W^ζ * and |&2 — ̂ ol< - y *% the map 2/ -> ψuz{u^ y)

is a holomorphic map of TF^p into W[f^. On the other hand

<Pu2(uQ, φuo(u2, x)) = a; a n d φuo{u2, <puz(u0, y)) — y , h e n c e the m a p # -+φuo(u2, x) is

a biholomorphic map of Wcf^ onto TF^ } for every u2 satisfying \u2 — uQ\ <

Min \s>~τ>~
r)> Finaly, using Chow's Theorem, we shall prove the map

x-±φuo{u2, x) is a birational map of Wiζ} onto W^\ Since the initial

varieties W^ and W^ are projective varieties in PN the graph Γ of the

biholomorphic map x -> φuQ(u2, x) is a closed complex space in the product

PN x P^ . Since PN x P^ can be embedded in a large complex projective

space, the graph Γ is regarded as a closed complex analytic space in a

complex projective space. Hence by virtue of Chow's Theorem Γ is a pro-

jective variety and thus the map x -> φuQ{u2> x) is a rational map of W^

onto W^. This completes the proof of Theorem.

DEFINITION 3 For each closed path ω on M ( F ) starting from uQ there

exists a biregular birational map σω of ΪF^P such that the analytic continua-

tion of the projective solution φUo(u, x) along ω coincides with the projective

solution φuo(u, σωx). The biregular birational transformation σω depends only

on the homotopy class of the path ω. Therefore the map ω ~> aω induces

a representation of the fundamental group ^(M ( F ) , uQ) of M ( F ) by biregular

birational transformations of the initial variety TF^p. We shall such the

representation the monodoromy group of the osculating system of type (N, 1,2).

3.3 Let us characterize osculating systems of type (N, 1,2) with the

initial variety PN.

DEFINITION 4. A Riccati system means an osculating system
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det

such that

at {u, t/o> , VN) — y i L«Q (u, yQ, . . . , yN)

du ' du

2 / 0 , (0 < α < iV) are linear forms in yQ, . . . , yN.

PROPOSITION 3. An osculation system of type {N, 1,2) is a Riccati system if

and only if the initial varieties for the system are the whole projective space PN.

Proof Assume first that the system is a Riccati system, i.e. Fa,β =

y«Lβ — ypL* with linear forms Lα (0 < a < N). Let (φ0, . . . , φN) be a

solution of the linear system

We may assume without loss of generality that

constant zero. Then it follows

(0 < a < N) are not

det
<Pβ

du du

Ψβ

du

ΨN\

= <Pϊ\

This means that φ: u-^{φo(u), . . . , φN{u)) is a projective solution of the

Riccati system. For a linear system we may choose arbitrary initial values

at the regular points, hence the initial varieties of Riccati systems are the

whole projective iV-space PN. We shall next assume that the initial variety

TF^p at a regular point uQ coincides with PN. Let K be the field over Q

generated by the values of the coefficients in Fa,$ (0 < a, β<N) at u = uQ.

Let (£0, . . . , ξN) be a system of complex numbers such that dimκK(ξQ, . . . ,

ξN) = N + 1 and φ = {φQ, . . . , ^ ) be the unique holomorphic projective

solution of the osculating system such that φ{u0) = (f0, . . . , $N) - Putting

{u,yQ, . . . , yN) = (^o,fo, . . . , £*) in the relation (2), we have

iuz,ξ0, , £

(0 < α, ft r < iV),

= 0
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Since uQ can be replaced by an arbitrary regular point and dimκK(ξ0, . . . ,

ξN)=N+l, it follows

YτFa.β(u,Y*, . . . , YN) + Y.Fβ,r(u,Y0, . . . , YN) + YβFr.Ju,Y09 . . . , YN) = 0

(0 < α, j8, r < ΛO

with indeterminates F o , . . . , YN. We may put

iVo(^F 0 , . . , YN) = Ha(u9Yl9 . . . , F ^ ) - F o L ^ , F o , . . . , YN)

with quadratic forms Ha{u, Yx, . . . , F#) in Yx, . . . , YN and linear forms

Then we have

rβFβ i ί ϊ(«,Fβ, . . . , YN) = YβFUu, F o , . . . , YN) - YaFβ>ΰ(u,Yΰ, . . . , YN)

,γl9 . . . 9 Y N )

Hence it follows

YβHΛ{u9Yx 9...9YN) = Y«Hβ{u,Yx 9...9YN)

Fa,β(u,Y0, . . . , YN) = YβLa(u,Y0, . . . , YN)-YβLΛ(u9YQ9 . . . , YN)

(Ka9β<N).

Moreover Ha(u9 Yx, . . . , YN) is divisible by Fα and Y^H^u, Yl9 . . . 9YN)

Y^H^u,Yl9 . . . ,YN) {Ka,β<N). Therefore we may put

with a linear form L0(w, F o , . . . , F^). This proves that

Fa,β(u9Y*9 . . . , YN) = YΛLβ(u,YQ, . . . , YN)-Y&La{u,Y,, . . . , YN)

namely the osculating system is a Riccati system.

§4. Osculating systems of type (TV, 1,2) with constant coefficients

We shall show that projective solutions for osculating system of type

(N91,2) with constant coefficients are given by mean of analytic homomor-

phism of the additive group C into commutative algebraic transformation

groups of the initial varieties.
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THEOREM 5. Let W[F) be the initial variety at the origin u = 0 for an

osculating system of type (N, 1,2) with constant coeffcients:

det
dya

du ' du

{0<a0<aί<N)

and φ(u,x) be the holomorphίc projective solution at u = 0 with the initial point x .

Then there exist a commutative algebraic transformation group G of the projective

variety Wψ^ and an analytic homomorphism p of the additive group C 8 ) of complex

numbers into G such that

φ{u, x) = p{u)x {u e C , x e W(f)).

Proof By virtue of Theorem 2 and 3 the projective solutions φ(u, x)

(x <E WQF)) are holomorphic on the whole complex plane C and the initial

varieties PΓ^coincides with the initial variety W(

0

F) at the origin. Hence

by virtue of Theorem 3 the map: x-±φ{u, x) is a biregular birational map

of the initial variety WQF) onto itself. Since a translation: U^U + UQ of

the independent variable leaves the quadratic system invariant, the map:

u -+φ{u + uQ, x) is a holomorphic projective solution with the initial point

φ{u0, x) at u = 0. Hence from Theorem 1 we have

φ(u, φ{υ, X)) = φ(v9 φ(u9 x)) = φ(u + υ, x)

and

φ(— u, φ(u, x)) = φ(u, φ{— u, x)) = φ(0, x) = x .

This shows that the map: u->φ(u,x) is a one-parameter group with the

origin at x. Let V be an irreducible component of W^ and ξ = (f0, . . . ,

ξN) be a generic point of V over the field C of complex numbers. Since the

map p{u): x-*φ{u,x) is a biregular birational transformation of V onto V,

there exist a system {RQ{x), . . . , Rs{x)) of homogeneous forms of the same

degree in xQ, . . . , xN with coefficients in C and a system («o,o(^), >

aN,sW) of holomorphic functions in a neighbourhood of u = 0 such that

8) C means sometimes the additive group of complex numbers and sometimes the field of
complex numbers.
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(i) Ψ(u,ξ) =(i3αo.,(«)Λ ι(f), . . . , Σ aNιl(u)Rt(ξ)) and (ii) R^ξ), . . . , R,(ξ) are
Z = 0 7 = 0

lineary independent over C. We denote by T the projective variety in the

projective iVs-space P(iv + i)(5 + i)-i such that the point (aQtQ{u), . . . , aNtS(u))

is a generic point of T over C. For the sake of simplicity we mean by the

same symble p{u) the point (aOtO{u), . . . , aN>s{u)) on T and denote by

C{p(u)) the field generated by the quotients aΛtl{u) / a$Λ(u) (0 < α, β < iV

0 </,/*< s) over C. Since £ is a generic point of F over C and 7?0(£) > >

/?,(ί) are linearly independent over C, there exist C-rational points a^°\ . . . ,

α(s) on V such that

det

Therefore from the linear equations

φM, Λ ( Λ) = Σ3 a^MRiiatty (0 < a < AT 0 < > < 5)
z = 0

it follows that aΛtl{u) ( 0 < α < i V ; 0 < / < s ) are linear combinations of

<pa(u,a(ty {0 < a < N 0 < j < s) with coefficients in C. This means that

C(p(u)) = C(φ(u,aW), . . . , φ(u,a^)), where C(φ(u,a^), . . . , φ(u,a^)) is the

field generated by the inhomogeneous coordinates of φ{u,a^) (0 < / < s)

over C . Since φ(u, φ{v, a)) = ^(v, #>(#, α)) = ςp(̂  + v, a), by virtue of Theorem

3 it follows that C{φ(u + v, a)) = C(ίp(«, α), ^(v, a)). Hence we have

C{p{u + υ)) = C{φ{u + v, ΛCO)) , . . . 9 φ(u + v, a^))

(ι*), p(υ)).

This means that there exists a rational map a: T X T^T such that

a{p{u), p{υ)) p{u + v) and a is defined over C. Let us next show that there

exists a rational map β such that β(p(u)) = p(— M) and β is defined over C.

Since φ{- u, φ(u, α<O) = ^(0, αCO) = flC0 (0 < Z < 5) and

det I | Φ O .
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we have

Σ
I = 0

and

det I ) φ θ

This means that

= C(p{u)).

Therefore there exists a rational map β: T-+T such that β{p[u)) — p{—u)

and β is defined over C . These rational maps a and β satisfy the conditions:

a{ρ{u), p(v)) = a(/o(v), p(u)) = p{u + v),

a(p{u), a{p{υ), p(w))) = a{a(p{u), p(υ))9 ρ(w)) = p(u + v + w),

a(β(p(u))9 p(u)) = a(p(u),β(p(u)) = p(0).

Hence we have a commutative normal law of composition o on T such

that p{u)o p{v) = a(p(u), ρ{v)) and ρ{u) o p(—u) = p(—u) o p(u) = p{0). By

virtue of the general theory on algebraic group9) there exist a commutative

algebraic group Gv and a birational equivalence ψ of T to G such that

ψ{p{u) o p{v))ψ{p{u)) o 0(p(ι;)) and 0(/O(M)) O ̂ ( ^ ( - M))) = 0(^(0)). This shows

that Gv is regarded as a commutative transformation group of V such that

pv{u)xψ{u,x) and ^(zί) = ψ{p{u)). Let F j , . . . , Vr be the irreducible com-

ponents of the initial variety WiF)

 9 G be the direct sum Gn®. . . ®Gvr

and p be the direct sum pVι®. . . ® ρVr. Let G be the Zariski closure of

the image p{C) in the commutative algebraic group G. Then G is a

commutative algebraic transformation group of the initial variety

such that

9) See [3] Chap. IX Algebraic groups.



278 HISASI MORIKAWA

p{u)x = φ{u, x) {u<=C,χϊΞ W(

Q

F)).

COROLLARY 1.10) Let x be a point on WC

Q

F). Then there exists a commutative

algebraic group Gx and an analytic homomorphism px of the additive group C into Gx

such that (i) Gx is a local closed subvariety in W^ and x is the origin of Gx>

(ii) px(u) — φ(u, x) {u e C), (iii) the Zariski closure of Gx in Wψ^ coincides

with that of φ(C,x).

Proof Let Hx be the subgroup of G consisting of all element g such

that gx = x. Then Hx is a normal algebraic subgroup of G. Let Gx be

the quotient group G\HX and π be the natural map: G-±GX. Let px be

the composite πp . Then, identifying Gx with the image Gxx of x by Gx,

we have Corollary.
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