A NOTE ON HOMOTOPY INVARIANCE OF TANGENT BUNDLES

HIROYASU ISHIMOTO

Although tangent bundles of manifolds are not always homotopically invariant, but in some categories of the manifolds they can be homotopically invariant.

In this note, I show that tangent bundles of π -manifolds and almost parallelizable manifolds depend only on their homotopy types.

We denote by M^n a *n*-dimensional connected closed differentiable manifold, by τM^n the tangent bundle, and by \approx the bundle equivalence.

1. Let M^n be a π -manifold. For a given immersion of M^n into (n + 1)-dimensional Euclidean space or a triviality of the stable tangent bundle $\tau M^n \oplus \varepsilon$, we can define a map of M^n into the *n*-dimensional sphere S^n , so called the "normal map" or the "Gauss map". This map is covered by a bundle map of τM^n into τS^n , and its degree is decisively related to the Euler characteristic $\chi(M^n)$ and the semi-Euler characteristic of M^n . (Milnor [3], Bredon-Kosinski [1])

THEOREM 1. Let M_1^n and M_2^n be π -manifolds of dimension n, and let $f: M_1^n \to M_2^n$ be an arbitrary homotopy equivalence. Then, we have $\tau M_1^n \approx f^*(\tau M_2^n)$.

Proof. Let F_i be a framing of the stable tangent bundle $\tau M_i^n \oplus \varepsilon$ and let ν_{F_i} be the Gauss map for i = 1, 2. Firstly we show that we can choose the framings F_1 and F_2 so that deg. $\nu_{F_1} = \deg. \nu_{F_2}$.

If *n* is even the assertion is clear, since deg. $\nu_{F_1} = \frac{1}{2} \chi(M_1^n)$, deg. $\nu_{F_2} = \frac{1}{2} \chi(M_2^n)$ independently of the choice of the framings and M_1^n , M_2^n are of the same homotopy type.

For n = 1, 3, 7, since M_1^n and M_2^n are parallelizable, the theorem is trivial. Let n = 2r + 1, $n \neq 1$, 3, 7. By Theorem 3 of [1], deg. $\nu_{F_i} \equiv \sum_{k=0}^{r}$ rank

Received January 16, 1967.

 $H_k(M_i^n; Z_2) \mod 2$ for i = 1, 2, independently of the choice of the framings. Since M_1^n and M_2^n are of the same homotopy type, we know that deg. $\nu_{F_1} \equiv \deg_{F_2} \mod 2$ always.

Now, if we construct a new framing F'_1 of $\tau M_1^n \oplus \varepsilon$ by a continuous map $g: M_1^n \to \mathrm{SO}(n+1)$, so that $F_1(x) = g(x) F_1'(x)$, there is a following relation between deg. $\nu_{F'_1}$ and deg. ν_{F_1} . ((2·2) of [1]).

deg. $\nu_{F'_1} = \deg. (\pi \circ g) + \deg. \nu_{F_1}$, where π denotes the canonical projection of SO (n + 1) onto S^n . Thus we have,

deg. $\nu_{F'_1} - \deg. \nu_{F_2} = \deg. (\pi \circ g) + (\deg. \nu_{F_1} - \deg. \nu_{F_2})$. We note that deg. $\nu_{F_1} - \deg. \nu_{F_2}$ is even. If *n* is odd, since there exists a continuous map *g* such that deg. $(\pi \circ g)$ can be any even integer, we can choose F'_1 so that deg. $\nu_{F'_1} = \deg. \nu_{F_2}$.

Thus we can choose the framings F_1 and F_2 so that deg. $\nu_{F_1} = \deg. \nu_{F_2}$. We may assume that deg. f = 1. Then, in the following diagram, deg. $\nu_{F_2} \circ f = \deg. f \times \deg. \nu_{F_2} = \deg. \nu_{F_2} = \deg. \nu_{F_1}$. So that by Hopf's

 $\begin{array}{ccc} M_1^n & \nu_{F_1} \\ f \downarrow & & \\ M_2^n & \nu_{F_2} \end{array} & S^n & \begin{array}{c} \text{Classification Theorem, } \nu_{F_2} \circ f & \text{is homotopic to } \nu_{F_1}, \\ \text{that is, the diagram is homotopy commutative. Therefore we have } \tau M_1^n \approx \nu_{F_1}^* (\tau S^n) \approx (\nu_{F_2} \circ f)^* (\tau S^n) \approx f^* (\nu_{F_2}^* (\tau S^n)) \\ \approx f^* (\tau M_2^n) . \end{array}$

This completes the proof of the theorem.

In the proof of this theorem, if $\chi(M_1^n) = \chi(M_2^n)$ or if the semi-Euler characteristic of M_1^n is equal to that of M_2^n in mod. 2, according as n is even or odd, then the map f need not be a homotopy equivalence but the condition deg. f = 1. So, we have

THEOREM 1'. Let M_1^n and M_2^n be π -manifolds of dimension n. If n is even and $\chi(M_1^n) = \chi(M_2^n)$, or if n is odd and the semi-Euler characteristic of M_1^n is equal to that of M_2^n in mod. 2, then for any continuous map $f: M_1^n \to M_2^n$ of degree 1, $\tau M_1^n \approx f^*(\tau M_2^n)$.

COROLLARY 1. In the category of π -manifolds, whether a π -manifold of even dimension has an almost complex structure or not depends only on its homotopy type.

Proof. This is clear.

COROLLARY 2. Let M_1^n and M_2^n be π -manifolds of dimension n, and let $f: M_1^n \to M_2^n$ be a homotopy equivalence. Then, for any twisted spheres T_1 and T_2 of

 Γ^n , there exists a homotopy equivalence $g: M_1^n \# T_1 \to M_2^n \# T_2$ such that $\tau(M_1^n \# T_1) \approx g^* \tau(M_2^n \# T_2)$.

Proof. Since $M_i^n \# T_i$ i = 1, 2 are π -manifolds and are homeomorphic to M_i^n , this follows from Theorem 1.

2. Let us consider such a manifold M^n that $M^n - (a \text{ point})$ is an open π -manifold. If we call such a manifold to be almost π , a manifold M^n is almost π if and only if it is almost parallelizable. Because, the tangent bundle of $M^n - (a \text{ point})$ is induced from that of $M^n - (\text{Interior of an imbedded } n\text{-disk})$, and a manifold with boundary is π if and only if it is parallelizable. (Kervaire-Milnor [5]).

THEOREM 2. Let M_1^n and M_2^n be almost parallelizable manifolds, and let $f: M_1^n \to M_2^n$ be a homotopy equivalence. Then, we have that $\tau M_1^n \approx f^*(\tau M_2^n)$. In other words, tangent bundles of (n-1)-parallelizable manifolds are homotopically invariant.

Proof. Let $O_i \in H^n(M_i^n; \pi_{n-1}(SO_{n+1}))$ i = 1, 2, be the obstruction class for extending the triviality of $\tau M_i^n \oplus \varepsilon$ on the (n-1)-skeleton over the whole. If $n \equiv 1, 2, 3, 5, 6, 7 \mod 8$, by the analogous argument of Kervaire and Milnor [4], [5], we know that M_1^n and M_2^n are π -manifolds. So, the theorem is valid by Theorem 1. If n = 4k, since the k-th Pontrjagin classes $P_k(M_i^n) = m O_i$ (m: an integer) i = 1, 2 and the indexes of M_1^n and M_2^n are equal (we may assume that deg. f = 1.), we know that $O_1 = f^*O_2$. So that, the obstruction class $f^*O_2 - O_1$ for extending the isomorphism of $\tau M_1^n \oplus \varepsilon$ onto $f^*(\tau M_2^n) \oplus \varepsilon$ on the (n-1)-skeleton over the whole vanish. Thus, $f^*(\tau M_2^n)$ is stably equivalent to τM_1^n . But, in this case, we can show that $f^*(\tau M_2^n)$ is equivalent to τM_1^n ; If we denote by $\alpha_i \in H^n(M_i^n; \pi_{n-1}(SO_n))$ i = 1, 2 the obstruction classes for extending the triviality of τM_i^n on the (n-1)-skeleton over the whole, then the obstruction class for extending the isomorphism of τM_1^n onto $f^*(\tau M_2^n)$ on the (n-1)-skeleton is given by $f^*\alpha_2 - \alpha_1$, we can show that $f^*\alpha_2 - \alpha_1 = 0$. The proof is included in that of K. Shiraiwa [7].

Finally, note that if M^n is a (n-1)-parallelizable manifold, then M^n is almost parallelizable. Because, choose a point of M^n and tie to an interior point of every *n*-simplex with an imbedded arc. Then, there exists a *n*-cell which contains the tree.

This completes the proof.

COROLLARY 3. For (n-1)-connected 2n-manifolds, $n \equiv 3, 5, 6, 7 \mod 8$, their tangent bundles are homotopically invariant. For (n-1)-connected (2n + 1)-manifolds, $n \equiv 5, 6 \mod 8$, their tangent bundles are homotopically invariant.

Proof. In this case, these manifolds are almost parallelizable or stably parallelizable.

COROLLARY 4. The matters corresponding to the corollaries 1, 2 are also valid for almost parallelizable manifolds.

References

- [1] G.E. Bredon and A. Kosinski, Vector fields on π -manifolds, Ann. of Math., **84** (1966), 85–90.
- [2] Wu-chung Hsiang, A note on free differentiable actions of S¹ and S³ on homotopy spheres, Ann. of Math., 83 (1966), 266–272.
- [3] J. Milnor, On the immersion of n-manifolds in (n+1)-space, Comment. Math. Helv., **30** (1955), 275–284.
- [4] ———, and M. Kervaire, Bernoulli numbers, homotopy groups and a theorem of Roholin, Proc. Int. Congress of Math., Edinburgh, 1958.
- [5] M. Kervaire and J. Milnor, Groups of homotopy spheres, I, Ann. of Math., 77 (1963), 504–537.
- [6] K. Shiraiwa, A note on tangent bundles, Nagoya Math. Jour., to appear.
- [7] ———, A note on tangential equivalences., to appear.
- [8] N.E. Steenrod, The topology of fibre bundles, Princeton, 1951.

Kanazawa University.