A REMARK ON PEIRCE'S RULE IN MANY-VALUED LOGICS

KATUZI ONO

Recently, S. Nagata gave an interesting series of rules beginning with Peirce's rule introduced in [3], each rule in the series being really stronger than its successor in the intuitionistic logics. (See [1] Nagata.) Namely, let p_0 , p_1 , ... be any series of mutually distinct propositional variables. Let us define \mathfrak{P}_0 as denoting p_0 . \mathfrak{P}_1 , \mathfrak{P}_2 , ... be defined recursively by

$$\mathfrak{P}_{n+1} \equiv (((p_{n+1} \to \mathfrak{P}_n) \to p_{n+1}) \to p_{n+1}).$$

Then, the series $\mathfrak{P}_1, \mathfrak{P}_2, \ldots$ is a series of above mentioned character. Nagata proved this by making use of the fact that the truth-value of $((p \to q) \to p) \to p$ is really smaller than the truth-value of q unless the truth-value of q is equal to 0 (TRUE) with respect to a certain truth-value evaluation of logics having a finite number of linearly ordered truth-values. In this short note, I will point out that this fact holds true for a vast class of truth-value evaluations of logics.

In my paper [2], I have given a condition which is satisfied by a vast class of evaluations of logics. Namely, let D be the domain of truth-values having the special truth-value 0 with respect to an evaluation of a logic having the logical constant \rightarrow together with the usual inference rules for this logical constant. A combination of members of D which is denoted by the same symbol \rightarrow is assumed to be defined in D. Most of evaluations would satisfy the following conditions:

E1: $p \rightarrow 0 = 0$,

E2: $p \rightarrow p = 0$,

E3: $0 \rightarrow p = p$,

E4: $p \rightarrow (p \rightarrow q) = p \rightarrow q$.

E5: $p \rightarrow (q \rightarrow r) = q \rightarrow (p \rightarrow r)$,

E6: $p \rightarrow q = 0$ implies $(r \rightarrow p) \rightarrow (r \rightarrow q) = 0$.

Received Aug. 31, 1966.

70 KATUZI ONO

 $m{D}$ can be regarded as almost partly ordered, if we assume these conditions and define $p \ge q$ by $p \to q = 0$. The relation \ge can be proved reflexive and transitive. Unfortunately, p = q can not be implied by $p \ge q$ and $q \ge p$. So, I will define p > q in $m{D}$ by $p \ge q$ and $q \ge p$, not by $p \ge q$ and $p \ne q$.

Now, I will prove

THEOREM. If the conditions E1 - E6 hold,

$$q > ((p \rightarrow q) \rightarrow p) \rightarrow p$$

holds identically unless q is equal to 0.

Proof. The proposition $q \to (((p \to q) \to p) \to p)$ is provable in the sentential part LOS of the primitive logic. So, the truth-value expression $q \to (((p \to q) \to p) \to p)$ is identically equal to 0 according to Theorem 1 of my paper [2]. Hence, $q \ge ((p \to q) \to p) \to p$ by definition.

To show $q > ((p \to q) \to p) \to p$ unless q is equal to 0, let us assume $((p \to q) \to p) \to p \ge q$. Then, $p \ge q$ must hold true, because $p \ge ((p \to q) \to p) \to p$ can be easily proved. Hence,

$$0 = p \rightarrow p = (0 \rightarrow p) \rightarrow p = ((p \rightarrow q) \rightarrow p) \rightarrow p \ge q$$
.

So, q must be equal to 0 according to E3.

REFERENCES

- [1] Nagata, S., A series of successive modifications of Peirce's rule, Proc. Japan Acad., 42 (1966), 859-861.
- [2] Ono, K., On a class of truth-value evaluations of the primitive logic, Nagoya Math. J., 31 (1967), 71-80.
- [3] Peirce, C.S., On the algebra of logic: A contribution to the philosophy of notation, Amer. J. of Math., 7 (1885), 180-202.

Mathematical Institute, Nagoya University.