SUPERHARMONIC FUNCTIONS IN A DOMAIN OF A RIEMANN SURFACE

ZENJIRO KURAMOCHI

To Professor Kiyoshi Noshiro on the occasion of his 60th birthday

Let R be a Riemann surface. Let G be a domain in R with relative boundary ∂G of positive capacity. Let U(z) be a positive superharmonic function in G such that the Dirichlet integral $D(\min(M, U(z))) < \infty$ for every M. Let D be a compact domain in G. Let $_DU^{M}(z)$ be the lower envelope of superharmonic functions $\{U_n(z)\}$ such that $U_n(z) \ge \min(M, U(z))$ on $D + \partial G$ except a set of capacity zero, $U_n(z)$ is harmonic in G-D and $U_n(z)$ has M.D.I. (minimal Dirichlet integral) $\leq D(\min(M, U(z))) < \infty$ over G - D with the same value as $U_n(z)$ on $\partial G + \partial D$. Then $D^{M}(z)$ is uniquely determined. Put $_DU(z) = \lim_{M = \infty} _DU^M(z)$. The mapping from U(z) to $_{D}U(z)$ is clearly linear. Hence there exists a positive measure $\lambda(\xi,z)^{[1]}$ such that $_DU(z) = \int U(\xi)d\lambda(\xi,z)$ for $z \in G - D$. If for any compact domain D, $_DU(z) = U(z)$ or $_DU(z) \le U(z)$, we call U(z) a full harmonic (F.H.) or full superharmonic (F.S.H.) function in G If U(z) is an F.S.H. in G and U(z) = 0 on ∂G except at most a set of capacity zero, U(z) is called an F_0 .S.H. in G. Let U(z) be an F.S.H. Then ${}_{D}U(z)\uparrow$ as $D\uparrow$. Put ${}_{D}U(z)=\lim_{z\to D\cap G_n}U(z)$ for a non compact domain D, where $\{G_n\}$ is an exhaustion of G with compact relative boundary $\partial G_n(n=0,1,\ldots)$.

Functiontheoretic mass $\mathfrak{M}^f(U(z))$ of an $F_0.S.H.$ in G. Let U(z) be an $F_0.S.H.$ in G. Then $g_M = E[z:U(z) > M]$ is open. Let $\omega(g_M, z, G)$ be a function in G such that $\omega(g_M, z, G)$ is harmonic in $G - g_M$, = 1 in g_M and has M.D.I. over $G - g_M$ and further $\omega(g_M, z, G) = 0$ on ∂G , = 1 on ∂g_M except a set of cap. zero. Clearly such a function exists by $D(\min(U(z), M)) < \infty$ and $\min(M, U(z)) = M$ on ∂g_M , = 0 on ∂G except a set of cap. zero. It is easily seen, $\omega_n(z) \to \omega(g_M, z, G)$ in mean as $n \to \infty$, where $\omega_n(z)$ is a harmonic function in $R_n \cap (G - g_M)$ such that $\omega_n(z) = 0$ on ∂G , $\omega_n(z) = 1$ on ∂g_M except a set of

Received July 12, 1966.

capacity zero and $\frac{\partial}{\partial n} \omega_n(z) = 0$ on $(G - g_M) \cap \partial R_n$, where $\{R_n\}$ is an exhaustion of R with compact relative boundary ∂R_n . We call $\omega(g_M, z, G)$ C.P. (capacitary potential) of g_M relative to G and define $\operatorname{Cap}(g_M)$ by $D(\omega(g_M, z, G))$. Then there exists a regular niveau^[2] C_{δ} such that

$$D(\omega(g_{M},z,G)) = \int_{C_{\delta}} \frac{\partial}{\partial n} \, \omega(g_{M},z,G) ds$$

for almost δ with $0 \le \delta \le 1$.

Since U(z) is an F_0 .S.H. in G, $U(z) \ge g_{M_1}U(z)$, whence

$$E[z:g_{M_1}U(z)>M_2]=g'_{M_2}\subset g_{M_2}=E[z:U(z)>M_2] \text{ for } M_2< M_1.$$
 (1)

By the definition $g_MU(z)=M\,\omega(g_M,z,G)$ in Cg_M . On the other hand, $\delta\omega(g_\delta,z,G)=\omega(g_M,z,G)$ in Cg_δ , where $g_\delta=E[z:\omega(g_M,z,G^{[3]})>\delta]$ and

$$D(\omega(g_{\delta}, z, G)) = \frac{1}{\delta} D(\omega(g_{\mathtt{M}}, z, G)) \quad \text{for any } \delta < 1.$$
 (2)

Let $M_1 > M_2$. Then by (1) and (2)

$$D_{cg_{M_2}}(g_{M_2}U(z)) = M_2^2 D\left(\omega(g_{M_2}, z, G)\right) \ge M_2^2 D(\omega(g'_{M_2}, z, G)). \tag{3}$$

Put $\delta = \frac{M_2}{M_1}$. Then

$$\begin{split} &M_2^2D\left(\omega\left(g'_{M_2},\ z,\ G\right)\right) =\ M_2^2\ \times\ \frac{M_1}{M_2}\ D\left(\omega\left(g_{M_1},\ z,\ G\right)\right) =\ M_1M_2D\left(\omega\left(g_{M_1},\ z,\ G\right)\right) =\\ &\frac{M_2}{M_1} D\left(g_{M_1}U(z)\right). \quad \text{Hence by (3)} \quad \left(\frac{1}{M_2}\right) D\left(g_{M_2}U(z)\right) \geqq \left(\frac{1}{M_1}\right) D\left(g_{M_1}U(z)\right) \quad \text{for }\\ &M_2 \leqq M_1 \quad \text{and} \quad \left(\frac{1}{M}\right) D\left(g_{M}U(z)\right) \quad \text{increases as} \quad M \to 0 \,. \quad \text{Put} \quad \mathfrak{M}^f(U(z)) =\\ &\frac{1}{2\pi} \lim_{M \to 0} \left(\frac{1}{M}\right) D\left(g_{M}U(z)\right) \quad \text{and call} \quad \mathfrak{M}^f(U(z)) \quad \text{function theoretic mass of} \quad U(z) \,. \end{split}$$
 Then we have the following

Lemma 1. 1) Let $U_1(z)$ and $U_2(z)$ be two F_0 .S.H.s in G and $U_1(z) \ge U_2(z)$.

Then $\mathfrak{M}^f(U_1(z)) \ge \mathfrak{M}^f(U_2(z))$.

2) Let
$$U_m(z)$$
 be $F_0.S.H.s$ and $U_m(z) \uparrow U(z)$ as $m \to \infty$. Then
$$\lim_{m \to \infty} \mathfrak{M}^f(U_m(z)) = \mathfrak{M}^f(U(z)). \tag{4}$$

(1) is clear by $E[z:U_1(z)>M]\supset E[z:U_2(z)>M]$. At first we suppose $\mathfrak{M}^f(U(z))<\infty$. For any given $\varepsilon>0$, there exists a const. M such that

$$\begin{split} &\frac{1}{2\pi M} \mathop{D}_{cg_{\mathtt{M}}}(g_{\mathtt{M}}U(z)) = \frac{1}{2\pi} \mathop{MD}\left(\omega(g_{\mathtt{M}},z,G)\right) \geqq \mathfrak{M}^f(U(z)) - \varepsilon \,. \quad \text{Since } E[z:U_m(z) > M] = \\ &g_{\mathtt{M},\,m} \uparrow g_{\mathtt{M}} = E[z:U(z) > M] \quad \text{as} \quad m \to \infty \,, \quad D(\omega(g_{\mathtt{M},\,m},\,z,\,G)) \to D(\omega(g_{\mathtt{M}},z,\,G))^{[4]} \quad \text{as} \\ &m \to \infty \,. \quad \text{Hence} \lim_{m \,=\, \infty} \mathfrak{M}^f(U_m(z)) \geqq \frac{1}{2\pi} \lim_{m \,=\, \infty} \mathop{M} D(\omega(g_{\mathtt{M},\,m},\,z,\,G)) \geqq \mathfrak{M}^f(U(z)) - \varepsilon \,. \end{split}$$
 Let $\varepsilon \to 0$. Then $\lim_{m \,=\, \infty} \mathfrak{M}^f(U_m(z)) \geqq \mathfrak{M}^f(U_m(z))$.

Next by Lemma 1.1) $\lim_{m=\infty} \mathfrak{M}^f(U_m(z)) \leq \mathfrak{M}^f(U(z))$. If $\mathfrak{M}^f(U(z)) = \infty$, we have similarly $\lim_{m=\infty} \mathfrak{M}^f(U_m(z)) = \infty$.

 $\mathfrak{M}^f(U(z))$ of an F.S.H. U(z) in G. For a compact domain D in G, suppose that we can define functions $\{U_n(z)\}$ such that $U_n(z)$ is superharmonic in G, $U_n(z)$ is harmonic in G-D, $U_n(z) \geq \min{(M,U(z))}$ on D, $U_n(z)=0$ on ∂G except a set of cap. zero and $U_n(z)$ has M.D.I. over G-D. Let ${}_D^oU^M(z)$ be the lower envelope of $\{U_n(z)\}$. Put ${}_D^oU(z) = \lim_{M = \infty} {}_D^oU^M(z)$ (clearly ${}_D^oU(z) \leq {}_DU(z)$). Since ∂D is compact, ${}_D^oU(z) = 0$ on ∂G except a set of cap. zero. For non compact domain, ${}_D^oU(z)$ is defined as ${}_DU(z)$. For U(z), put $\mathfrak{M}^f(U(z)) = \lim_{N \to \infty} \mathfrak{M}^f(G_nU^0(z))$, where $\{G_n\}$ is an exhaustion of G with compact relative boundary.

N-Green's functions of G. Let $N_n(z,p)$ be a positive harmonic function in $(G-p)\cap R_n: p\in G$ such that $N_n(z,p)=0$ on ∂G except a set of capacity zero, $N_n(z,p)$ has a logarithmic singularity at p and $\frac{\partial}{\partial n}N_n(z,p)=0$ on $\partial R_n\cap G$. Then $N_n(z,p)\to N(z,p)$ in mean as $n\to\infty$ and N(z,p) has M.D.I. (in this case the Dirichlet integral of N(z,p) is taken with respect to $N(z,p)+\log|z-p|$ in a neighbourhood of p). If ∂G is composed of a finite number of analytic curves in G, we say that ∂G is completely regular. Then as case that ∂G is completely regular we see easily^[5]

- 1). N(z, p) = 0 on ∂G except at most a set of cap. zero.
- 2). $D(\min(M, N(z, p))) = 2\pi M$.
- 3). For any domain $D_{D}N(z, p) = N(z, p)$ if $p \in D$ and $D_{D}N(z, p) \leq N(z, p)$.
- 4). By 2) and 3) we have $\mathfrak{M}^f(N(z, p)) = 1$.

We show, for any point z in G and a positive const. d there exists a const. L(z, d) such that N(z, p) < L(z, d) if dist(z, p) > d.

Case 1. ∂G has a continuum τ . Suppose τ contains a small arc C' with endpoints p_1 and p_2 . Let C'' be also an arc in G connecting p_1 and p_2 so that C' + C'' may enclose a simply connected domain D of R. Let C''' be a subarc in C'' such that dist $(C''', \partial G) > 0$. Let w(z) be a harmonic

function in D such that w(z) = 1 on C''', w(z) = 0 on $\partial D - C'''$. w(z) = 0 on C' and $\infty > \int_{\mathbb{R}^n} -\frac{\partial}{\partial n} w(z) ds > \delta > 0$. Without loss of generality we can suppose dist(p, D) > d > diameter of D. Let N*(z, p) be an N-Green's function of $G + (CG \cap D)$. Then $N^*(z, p) \ge N(z, p)$ and $N^*(z, p)$ is harmonic in a neighbourhood of C'''. Hence by Harnack's theorem, there exists a $\operatorname{const.} K \ \, \operatorname{such} \ \, \operatorname{that} \ \, \max_{z \,\in\, C^{\prime\prime\prime}} N^*(z,\,p) \leq K \min_{z \,\in\, C^{\prime\prime\prime}} N^*(z,\,p) \,. \qquad \operatorname{Let} \ \, L = \max_{z \,\in\, C^{\prime\prime\prime}} N^*(z,\,p) \,.$

Then $N^*(z, p) \ge \frac{L}{K} w(z)$ in D and $2\pi > \int_{\Sigma} \frac{\partial}{\partial n} N^*(z, p) ds \ge \frac{L\delta}{K}$, whence

Hence also by Harnack's theorem, for any point z, there exists a const. L(z,d) such that $N(z,p) \leq L(z,d)$ if $\operatorname{dist}(z,p) \geq d$. If G has a continuum γ (is not an analytic curve). Map D onto $|\xi| < 1$. the image of τ is an analytic curve. Hence even when τ is not analytic we have the same conclusion.

 ∂G has no continuum. By $N(z, p) \not\equiv \infty$, we can find a point z_0 in ∂G such that $\inf_{z \in \mathcal{D}} N(z, p) = 0$. Let D be a simply connected domain in R ∂D is an analytic curve, $D \ni z_0$ and $(\partial D \cap \partial G) = 0$. such that We suppose $p \notin D$, dist(p, D) > diameter of D and $\operatorname{dist}(\partial D, \partial G) > 0$. $\operatorname{dist}(\partial G_n,\partial D)>0$, where $\{G_n\}$ is an exhaustion of G. Let $U_{m,n}(z)$ be a harmonic function in $G_n \cap R_m$ such that $U_{m,n}(z) = 0$ on $\partial G_n \cap R_m$, $\frac{\partial}{\partial n} U_{m,n}(z) = 0$ on $\partial R_m \cap G_n$ and $U_{m,n}(z)$ has a logarithmic singularity at $p:R_m \supset D$. Then $\lim_{x \to \infty} \lim_{x \to \infty} U_{m,n}(z) = N(z, p)$. Let $w_n(z)$ be a harmonic function in $G_n \cap D$ such that $w_n(z) = 0$ on $\partial G_n \cap D$, = 1 on ∂D . Then $\frac{U_{m,n}(z)}{L_{m,n}} \leq w_n(z)$ and $\frac{2\pi}{L_{m,n}} \ge \int_{\partial G} \frac{1}{L_{m,n}} \frac{\partial}{\partial n} U_{m,n}(z) ds \ge \int_{\partial G} w_n(z) ds > 0, \text{ where } L_{m,n} = \min_{z \in \partial D} U_{m,n}(z).$ Now by $\int_{\partial D} \frac{\partial}{\partial n} U_{m,n}(z) ds = \int_{\partial D} \frac{\partial}{\partial n} U_{m,n}(z) ds > 0$ and $\int_{\partial D} \frac{\partial}{\partial n} w_n(z) ds =$

 $\int\limits_{\partial G_n \cap D} \frac{\partial}{\partial n} \, w_n(z) ds > 0 \quad \text{we have } \int\limits_{\partial D} \frac{\partial}{\partial n} \, U_{m,n}(z) ds \ge L_{m,n} \int\limits_{\partial D} \frac{\partial}{\partial n} \, w_n(z) ds \, . \quad \text{Let}$

 $n \to \infty$ and $m \to \infty$. Then since ∂D is compact

$$2\pi \geq \int_{\partial D} \frac{\partial}{\partial n} N(z, p) ds \geq L \int_{\partial D} \frac{\partial}{\partial n} w(z) ds = L\delta > 0,$$

where $L = \min_{z \in \partial D} N(z, p)$ and $\int_{\partial D} \frac{\partial}{\partial n} w(z) ds = \delta$.

 $\inf_{z \to z_0} N(z, p) = 0$ implies $w(z) \not\equiv 1$ and $\delta > 0$. Hence $L \le \frac{2\pi}{\delta}$. Whence by Harnack's theorem we have the same conclusion.

Let $\{p_i\}$ in G be a divergent sequence tending to the boundary of R or ∂G . Then $N(z, p_i) \leq L(z, d) < \infty$ for any point z if $\mathrm{dist}\,(z, p_i) \geq d$. Then we can choose a subsequence $\{p_{i'}\}$ such that $N(z, p_{i'})$ converges uniformly to a harmonic function denoted by N(z, p) and we call $\{p_{i'}\}$ a fundamental sequence determining an ideal point p. We denote by B the all the ideal points $(p \text{ may be on } \partial G)$. We show N(z, p) = 0 $(p \in B)$ for a regular boundary point z of ∂G .

Case 1. ∂G has a continuum γ with endpoints q_1 and q_2 . Let $z_0 \in \gamma$, $z_0 \neq q_1$ and $\neq q_2$. Let C be an analytic curve in G connecting q_1 and q_2 so that C + r may enclose a simply connected domain D in R and $D \ni p_i$ (i = 1, 2,), where $\{p_i\}$ is a fundamental sequence determining p. conformally onto $|\xi| < 1$. Then r and C are mapped onto the images denoted by the same notations for simplicity. $N(z, p_i) = 0$ on $r + (\partial G \cap D)$ Let $N^*(z, p_i)$ be an N-Green's function of except a set of cap. zero. $G + (CG \cap D)$. Then there exists a const. $L^*(t_0)$ such that $\infty > L^*(t_0) \ge$ $N^*(t_0, p_i) = \frac{1}{2\pi} \int_{\Sigma} N^*(\xi, p_i) \frac{\partial}{\partial n} G(\xi, t_0) ds$ for any i, where $G(\xi, t)$ is the Green's function of D. On the other hand, there exists a const. M such that $0 < M < \frac{\partial}{\partial n} G(\xi, t_0)$ on C, whence $\int_C N^*(\xi, p_i) ds \le \frac{2\pi L^*(t_0)}{M}$. Let $U(\xi)$ be a harmonic function in $|\xi| < 1$ such that $U(\xi) = N^*(\xi, p_i)$ on $|\xi| = 1$. $N^*(t, p_i) = U(t) = \frac{1}{2\pi} \int_C N^*(\xi, p_i) \frac{1 - r^2}{1 - 2r\cos(\theta - \varphi) + r^2} d\varphi : t = re^{i\theta}$. Since $\xi_0 = \xi(z_0) \in \Upsilon$, there exists a neighbourhood $v(\xi_0)$ such that $v(\xi_0) \cap C = 0$. Now there exists a const. M' such that $1 - 2r\cos(\theta - \varphi) + r^2 \ge M'$ for $e^{i\varphi} \notin r$ and $\xi \in v(\xi_0)$: $\xi = re^{i\theta}$. Hence $U(\xi) \leq \frac{2\pi L^*(t_0)}{MM'} (1 - r^2)$ for $\xi \in v(\xi_0)$. by Fatou's lemma $N^*(\xi, p) \leq \frac{2\pi L^*(t_0)}{MM'} (1 - r^2)$ and by $N(z, p_i) \leq N^*(z, p_i)$ we have $N(z, p) \to 0$ as $z \to z_0$.

Case 1.2. $z_0 \in endpoint$ of an arc τ . Let D be a domain such that $\partial D + \tau$ encloses a simply connected domain $D - \tau$. Map $D - \tau$ onto $|\xi| < 1$. Then the image (z_0) of z_0 is an inner point of the image of τ . Then as case 1.1. we have $N(z, p) \to 0$ as $z \to z_0$.

Case 2. z_0 is a regular point and z_0 is not contained in any continuum. Let

D be a simply connected domain such that $D\ni z_0$ and $\partial D\cap \partial G=0$ and $D\ni p_i(i=1,2,\dots)$. Then since $(\partial D\cap \partial G)=0$ implies $\mathrm{dist}\,(\partial D,\partial G)>0$, there exist const.s L_1 and L_2 such that $N(z,\,p_i)\leqq L_1$ and $N(z,\,p_i)\geqq L_2$ on ∂D . Whence there exists a const. M such that $N(z,\,p_i)\leqq MN(z,\,p_1)$ in D. Hence $\lim_{z\to z_0}N(z,\,p)\leqq M\lim_{z\to z_0}N(z,\,p_1)=0$. Thus $N(z,\,p)=0$ on ∂G except at most a set of capacity zero. $D(\min{(M,N(z,\,p))})\leqq \varliminf{i}{i}D(\min{(M,N(z,\,p_i))})\leqq 2\pi M$. Hence we can define ${}_DN(z,\,p)$ for any compact domain. $N(z,\,p_i)\to N(z,\,p)$ uniformly on ∂D as $i\to\infty$. Hence by ${}_DN(z,\,p_i)\leqq N(z,\,p_i)$ we have ${}_DN(z,\,p)\leqq N(z,\,p)$. Next we have at once $\mathfrak{M}^f(N(z,\,p))\leqq D(\min{(M,N(z,\,p))})\leqq 1$. Hence we have the following.

LEMMA 2. N(z, p) is an $F_0.S.H.$ in G such that $D(\min(M, N(z, p))) \leq 2\pi M$ and $\mathfrak{M}^f(N(z, p)) \leq 1$ for $p \in G + B$.

N-Martin topology in G. Let D be a compact disc in G and p_0 be a fixed point in D. we define the distance between two points p_1 and p_2 of G + B as

$$\delta(p_1, p_2) = \sup_{z \in D} \left| \frac{N(z, p_1)}{1 + N(z, p_1)} - \frac{N(z, p_2)}{1 + N(z, p_2)} \right|.$$

Then the topology induced by this metric is homeomorphic to the original topology in G. In the following we use this topology. $\delta(p,p_i)\to 0$ if and only if $N(z,p_i)\to N(z,p)$. Put $G_\delta=E[z:N(z,p_0)>\delta]$. Then the distance between G_δ and $CG_{\delta'}=E[z:N(z,p)\leqq\delta']$ is not less than $\frac{\delta-\delta'}{4}$, if $0<\delta'<\delta<1$. In fact, by the symmetry of N(p,q) we have at once

$$\delta(q_1,q_2) \geq \left| \frac{N(p_0,q_1)}{1+N(p_0,q_1)} - \frac{N(p_0,q_2)}{1+N(p_0,q_2)} \right| \geq \frac{\delta-\delta'}{4} : q_1 \in G_\delta \text{ and } q_2 \in CG_{\delta'}.$$
 Also we easily see $B \cap \bar{G}_\delta$ is compact for every $\delta > 0$.

Potentials. Let $\mu>0$ be a positive mass distribution on G+B such that $\int d\mu(p) < \infty$ and put $U(z) = \int N(z,p) d\mu(p)$. If a potential U(z)=0 on ∂G except at most a set of cap. zero, we call U(z) a regular potential. Then we have the following

Theorem 1.1).
$$D(\min{(M,U(z))}) \leq 2\pi M \int d\mu \ .$$

- 2). Let D be a compact or non compact domain. Then ${}_DU(z)=\int{}_DN(z,\,p)d\mu(p).$
- 3). Let μ_{ε} be the restriction of μ on $G_{\varepsilon}=E[z:N(z,p_0)>\varepsilon]$. Then

$$U(z) = \lim_{\varepsilon \to 0} \int N(z, p) d\mu_{\varepsilon}(p).$$

4). If U(z) is a regular potential, U(z) is an $F_0.S.H.$ in G with $\mathfrak{M}^f(U(z)) \leq \int d\mu$.

Proof of 1). For any number $\varepsilon > 0$ we can find a compact set K in $H = E[z:U(z) \leq M]$ such that $D(\min{(M,U(z))}) < D(U(z)) + \varepsilon$. Since N(z,p) is a continuous function of p for fixed z, U(z) can be approximated on K by a sequence of linear forms : $U_i(z) = \sum\limits_{j=1}^{j(i)} \lambda_{ij} N(z,p_j), \lambda_{ij} \geq 0, \ p_j \in G$, $\int d\mu = \sum\limits_{j} \lambda_{ij} : i = 1,2,\ldots \text{ Hence } D(U(z)) \leq \lim\limits_{i} D(U_i(z)). \text{ Also } U_{i,n}(z) \to U_i(z)$ in mean as $n \to \infty$, where $U_{i,n}(z) = \sum \lambda_{ij} N_n(z,p_j)$ and $N_n(z,p_j)$ is a harmonic function in $G \cap R_n$ such that $N_n(z,p_j) = 0$ on $\partial G \cap R_n$ except a set of cap. zero, $\frac{\partial}{\partial n} N_n(z,p_j) = 0$ on $\partial R_n \cap G$ and $N_n(z,p_j)$ has logarithmic singularity at p_j . Put $H = E[z:U_{i,n}(z) < M + \varepsilon]$. Then $H \to K$ for $n \geq n_0$, where n_0 is a sufficiently large number. We can prove (with some modefication to the fact $N_n(z,p_j) = 0$ on ∂G except a set of cap. zero instead of $N_n(z,p_j) = 0$ on ∂G that $D_{H_{\varepsilon,i,n}}(U_{i,n}(z)) = 2\pi(M+\varepsilon) \int d\mu(p)$. Let $n \to \infty$, $i \to \infty$ and then $\varepsilon \to 0$. Then $D(\min{(M,U(z))}) \leq 2\pi M \int d\mu(p)$.

Proof of 2). Put $D_n = D \cap G_n$. Then D_n is compact. Put $N^M(z,p) = \min(M,N(z,p))$. Then $N^M(z,p)$ is uniformly continuous with respect to p on D_n . Hence $\int N^M(z,p)d\mu(p)$ can be approximated uniformly on D_n by a sequence of linear forms: $U_i(z) = \sum_{j=1}^{j(i)} \lambda_{i,j} N^M(z,p_j)$, $\lambda_{i,j} \ge 0$. Clearly $D_n U_i(z) = \sum \lambda_{ij} D_n N^M(z,p_j)$. Let $i \to \infty$. Then $D_n \left(\int N^M(z,p) d\mu(p) \right) = \int D_n N^M(z,p) d\mu(p)$. Now by $\int N^M(z,p) d\mu(p) \uparrow U(z)$ as $M \to \infty$, we have $D_n \left(\int N^M(z,p) d\mu(p) \right) \uparrow D_n \left(\int N(z,p) d\mu(p) \right) = D_n U(z)$ and $\int D_n N^M(z,p) d\mu(p) \uparrow \int D_n N(z,p) d\mu(p)$ as $M \uparrow \infty$. Hence $D_n U(z) = \int D_n N(z,p) d\mu(p)$. Since $D_n N(z,p) d\mu(p) \uparrow D_n N(z,p)$ and $D_n U(z) \uparrow DU(z)$ as $n \to \infty$, $D_n \left(\int N(z,p) d\mu(p) \right) = \lim_{n \to \infty} \left(\int D_n N(z,p) d\mu(p) \right) =$

Proof of 3). Suppose $p \notin G_{\varepsilon}$. Let $\{p_i\}$ be a fundamental sequence determining $p \in B$ (if $p \in G$, put $p_i = p$). Then $\delta(p, p_i) \to 0$ as $i \to \infty$. Then by $\operatorname{dist}(CG_{\varepsilon}, G_{2\varepsilon}) \geq \frac{\varepsilon}{4}$, (if $2\varepsilon < 1$), $p_i \notin G_{2\varepsilon}$ for $i \geq i_0$, where i_0 is a

number. Hence $N(p_0,p_i) \leq 2\varepsilon$ and $N(p_0,p) \leq 2\varepsilon$ for $p \in (B+G)-G_{2\varepsilon}$. Let $\mu'_{\varepsilon} = \mu - \mu_{\varepsilon}$. Then $_{\varepsilon}U'(p_0) = \int N(p_0,p) d\mu'_{\varepsilon}(p) \leq 2\varepsilon \int d\mu'$. $U'_{\varepsilon}(z)$ is harmonic in $G-G_{2\varepsilon}$. Hence by Harnack's theorem $U'_{\varepsilon}(z) \to 0$ as $\varepsilon \to 0$ at every point z. Hence we have 3).

 $\begin{array}{ll} \textit{Proof of 4).} & D_{cg_{M}}(g_{M}U(z)) \leq D(\min{(M,U(z))}) \leq 2\pi M \int d\mu \quad \text{by (1). Hence by} \\ \text{definition } \mathfrak{M}^{f}(U(z)) = \lim_{M = 0} \frac{D_{cg_{M}}(g_{M}U(z))}{2\pi M} \leq \int d\mu \,, \text{ where } g_{M} = E[z:U(z) > M] \,. \end{array}$

THEOREM 2. Let U(z) be an F_0 .S.H. in G with $\mathfrak{M}^f(U(z)) < \infty$. Then U(z) can be represented by a positive mass distribution μ on G+B such that $\int d\mu \leq \mathfrak{M}^f(U(z))$.

Let D and D' be compact domains in G with finite number of analytic curves as their relative boundaries such that dist $(D, \partial D') > 0$ and $D' \supset D$. Let M be a number. Put $U^M(z) = \min(M, U(z))$. Then $U^M(z)$ is also an F_0 .S.H. in G and $\mathfrak{M}^f(U^M(z)) \leq \mathfrak{M}^f(U(z))$. Let δ be a positive const. such that $\delta < \min_{z \in \overline{D'}} D^M(z)$. Then $\partial H_{\delta} \cap \overline{D'} = 0$, where $H_{\alpha} = E[z : D^{M}(z) > \alpha]$. Then $D^M(z) = \delta \omega(H_{\delta}, z, G)$ in CH_{δ} . Hence we can find a const. δ' such that $\delta' < \delta$ and $\partial H_{\delta'}$ is a regular niveau of $\omega(H_{\delta}, z, G)$. Hence

$$\mathfrak{M}^f(U^{\mathit{M}}(z)) \geqq \mathfrak{M}^f({}_{\mathcal{D}}U^{\mathit{M}}(z)) = \lim_{M' \to 0} \frac{D(\min{(M', {}_{\mathcal{D}}U^{\mathit{M}}(z))})}{2\pi M'} = \frac{D(\min{(\delta, {}_{\mathcal{D}}U^{\mathit{M}}(z))})}{2\pi \delta} = \frac{1}{2\pi} \int\limits_{\partial H_{\delta'}} \frac{\partial}{\partial n} {}_{\mathcal{D}}U^{\mathit{M}}(z) ds \, .$$
 Put

$$U(\delta', z) = {}_{D}U^{M}(z) - \delta' + \delta'\omega(D, z, H_{\delta'}) \text{ in } H_{\delta'} - D.$$

$$\tag{4}$$

Then $U(\delta',z)$ is a harmonic function in $H_{\delta'}-D$ such that $U(\delta',z)={}_DU^{M}(z)$ on $\partial D,={}_DU^{M}(z)-\delta'=0$ on $\partial H_{\delta'}$ except a set of cap. zero and $U(\delta',z)$ has M.D.I. over $H_{\delta'}-D$, because both ${}_DU^{M}(z)$ and $\omega(D,z,H_{\delta'})$ have M.D.I.s over $H_{\delta'}-D$. Now by the regularity of $\partial H_{\delta'}$

$$0 \leq \int_{\partial H_{\delta'}} \frac{\partial}{\partial n} \, \omega(D, z, H_{\delta'}) ds = - \int_{\partial D} \frac{\partial}{\partial n} \, \omega(D, z, H_{\delta'}) ds = a(\delta') \,.$$

Since
$$\int_{\partial H\delta'} \frac{\partial}{\partial n} \omega(D, z, H_{\delta'}) ds \downarrow \text{ as } \delta' \downarrow$$
,

$$\delta' \int_{\partial H\delta'} \frac{\partial}{\partial n} \omega(D, z, H) ds \downarrow 0 \text{ as } \delta' \to 0.$$
(5)

$$\begin{split} \text{Hence} \quad & 2\pi\mathfrak{M}^f({}_{\scriptscriptstyle D}U^{\scriptscriptstyle M}\!(z)) = \lim_{\delta'\to 0} \; \int\limits_{\partial H_{\delta'}} \frac{\partial}{\partial n} \; {}_{\scriptscriptstyle D}U^{\scriptscriptstyle M}\!(z) ds = \; \lim_{\delta'\to 0} \; \int\limits_{\partial H_{\delta'}} \frac{\partial}{\partial n} \left(U(\delta',z) - \delta'\omega(D,z,H_{\delta'}) \right) ds = \lim_{\delta'\to 0} \; \int\limits_{\partial H_{\delta}} \frac{\partial}{\partial n} \; U(\delta',z) ds \; . \end{split}$$

Hence for any $\varepsilon > 0$ we can find a const. δ^* such that ∂H_{δ^*} is regular and

$$2\pi \mathfrak{M}^{f}({}_{D}U^{M}(z)) \geq \int_{\partial H_{\partial}*} -\frac{\partial}{\partial n} U(\delta^{*}, z) ds - \varepsilon.$$
 (6)

Since $_DU^{M}(z)$ is an F_0 .S.H. in G, there exists a uniquely determined positive mass distribution μ on \bar{D} such that

$$_{\mathcal{D}}U^{\mathit{M}}(z)=\int N(z,p)d\mu(p)$$
.

Let N'(z,p) be an N-Green's function of $H_{\delta^*}+D$ with pole at p. Then $N'_n(z,p)$ is uniformly bounded on $\partial D'$ for $p\in D''$ and $N'_n(z,p)\to N'(z,p)$ in mean as $n\to\infty$, where D'' is another domain such that $D\subset D''\subset D'$ and $\mathrm{dist}\,(\partial D,\partial D'')>0$ and $\mathrm{dist}\,(\partial D'',\partial D')>0$ and $N'_n(z,p)$ is a harmonic function in $((H_{\delta^*}+D)\cap R_n)-p$ such that $N'_n(z,p)$ has a logarithmic singularity at p, $N'_n(z,p)=0$ on ∂H_{δ^*} and $\frac{\partial}{\partial n}N'_n(z,p)=0$ on $\partial R_n\cap (H_{\delta^*}+D)$. Then by the regularity of ∂H_{δ^*} ^[5]

$$\int_{\partial H_{\bar{\partial}}^*} \frac{\partial}{\partial n} N'(z, p) ds = \lim_{n = \infty} \int_{\partial H_{\bar{\partial}}^* \cap R_n} \frac{\partial}{\partial n} N'_n(z, p) ds = 2\pi.$$
 (7)

N'-Martin topology induced by N'(z,p) is homeomorphic to N-Martin topology on G+B in $(D+H_{\delta^*})\cap G$. Hence μ can be approximated by a sequence of points masses: $\sum\limits_{j=1}^{i(j)}\lambda_{ij}(p_{ij})$ uniformly in D, i.e. both $\int N(z,p)d\mu(p)$ and $\int N'(z,p)d\mu(p)$ can be approximated by sequences of linear forms $U_i(z)=\sum\limits_{j=1}^{j(i)}\lambda_{ij}\,N(z,p_{ij})$ and $U'_i(z)=\sum\limits_{j=1}^{j(i)}\lambda'_{ij}N'(z,p_{ij})$, where $\lambda_{ij}=\lambda'_{ij}\geq 0$ and $p_{ij}\in D''$. Hence $\int N(z,p)d\mu(p)-\int N'(z,p)d\mu(p)$ is full harmonic in $H_{\delta^*}+D$ and θ^* on θH_{δ^*} . Hence by the maximum principle $\int N(z,p)d\mu(p)-\int N'(z,p)d\mu(p)\equiv \delta^*$ in $H_{\delta^*}+D$.

Now $\omega(D,z,H_{\delta^*})$ is represented by a positive mass distribution μ^* on \bar{D} . Hence by (4) $U(\delta^*,z)=\int N'(z,p)d(\mu+\delta^*\mu^*)(p)$ in $H_{\delta^*}+D$. Whence by (7) $\int\limits_{\partial H_{\delta^*}}\frac{\partial}{\partial n}U(\delta^*,z)ds=\int\limits_{\partial H_{\delta^*}}\frac{\partial}{\partial n}\int N'(z,p)d(\mu+\delta^*\mu^*)(p)ds=\int\limits_{\partial H_{\delta^*}}\frac{\partial}{\partial n}N'(z,p)ds$ $d(\mu+\delta^*\mu^*)(p)=2\pi\int\limits_{\partial H_{\delta^*}}d(\mu+\delta^*\mu^*)\geq 2\pi\int\limits_{\partial H_{\delta^*}}d\mu$.

Hence by (6) $2\pi \mathfrak{M}^f({}_DU^{M}(z)) \ge 2\pi \int d\mu - \varepsilon$.

Let $\varepsilon \to 0$. Then $\mathfrak{M}^f(U(z)) \geq \mathfrak{M}^f({}_DU(z)) \geq \mathfrak{M}^f({}_DU^{\mathtt{M}}(z)) \geq \int d\mu(p)$ and ${}_DU^{\mathtt{M}}(z)$ is representable by a mass distribution μ on \bar{D} of total mass $\leq \mathfrak{M}^f(U(z))$ for every M. Let $\{G_n\}$ be an exhaustion of G. Then $G_nU^{\mathtt{M}}(z)$ is representable by mass distribution $\mu_n^{\mathtt{M}}$ on \bar{G}_n . Then $\{\mu_n^{\mathtt{M}}\}$ has a weak limit μ_n on \bar{G}_n as $M \uparrow \infty$. Also $\{\mu_n\}$ has a weak limit μ on G + B such that $U(z) = \int N(z,p) d\mu(p)$ and $\int d\mu(p) \leq \mathfrak{M}^f(U(z))$ as $n \to \infty$. Thus we have the theorem.

Corollary. Let μ be a positive mass distribution on a compact set F in G. Then $U(z) = \int N(z, p) d\mu(p)$ is an F_0 .S.H. in G with $\mathfrak{M}^f(U(z)) = \int d\mu$.

Let $D_1 \supset D_2$ be two domains in G such that $D_1 \supset D_2 \supset F$, $\operatorname{dist}(D_2, \partial D_1) > 0$ and $\operatorname{dist}(F, \partial D_2) > 0$. Then $N(z, p) : p \in F$ is uniformly bounded on ∂D_1 . Put $L = \max_{p \in F} (\max_{z \in \partial D_1} N(z, p))$ and $L' = \min_{z \in \partial D_1} N(z, p_0)$, where p_0 is a fixed point in F. Then $N(z, p_0) \geq \frac{L'}{L} N(z, p)$ in $G - D_2$ for any $p \in F$. Hence U(z) = 0 on ∂G except at most a set of cap. zero. Also $p_1 U(z) = U(z)$ and $\mathfrak{M}^f(U(z)) = \mathfrak{M}^f(p_1 U(z))$. By Theorem 2 U(z) is representable by a mass distribution $p_0 \in F$ such that $\mathfrak{M}^f(U(z)) \geq \int dp_0 dp_0$. But since D_1 is compact, by the uniqueness of distribution, $p_0 \in F$ and $\mathfrak{M}^f(U(z)) \geq \int dp_0 dp_0$. On the other hand, by Theorem 1.2. $\mathfrak{M}^f(U(z)) \leq \int dp_0 dp_0$. Hence $\mathfrak{M}^f(U(z)) = \int dp_0 dp_0 dp_0$ is an F_0 .S.H. in G.

Theorem 3. Let U(z) be an F.S.H. in G with $\mathfrak{M}^f(U(z)) < \infty$. Then U(z) is representable by a positive mass distribution μ with $\int d\mu \leq \mathfrak{M}^f(U(z))$. Conversely a potential $U(z) = \int N(z,p) d\mu(p)$ is an F.S.H. in G with $\mathfrak{M}^f(U(z)) \leq \int d\mu$. Let $\{G_n\}$ be an exhaustion of G. Suppose U(z) is an F.S.H. in G. Then $G_nU(z)$ can be defined and there exists a mass distribution μ_n on \overline{G}_n such that $G_nU(z) = \int N(z,p) d\mu_n(p)$ and $\int d\mu_n \leq \mathfrak{M}^f(G_nU(z)) \leq \mathfrak{M}^f(U(z))$. Hence $\{\mu_n\}$ has a weak limit μ such that $U(z) = \lim_n G_nU(z) = \int N(z,p) d\mu(p)$. Let U(z) be a potential. Let D be a compact domain. Then $D_nU(z) = D_nU(z)$

 $\int_{D} N(z,p) d\mu(p) \text{ and }_{D} U(z) \text{ can be defined and }_{D} U(z) \leqq U(z) \,. \quad \text{Now } N(z,p) \text{ is an } F_0.\text{S.H. in } G \text{ with } \mathfrak{M}^f(N(z,p)) \leqq 1 \text{ by Theorem 1, whence by the corollary }_{D} N(z,p) = \int_{D} N(z,q) d\mu_p(q) \,: \quad \int_{D} d\mu_p(q) \leqq 1 \,. \quad \text{Hence }_{D} U(z) = \int_{D} N(z,q) d\mu_p(q) d\mu(p) = \int_{D} N(z,q) d\mu(q) \,: \quad \mu(q) = \int_{D} \mu_p(q) d\mu(p) \text{ and } \mathfrak{M}^f(D(z)) = \int_{D} d\mu(q) \leqq \int_{D} d\mu \text{ for any } D \,.$ Hence $U(z) = \lim_{D} G_n U(z)$ is an F.S.H. in G with $\mathfrak{M}^f(U(z)) \leqq \int_{D} d\mu$.

Remark. Let U(z) be an F.S.H. in G with $\mathfrak{M}^f(U(z)) < \infty$. Then $V_M = E[z:U(z) > M]$ is so thinly distributed in a neighbourhood of ∂G . In fact, $D(\omega(V_M,z,G)) \leq 2\pi M \, \mathfrak{M}^f(U(z))$. This means V_M is thin. If V_M is very thik, $D(\omega(V_M \cap G_n,z,G)) \uparrow \infty$ as $n \to \infty$.

Let D be a domain. Then by Theorems 1 and 2 we can consider the mass distribution of $v_n(p)$, where $v_n(p) = E\left[z \in G + B : \operatorname{dist}(z,p) < \frac{1}{n}\right]$. As case that ∂G is completely regular we have the following [6]

Lemma 3. Let U(z) be an $F_0.S.H.$ (or F.S.H.) in G with $\mathfrak{M}^f(U(z)) < \infty$. Let F be a closed set. We define ${}_FU(z)$ by $\lim_{n = \infty} F_nU(z)$, where $F_n = E\Big[z \in G + B : \operatorname{dist}(z, F) \leq \frac{1}{n}\Big]$. Then

1).
$$_{F}(_{F}U(z)) = _{F}U(z)$$
, if $\omega(F, z, G) = 0$. (8)

2).
$$\omega(F, z, G) = {}_{F}\omega(F, z, G)$$
, if $\omega(F, z, G) > 0$. (9)

 $\mathfrak{M}^f(N(z,p)) \leq 1 \quad \text{for } p \in G+B. \qquad \text{If} \quad \partial G \quad \text{is completely regular} \quad \mathfrak{M}^f(N(z,p)) \\ = \frac{1}{2\pi} \int\limits_{\partial G} \frac{\partial}{\partial n} \, N(z,p) ds = 1 \, .$

But in the present case $\mathfrak{M}^f(N(z,p))$ is not necessarily equal to 1. Then we shall prove the following

THEOREM 4. 1). Put $\mathfrak{M}(p) = \mathfrak{M}^f(N(z, p))$. Then $\mathfrak{M}(p) = 1$ for $p \in G$ and $\mathfrak{M}(p)$ is lower semicontinuous.

2). Put $\phi(v_n(p)) = \mathfrak{M}^f(v_n(p))$. Then $\phi(v_n(p)) = 1$ for $p \in G$ and $\phi(v_n(p))$ is lower semicontinuous. Clearly $\phi(v_n(p)) \downarrow$ as $n \to \infty$. Put $\phi(p) = \lim_{n \to \infty} \phi(v_n(p))$. Then $\phi(p) = 1$ or 0.

Proof of 1). Let $p \in G$. Then clearly $D(\min{(M,N(z,p))}) = 2\pi M$ and $\mathfrak{M}(p) = 1$ for $p \in G$. By definition $\left(\frac{1}{2\pi M}\right) D(\omega(V_M(p),z,G)) \uparrow \mathfrak{M}(p)$ as $M \downarrow 0$, where $V_M(p) = E[z:N(z,p)>M]$. Hence for any given $\varepsilon > 0$, there exists a number M such that $\mathfrak{M}(p) < \left(\frac{1}{2\pi M}\right) D(\omega(V_M(p),z,G)) + \varepsilon$ and we can find

a compact set K in $V_M(p)$ such that $D(\omega(V_M(p),z,G)) < D(M\omega(K,z)) + 2\varepsilon$, because, if $F_m \uparrow F$, $D(\omega(F_m,z,G)) \uparrow D(\omega(F,z,G))^{[7]}$. Since $\delta(p,p_i) \to 0$ implies $N(z,p_i) \to N(z,p)$ in every compact set, we can find a number i_0 such that $V_{M-\varepsilon}(p_i) \supset K$ for $i \geq i_0$, whence $\frac{D(\omega(K,z,G))}{2\pi M} \leq \frac{D(\omega(V_{M-\varepsilon}(p_i,z,G)))}{2\pi (M-\varepsilon)} \leq \mathfrak{M}(p_i) : i \geq i_0$. Let $\varepsilon \to 0$. Then $\mathfrak{M}(p) \leq \underline{\lim}_i \mathfrak{M}(p_i)$.

Proof of 2). If $p \in G$, clearly N(z,p) = N(z,p) and $\phi(v_n(p)) = 1$ for every n. Put $g_M(p) = E[z: \frac{1}{v_n(p)}N(z,p) > M]$. Then by the definition of $\phi(v_n(p))$, for any given $\varepsilon > 0$, there exists a number $M_0 < 1$ such that $\phi(v_n(p)) \leq \frac{D(M\omega(g_M,z,G))}{2\pi} + \frac{\varepsilon}{2\pi} = \frac{M}{2\pi}D(\omega(g_M,z,G)) + \frac{\varepsilon}{2\pi}$ for $M \leq M_0$. Also we can find a compact set K in $Cg_M(p)$ such that $D(\omega(g_M(p),z,G)) \leq D(\omega(K,z,G)) + \varepsilon$. Now $N(z,p) = \lim_{m = \infty} N(z,p)$, where C_m is an exhaustion of C_m . Hence there exists a number C_m 0 such that

$$N(z, p) \leq \frac{M\varepsilon}{2} + N(z, p)$$
 on K for $m \geq m_0$.

Now N(z,q) is continuous in G-q, whence N(z,q) is continuous on K and there exists a number i_0 such that

 $N(z,p_i) \geq N(z,p_i) \geq N(z,p_i) \geq N(z,p_i) \geq N(z,p) - \frac{M\varepsilon}{2} \geq N(z,p) - M\varepsilon \quad \text{on} \quad K \quad \text{for } i \geq i_0 \,. \quad \text{This implies } E[z:N(z,p) \geq M - M\varepsilon] \supset K \quad \text{and}$

$$D(\omega(g_{\mathtt{M-M}\varepsilon}(p_i),z,G)) \geqq D(\omega(K,z,G)) \geqq D(\omega(g_{\mathtt{M}}(p),z,G)) - \varepsilon \quad \text{for} \ \ i \geqq i_{\, \mathrm{0}} \, .$$

Thus $2\pi\phi(v_n(p_i)) \ge M(1-\varepsilon)D(\omega(g_{M-M\varepsilon}(p_i),z,G)) \ge MD(\omega(g_M(p),z,G))\left(\frac{M(1-\varepsilon)}{M}\right)$ $-M(1-\varepsilon)\varepsilon \ge 2\pi(\phi(v_n(p))-\varepsilon)\left(1-\varepsilon\right)-M\varepsilon$ for $i\ge i_0$.

Let $i\to\infty$ and then $\varepsilon\to 0$. Then $\lim_i \phi(v_n(p_i)) \ge \phi(v_n(p))$.

By Lemma 1, 2, $\mathfrak{M}^f(\begin{array}{c}N(z,p))=\lim_{m\to\infty}\mathfrak{M}^f(\begin{array}{c}N(z,p))$. Since $v_n(p)\cap G_m$ is compact, by the corollary of Theorem 2 0 0 0 0 0 0 is representable by $\mu_{n,m}$ on $\overline{v_n(p)\cap G_m}$ with $\mathfrak{M}^f(\begin{array}{c}N(z,p))=\int d\mu_{n,m}$. Next $\{\mu_{n,m}\}$ has a weak limit μ_n as $m\to\infty$ such that $\mathfrak{M}^f(\begin{array}{c}N(z,p))=\int d\mu_n$ on $\overline{v}_n(p)$. Let $n\to\infty$. Then $\{\mu_n\}$ has also a weak limit μ at μ at μ at μ such that μ such that μ at μ such that μ such tha

Case 1. $p \in G$. Then $\phi(p) = \lim_{n} \phi(v_n(p)) = 1$.

 $Case 2. \quad \omega(p,z,G) > 0. \quad \text{In this case} \quad \omega(p,z,G) = \lim_{n} \sup_{v_n(p)} \omega(p,z,G) = \omega(p,z,G), \text{ i.e. } N(z,p) = \lim_{n} \sup_{v_n(p)} \omega(p,z,G) =$ $_{p}N(z, p)$, whence $\phi(p) = 1$.

 $\omega(p, z, G) = 0$. By (8) $\phi(p)N(z, p) = {}_{p}N(z, p) = {}_{p}({}_{p}N(z, p)) =$ Case 3. $\phi^{2}(p) N(z, p)$. Hence $\phi(p) = 0$ or 1.

N-minimal function and N-minimal points. Let U(z) be an F_0 . S.H. in G. If $V(z) = \lambda U(z) : 0 \le \lambda \le 1$ for any F.S.H. V(z) such that both V(z) and U(z)-V(z) are F.S.H.s in G, we call U(z) an N-minimal function. Then as the case that ∂G is completely regular we have the following

Theorem 5. 1).[7] Let A be a closed set in G + B. Then $\omega(A, z, G) =$ $\int N(z,p)d\mu(p).$

- If $\omega(p, z, G) > 0$, $\omega(p, z, G) = KN(z, p)$: 2). $\omega(p, z, G) = 0$ for $p \in G$. K>0. We call such a point a singular point and denote by B_s the set of singular points. By Theorem 2 we have
- 3). $_pN(z, p) = \phi(p)N(z, p)$ and $\phi(p) = 1$ for p with $\omega(p, z, G) > 0$ and $\phi(p)$ = 1 or 0. Denote by B_0 and B_1 sets of points of B for which $\phi(p) = 0$ and $\phi(p) = 1$ respectively. Then by (2) $B_s \subset B_1$ and $B = B_0 + B_1$.
 - 4). B_0 is an F_{σ} set of capacity zero, whence $B_s \subset B_1$.
 - If $U(z) = \int_{B_0} N(z, p) d\mu(p)$, $_{B_0} U(z) = 0$.
- 6). Let U(z) be an N-minimal function such that $U(z) = \int_z N(z, p) d\mu(p)$. Then $U(z) = KN(z, p) : p \in (G + B_1) \cap A$.
 - 7). N(z, p) is N-minimal or not according as $\phi(p) = 1$ or 0.
- Let $V_M(p) = E[z : N(z, p) > M]$ and suppose $p \in G + B_1$. Then N(z, p) $= \underset{V_{M}(p)}{N(z, p)} = \underset{V_{M}(p) \cap v_{n}(p)}{N(z, p) \text{ for } M < \sup_{z \in G} N(z, p) \text{ and for every } n, \text{ whence } N(z, p) = 0$ $M \omega(V_M(p), z, G)$ in $G - V_M(p)$.
- 9). Every potential $U(z) = \int N(z, p) d\mu(p)$ can be represented by another distribution μ on $G + B_1$ without any change of U(z). This distribution is called canonical.

If ∂G is completely regular $\mathfrak{M}'(p) = 1$ for $p \in G + B$. But in general cases $\mathfrak{M}(p)$ is not necessarily = 1. We shall prove

Lemma 4. $\mathfrak{M}(p) = \mathfrak{M}^f(N(z, p)) = 1$ for $p \in G + B_1$.

Let $\{G_m\}$ be an exhaustion of G. By $p \in G + B_1$ N(z,p) = N(z,p). Assume $\mathfrak{M}^f(N(z,p)) \leq \delta < 1$. Then $\mathfrak{M}^f(\sum_{v_n(p) \cap G_m} N(z,p)) \leq \mathfrak{M}^f(N(z,p)) \leq \delta$. By Theorem 2 N(z,p) is represented by a mass $\mu_{n,m}$ on $\overline{v_n(p) \cap G_m}$ with $\int d\mu_{n,m} \leq \delta$. Let $m \to \infty$ and then $n \to \infty$. Then $pN(z,p) \leq \delta N(z,p)$. This contradicts pN(z,p) = N(z,p). Hence $\mathfrak{M}(p) = 1$.

Theorem 6. Let $U(z) = \int_{C+B_1} N(z, p) d\mu(p)$. Then

$$\mathfrak{M}^f(U(z)) = \int d\mu$$
,

where U(z) is not necessarily an F_0 .S.H. in G (clearly for an F.S.H. in G). This is an extension of the corollary of Theorem 2.

Put $\phi(p,n,m)=\mathfrak{M}^f(\underset{v_n(p)\cap G_m}{N(z,p)})$. Then by Theorem 4 and by $p\in G+B_1$ $\phi(p,n,m)\uparrow \phi(p,n)=\mathfrak{M}^f(\underset{v_n(p)}{N(z,p)})=\mathfrak{M}^f(N(z,p))=1$ as $m\to\infty$. Put $U_m(z)=\int_{\underset{v_n(p)\cap G}{N(z,p)}}N(z,p)d\mu(p)$. Then

$$U(z) = \int \lim_{m = \infty} \underset{v_n(p) \cap G_m}{N(z, p)} d\mu(p) = \lim_{m = \infty} \int \underset{v_n(p) \cap G_m}{N(z, p)} d\mu(p) = \lim_{m = \infty} U_m(z).$$

Now $N(z,p) = \int\limits_{\overline{v_n(p)\cap G_m}} N(z,q) d\mu_p(q)$ and since $\mu_p(q) > 0$ only on a compact set \overline{G}_m , we have $\int d\mu_p(q) = \phi(p,n,m)$ by the corollary of Theorem 2. Hence $U_m(z) = \int\limits_{\overline{G_m}} N(z,q) d\mu_p(q) d\mu(p)$ and $\mathfrak{M}^f(U_m(z)) = \int\limits_{\overline{G}_m} \phi(p,n,m) d\mu(p)$. It is easily verified that Lemma 1. 2. holds for F.S.H.s and $\mathfrak{M}^f(U_m(z)) \uparrow \mathfrak{M}^f(U(z))$, if $U_m(z) \uparrow U(z)$. Now $\mathfrak{M}^f(U_m(z)) \uparrow \mathfrak{M}^f(U(z))$ and $\phi(p,n,m) \uparrow \phi(p,n) = 1$ as $m \to \infty$ for $p \in G + B_1$. Hence $\mathfrak{M}^f(U(z)) = \int\limits_{\overline{G}_m} d\mu(p)$.

REFERENCES

- [1] If ∂G and ∂D are compact and smooth, $d(\lambda, z)$ is given as $\frac{\partial N}{\partial n}(\zeta, z)ds$, where $N(\zeta, z)$ is the N-Green's function of G D with pole at z.
- [2] Z. Kuramochi: Potentials on Riemann surfaces. Journ. Fac. Sci. Hokkaido Uni., XVI (1962). See page 14 of this paper.
- [3] See [2].
- [4] See [2].

- [5] See [2].
- [6] See [2]. [7] See [2]. [8] See [2].