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§ 0. Introduction.

Theory of real and time continuous martingales has been developed recently
by P. Meyer [8, 9]. Let {X,,%,} be a square integrable martingale on a pro-
bability space P. He showed that there exists an increasing process < X >, such
‘that

E((Xt"Xs)zl%s)zE(<X>;/%g)"<X)s a.e. Pfor t>s>0.

The above formula suggests us that some results concerning Brownian motion
can be generalized to those of martingale. Actually, if (X>=¢X, is a
Brownian motion (See [2, Theorem 11. 9], also Theorem 2.3 of this paper),
and in general, many continuous martingales may be obtained by time
changes of Brownian motions ([3] and Theorem 3.1 of this paper).

Stochastic integral concerning martingale was defined by Meyer [9], Courrége
[1] and in some special case, by Motoo and S. Watanabe [10]. In the present
paper we shall discuss a formula on stochastic integral which is a generalization
of It6’s formula [4] concerning Brownian motion. Let X, be a Brownian
motion and f be a C2~class function. Itd’s formula is the following:

FX)—fX0={ 4L x)ax, + 5 | LL(x)ds

We shall show in § 2 that when X, is a continuous martingale, the above formula
is still valid if ds is replaced by d{X>,, When X, is not continuous, the
formula becomes a more complicated form (See § 5). There, Lévy system
introduced by one of the authors [11] plays an important role.

The formula on stochastic integral will be applied to two problems. In § 6,
we shall discuss the structure of multiplicative functionals of a Markov process.
Roughly speaking, every multiplicative functional with mean 1 is factorized
into two mutually orthogonal martingales; one is continuous multiplicative
functional and the other is a jump type one. § 7 is devoted to giving another
proof of Lévy-Itd’s decomposition of additive process (process with independent
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increments), using the formula on stochastic integral.

§ 4 is devoted to other problems. Let 9t be the set of all square integrable
martingales with mean 0. When 9t is defined on the probability space of a
Hunt process, 90t can be spanned by additive functionals. In particular, if X,
is a martingale defined on the probability space of N-dimensional Brownian

processes adapted to ..

§ 1. Square integrable martingale.

Let (2,5, P) be the basic probability space where & is complete with respect
to P, and suppose we are given an increasing family &, of s-algebras &.C%;,
0 < t<<co, each containing all P-null sets and %FGQO%‘”' A non-negative

random variable T is called a stopping time if {T < 1}, for every t = 0. Given
a stopping time T we shall define

Fr={AeF; An{T=t}eg  for every t =0}

&, is clearly a os-algebra containing all P-null sets such thatif 7,} T then
Q%rﬁ%r” .
DermvirioN 1.1, &, is said to have no time of discontinusty if 7,17 implies
Y Fr.=Fr, where V &, denotes the smallest s-algebra containing all &,
DerinrTION 1.2,
(1.1) m={the set of all right continuous real valued processes X, adapted to
the family &, such that E(X?) < co for every ¢ e [0, ) and E(X,/.)=X, for
every t=s.}
(L.2) M.={XeM,; X, is continuous in ¢ for almost all w}.
(1.3) gMmioc={the set of all processes X, such that there exists an increasing
sequence {7} of stopping times such as T, T and X{’=X,r,, € M for every
n=1,2,.....}
(1.4) Mmie={X, e M°°; X, is continuous in ¢ for almost all w}.
X, € M is nothing but a square integrable martingale.

DeriniTION 1.3.

(1.5)  A*={the set of all natural increasing processes? A, such that E(4,) << o

1) T,T,,.... are stopping times.
2) For the definitions see [8] or Appendix.
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for every t € [0, o)}
(1.6) A**°°={the set of all increasing processes A, such that there exists an
increasing sequence {7,} such as 7,1 and A{"=A,r,, € A* for every n.}
(L7) A={A,=AP—AP; AP eA* i=12)

Atec is defined in a similar way. Finally A%, 25°°,
elements in A*, A+, ... respectively.

...... are all continuous

TueoreM 1.1. (i) For X, Y &I there exists a unique (up to equivalence)
<X,Y>e& U such that
(1.8) E[X,—X)Y,—Y)FI=EK X, Y ) —< X, Y D/F,] a.e. for every t = s €[0,00).

(ii) For X, YeIM'’ there exists a unique (up to equivalence) < X, Y >=A'°° such that
(1.9)  El(Xinr, — Xonr JVinr, = Yonr )&l = EK XY Diar, —< X, Y Denr, /8] a.e.
Sor every t = s € [0, c0) and every T, such that X,nr,Yonr, € .

Proof. 1If X=Y e M, the existence and the uniqueness of (X, Y > was proved
in Meyer ([8, 9; Th. 4, Th. 5]). For X, Y e set (XY >=1/4KX+Y,
X+Y >—<X-Y,X-Y}). Then (1.8) holds and the uniqueness is easy to see.
If X,y € Mm*°°, take T,1 oo such that X{’=X,rr, YI°=Y,ar, € M for every n.
Then < X™, Y™ >e ¥ for every » and by the uniqueness of ¢ X, Y™ > we

have

XM Y™ dng,=C XY™, m=zn te][0,).

Hence there exists a unique {X,Y > < %*°¢ such that
XM Y= X,Y Dinr,

and (1.9) is clearly satisfied.

TuEOREM 1.2. < X,Y > defined in the previous theorem is continuous if both X
and Y are quasi-left continuous (X, is called quasi-left continuous if for every increasing
sequence of stopping times T, 1T, Xy, — Xp a.s. on {T <}):in particular if one of
the following conditions is satisfied;

(i) Both X and Y are continuous,

(i1) {&.} has no time of discontinuity.
Proof. Take any stopping time S such that X,as and Y,rs are uniformly

integrable. Then quasi-left continuity implies that X,»s and Y,rs are regular
and so ¢ X,Y > is continuous by Th. 3 of [8]. Clearly (1) implies the quasi-left
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continuity of X and Y. If (2) is satisfied then X,ar,=E(X,/F:ar,) > E(Xi/F A1)

=XAr-
For simplicity, we shall write { X, X> as {(X).
DEerInITION 1.4, A sequence {T,} of stopping times is called a chain if

(1.10) T.,=0, T,<T,.. and IimT,=+o a.e.

n—>0

Let X, be a right-continuous process having left limits in [0, o) adapted to
the family &, A chain {7} is called an (e, X,)-chain or e-chain for X, if, for

almost all o,

sup X, —Xl<e.

t,s€[T 1 Tre1)
For every right continuous process X, having left limits, an (e, X,)-chain

always exists.

Let C={T,} and C’={T,} be two chains. C’ is called a subdivision of C (C’'<C)
if {T, ()} c {Ti(»)} almost all . For given C and C’ there exists C’ such that
C"<C and C""<C'.

Tueorem 1. 3. If X & ML°°, then there exists a sequence C,={T¥} of chains
such that Cp>Cyyq, sup|TE,—T¥#|—> 0 (k— o) and for almost all o
(1.11) Zn (Xrpae—Xrg ne)? > X D—< XDy (k—>0) for every t=0.

Proof. Let C,={T¥}, k=1,2,...... be a sequence of chains such that C.>Cy.,
and C; is a 1/2*~chain for X,, <X, and A,=¢.
Clearly we may assume that X € I,. Then writing TPAt =0, for simplicity,

(112) B2 (Xon—Xon-)= (< X i< X D))

n=

= EI{ 2 (Xon—Xop-—(C X Doa—C X Don-i) ]
= E(S) SH{(Xen—Xn =€ X Don—C Xdon )H(Xom—Xon1*
~K X o= X Do)
and noting

E[(Xan—Xan—l)z_(< X>lfn'_< X)l’n—l)/%”n~1]=0 H
(1.12) =E[§ {(Xﬂn_Xﬂn—d)z_(( X)”n_< X>ﬂn—1>}2]
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= 2E[§ {(Xﬂn_Xﬂn—1)4+(< X>‘7n_< X><’n—1)2}]
< 2 EID (Xon—Xon 5 EID € XDra=C X Dranr)]

= oy ELX— X0

Hence (1.11) holds.

CoroLLARY. If ML NALC 3 X then X,— X,=0.

Proof. If XeM.NA, X, is written as X,=A,—B, where A, Be U;.
Then, if {T,} is an (e, X)-chain,

2 (Krone—Xr, nd? = ¢ 3| Xrni— Ko, nel < 6 (A B) >0 (240,

By Theorem 1.3, < X>,—< X >,=0 which concludes that X,=X, a.e.

Remark. This corollary is a particular case of a general uniqueness theorem
of Meyer [9].

§ 2. Formula on stochastic integral 1.

We shall first define the stochastic integral of the form Y,=§;(I)sts, where

X, is a martingale and ©, is a process adapted to the family &, ¢>0 and
satisfying conditions described below. Set

(2.1) @={9,(0); (¢, v)-measurable real valued process such that @;(w) is Fr-
measurable for each stopping time 77},
(2.2) ®@,.,={®,(»); bounded right continuous process having left-hand limits},

and define for ¢ € A* semi norms || ||4(¢) over @ by llq)llw(t):E(S:@?dch% .

Set Ly(¢)=8NP,,, whered,, is the closure of @,, with respect to seminorms
o(2) .
THEOREM 2.1. For every XeM and @< L,KX)D), there exists a unique
YeMm satisfying

(2.3) <Y, Z)FS:disd( X,Z> ae Pforamy Ze M .

DerINITION 2. 1.9 YV of the above theorem is called the stochatic integral
of @ by X and is denoted by YFS:‘Dsts .

Before the proof, we prepare the following

Lemma 2.1, Let X, Y € M and &',0" = ®. Suppose that

3) This definition of stochastic integral is due to Motoo, Watanabe [10].
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@ |l<x>(t) < oo and || @ |l<y>(t) < 0.

t
Thenso@;@;’d (X, YD e

and

(2.4) £(| S:qm';d (XY,

V=10 <xs(0)]107 ll<r> (D) -
Proof. Since
MK aX+bY >,=a2d X >+2abd X, Y D +024CY >, = 0,9

we have

1 1
2

[ XY Do < (4 XD F (Y D) E < ~§—<A<X>t+A<Y>,> ae. P.
Set ¢,=< X>,+<Y >, then there exist ¥, ¥2¥* e @ such that
t t t
<xX>={wide, <X,¥>. = [ wide., <= | wido, .
0 0 0

In fact we only have to set for example

7 =lim (X=X Dven
Y Pe—Pt-n

Now since

t
{aX+bY >t=So(a211"§+2ab11f§+bzqf§)d<ps ,
there exists 7,, € & with P(2,,)=1 such that if w2, there exists T,(w) [0, )
with S[o. t]nT“(w)d%(w)=O and for s & T gp(0) ,

@y (0)+2ab¥ () +0* T (w) =0 .

Set 2= N @, and T(0)=UT(0) for o € 2. Then P(2)=1 and if 0 € 2

a,b rational

then S do,=0 for every ¢ and if s & T(w)

[0,2]InT
a¥§(0)+2ab¥3(0)+0*7 5 (0) = 0

for every rational a, b and hence for every real a,b. Therefore, for every real
a, b and s & T(w)

a0(0)°T H(0)+2ab0 ()0 (0)¥ 3 (0) + 205 (0) ¥ (@) = 0
and so integrating by dg¢, on [y, t,]

4) KX =X t+n—<XDs.
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(2.5) aZSiz B, (0)2d4 X So(w)+2ab Sigq?;(w)d)';(m)d( X,Y Su(o)

+b2§:¢7';(w)2d<Y M) =0, wed
Putting ¢,=0 and #,=¢ and taking the expectation, we get
@10 <o ()24 200 E(§ D00d (XY 3,) 4671107 lxs(£) 2 0.
Thus we get (2.4). From (2.5), we have also that if v € 2,
(2:6) 4,[0,(0)010)d X, ¥ Do) = - {4.] Oif0)d< X Do) +4, (0102 d ¥ o)}
and this implies S:q);q)g’d<X, Y>, € 9.

Proof  of Theorem 2.1. First we consider the case that @ is a step function,
i.e., there is an increasing sequence of stopping times {7°,} such that T, —co
and @y(0)=90; (o) if T,y <s<T,.

Define

Y,= ? ¢T,‘_1/\t(XT,,/\t—XT,,41/\t) .

It is easy to see that Y, belongs to 9t and satisfies (2.3). Now, let @ be any
element of L,(<X>). We can choose a sequence of step functions {0} c @

such that [|0—0" |l<x>(t) > 0. Set Y»={07dX. Then, by (2.3) we get

E(Yi—Y T 19=ECY—y" ) =E(] @i—0rrd < X3,) >0,

so that there exists Y,=lim Y? € <M. From Lemma 2.1, we have

n—>00

E([KY=Y"Z ) < E(IKY=Y" > '"PEK Z>)2 —~ 0,

n—>0

E<[S: (0;—DY)d X, Z >4 > < || P—0" ||<x> (I PEK Z D)2 =0 .

Therefore

(Y, Z>=lim <Y™, Z5,= lim S:q)Zd( X, Z5= S: G,d<X, 25 .

n—>00

The following formula is a generalization of a formula of K. It6 [4] in the

case X, is a Brownian motion and ¢,=0.

TaEOREM 2.2. Let F & CXRY)=the set of all twice continuously differentiable
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Sunctions on RN. Let X%, ...... , X emioc and o, ...... , o e ALec. Then, setting
AP=XP4 0% and A,=(AP, ...... , A%, we have

oF w, XL oF :
(2.7)  F(A)—F(4)= Z‘.S i (As)dXs%i;i1 9 S g (AdC XD, X,

+ 2 (2 apag

Proof. Tor simplicity, we assume that N=1. Let X € Jt}°° and ¢ € UL°°,
Set for M>0,

_{inf{t; [ X.]1> MJ2 or |¢,] > M|2}
oo if { }=¢ .

If we can prove (2.7) for X¥=X,rr, and ¢¥=¢;arr,, then letting M- oo,
we obtain (2.7). So without loss of generality we can assume that |X;| and
l¢:| are bounded (< MJ2). Let F € C¥R"). For k=1,2,......, we take a sequence
of chains C,={T{} of stopping times such that C;>Cs.; and C; is a 1/2*-chain
for X,,<X>, |¢l. and ¢, here [¢|, is the total variation of ¢, Writing
T®At=0,, we have

F(A)—F(4)=3 {F(Ae)—=F (A0}

= S P(Ar Ao Ar )t g 5 En Ao Arf
=L+,

where A, < €,.1=< A4, O Ao,y =&,.,= As,. By the definition of stochastic
integral it is easy to see that

t t
1, | Fra)ax, +{ Fradde.,
when k— o0 . Set

iFﬂ(Aa,, Ao,— Ao, 1)

\_. ,\g._.
Ms

F''(As, ) Xoy—Xo,0)?

n=1

+
Ms ro

F”(Aan—l)(XUn—X"n—l)(‘ﬁan—qoan_l)

1

ﬁMs

(Aa,,,1)(§l7an 40,;,‘-1)2

ND‘v—- I
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=13+I4+I5 .
Then

LIS sup [F/@)| e 5 100~ 00, |= e _sup | F/(0)]] 610 (b->c0).

e[— ze[-M,

In the same way, |I;|— 0 as k— . Now, by the same calculation as in (1.12),

By 3 P40, )< X 0= X0 )]

= BL X F (Ao (Xoy= X, )+ (A0, (X0 —C X e}

= sup |F(@)] [ g E(Xim X094 gr BCX5—< X9 0

ze[—M, M]

as k— oo, Also
1 ¢ 17 l > 124
Ell-g ) FA)dCX = - 33 F/(An )X Dn=C X e )]

= 5 AEC XY —(X2) >0 (ko) ,

where (k)= sup [F(z)—F(y)| . Hence Ié-*é SLF”(AS)d<X>3. It is
x,ye[r]lv;.M] 0
|a—y| <1/2%-1

easy to see that E[I,—I,|—~0. Therefore I,— ; S: F"(A)d<X)», and the

proof is complete.

As an application of this formula we shall prove a theorem of P. Lévy
(Theorem 11.9, Chap. VII of Doob [2]).

THEOREM 2.3. Let XPeMmios, i=1,2,...... , N and (X0, X9 ,=6,t, then
X=X, ...... , X¥) is an N-dimenstonal Brownian motion, that is,

(1)  X,—X, ts independent of F, (t=s),
1 2(f—s
(i1) X,—X, is Gaussian i.e. E(ei<t X=X>)= ¢~ 3 1F P9
Proof. For &4 € RV, let F(x)=ei<¢2> then from (2.7) we have

N & (o
e"<$'X'>—ei<é’X‘>=ng ::f; (X,)dX P+ é Z‘,S (BF) (Xu)du

Take any A € &,. Then noting E<S oF —(Xu) qu/%,>=0, we have

1 1 ey 2E(§ ei<tX>du; A) .

i=1

E(ei<t.X>; A)—E(ei<éX>; A)=—
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Or equivalently,
; —X> e [E1% 0 7y i X
E(ei<t X=X>; A)=P(A)~—2—S E(ei<t.X-X>; A)du

From this integral equation we see at once

—Ligle-9

E(ei<€.X,—X,>; A):P(A)e
Since this holds for every 4 € &,, we get

E(ei<t X~X>[5,) =e~%lélz(t—s)
and (i) and (ii) follows from this.

§ 3. Time change (optional sampling) of an N-dimensional
Brownian motion.

As before we assume that we are given (2, &, P) and an increasing and right
continuous family &, .

DEeFiNiTION 3.1, o={T,,u € [0, )} is called a time change function with
respect to &, if
(i) for each u € [0, ), T, is a stopping time and T, << co.
(i) for almost all w,u €0, )T, € [0,c0) is a continuous and increasing
function.

DeriniTION 3.2. For a right continuous process X adapted to the family
%, and a time change function r={T,}, we define a new process {X,, K. by
X.=Xr, and §=F,,. We shall call {X,,F,} is obtained from {X,, &} by time
change with respect to < .

By a fundamental theorem (optional sampling theorem) due to Doob [2],
X, € ML, implies X, € M °¢(F,). Dubins, Schwarz [3] proved that a large
class of I-dimensional continuous martingales can be obtained from 1-dimen-
sional Brownian motion by time change. We shall generalize this theorem in
the following manner.

Tureorem 3.1. Let X,=(X®, ...... , X)) (Xy=2x € R") be a continuous process
with values in RY adapted to the family §, such that for every harmonic function h(x)
on R¥

(3.1) Xi=h(X:)—h(X,) € M

5) M(F,) is the space of square integrable martingales relative to (§,, P).
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and for every open interval I c [0, o)

(3.2) P(sup | X,—X,|>0)=1.

t,sel

Then there exists an N-dimensional Brownian motion process {B,, &t} and X, is obtained
Srom it by time change.

Remark. If N=1, then every harmonic function is of the form axz+b and so
this theorem contains the result of [3].

Proof. Since h(x)=2°, xz=(x', ...... , V) is harmonic, X{®»—X{ e ML,
i=1,2,.... , N.. We shall first prove that there exists A%’ such that
(XD, XD, =6, A, §,7=1,.... ,N. Since h(x)=x'2z’ (i=¢j) is harmonic

X(,;i)X(;j)_X(oi)X%j) = én’téoc .
By Theorem 2.2,

X(i>X<i)_X<i)X(j>_ %St oh (X)dX(k)___ 1,<x<t) X(j)>
t ¢ 0 0 =)o axlc s s 9 > ¢ -

But the left side is in 9!°¢ and the right side is in ¥i°¢. Therefore by the
Corollary of Theorem 1.3, < X, X**5,=0. Now take h(x)=(x%)>*—(x’)2. Since
this is harmonic, we see by the same argument that (X —(X9), € ML*°
NAL* and so (X 5=(X*>,. Thus, setting A,=¢X) we have (X,
X(j)>t=5i.jAc .

Now we shall prove, using the assumption (3.2) that A, is strictly increasing
in ¢ with probability one. For simplicity we shall assume in the future
E(A;)< o for every t >0, since the argument can be reduced to this case by
truncating by stopping times. Suppose A, is not strictly increasing with posi-
tive probability, then for some rational » >0

(3.3) P35>0, A,,;=A,)>0.
This is equivalent to

(3.4) PT,>r)>0,
where T, is given by

T __[inf{t >r; A, > A}
"ol AL }=4.
Note that T, is stopping time and also Ay =A, since A, is continuous. Now
set for ¢ >0
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inf{t>r; | X,— X, |=¢
(3-9) S:={+oo{ if{l }=¢| . ’
Then we have
(3.6) P(S:lr when ¢}0)=1.
In fact for every y >r,

{Se=qp forall e>0} c{|X,—X,.|<esE][r,y)], for all e >0}

={|X,—X,|=0,s € [r, 9]}
and probability of the latter set is zero by (3.2). Let #’ > then by (3.4) and
(3.6) there exists ¢ > 0 such that
P(T A" >S&)>0.
Then

0= E(Ar,npnst — A)= Bl Xr,nrunst =X, |9 = S P(T, >S9 >0

and this is a contradiction. Thus we have proved that with probability one
A, is increasing.

Now set for # >0
(3.7) T inf {¢; A, >u}
' Tl if{ 0 }=¢.

Then T, is a stopping time (%,) and by optional sampling theorem of Doob,
we have, for s=s’ and u=v

(3.8) E(XPns BT as)=X P00, i=1,2,...... , N,
and
(3'9) E(( (YizAs _X%ZAS’XXSI]‘.,‘)/\S _XT(I]‘..Z/\S’H%TI,/\S')

=5ijE(AT.,/\s—AT,,/\s’ I%Tv/\s’) .

Then X{°=lim X%, exists with probability one and also in L?-sense and if

S§—00

we set

(3.10) Fu= V BTuns
>0

we have
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(3.11) EXP|F)=XP  a.s.

and

(3.12) E(XP—XP)XP—XP) T =04E(Ao Au—Aw Av|F)

Thus X, i=1,2,.....,N are square integrable martingales with respect to
%, such that

(3.13) <X® XP>,=5,;A0 Nt .

Now let (Y,, €,) be an N-dimensional Brownian motion defined on a probability
space (2/,G, P'). Let 2*=2x2', §*=%,xG,, P*=PxP’ and define

(1) — Y (¢ (i
BP=YP-YRa.+XP .

For each ¢,0< ¢t< «, A, is an stopping time (%) since
{4, > uy=A{T. < t}=N{T An< t}E V Frian=%, .
Then Y, Y2 4. and X$ are all martingales (F%) and so B is a martingale
(&%). Also we have by (3.13) that < B, BY »,=6;; (u—u A Actu A Aw)=0;;u.

Then by Th. 2.3, (B,, &) is an N-dimensional Brownian motion. As we have
remarked above, ¢t - A4, is a time change function (&%) and clearly

X,=%, =B, .
This proves the theorem.
Remark. For almost all o, {X,,t € [0, )}={B,, # € [0, Ax)}. So if
(3.14) P( sup |X,|=+cw)=1

tef0,0)

then we have
(3.15) P(tlim A=+x)=1.

§ 4. Orthogonal decomposition of the space of square integrable
martingales.

I. We shall assume here that the probability space (2, &,P) is separable
(i.e. L¥0,%, P) is separable). We define semi-norms || ||, over M by the
formula || X||,=E(X3), X M. Then

ProrosiTiON 4.1. {9, (| |} is a separable complete space.

Proof. First we shall show the completeness. Let {X"} be a Cauchy
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sequence in M. Since {X"} are martingales, by Doob’s inequality [2, Chap.
V11, Theorem 3. 2] we have
P(sup | X{—X¥|=c) = 1/CPE(XT—XT)?) — O

0<s<t n, m—oo

for every ¢ >0. Therefore X7 converges locally uniformly to X, a.e. P. Itis
clear that X is an element of I and satisfies || X—X"}|, >0 as n > oo, The
uniqueness of such X, is also clear. Next, we will show the separability. Let
L3(P) be the space of all §-measurable functions f such that E(f?) < and
E(f)=0. Let X{ be the right continuous version of E(f/¥) and M'={X7;
Fe LY(P)}. Then M° is dense in {M, || 1.} Let {f*} be a dense sequence of
LY(P). Then {X{"} are dense in M’. Indeed, let f be any element of L3(P) and
{f"*} a sequence converging to f in L3(P) space. Then, by Jensen’s inequality
we have

E(X{=X{"P) = E(f=F)) = 0

Therefore {X7»} converges to x”.
DeriNiTION 4.1, X, Y = It are called orthogonal and denoted by X 1Y if and
only if ¢ X,Y>=0.

Meyer defined that X,Y € 9t are orthogonal if X,Y, is a martingale. Our
definition is the same as Meyer’s one. Indeed, since

E((Xt~Xs)(Yt—'Ys)/Fs)=E(Xth/Fs)_XsYs Py

<X, Y>=0 if and only if X,Y, is a martingale.

DEeFINtTION 4.2. A subset 9t of 9 is called a subspace of M if N satisfies the
following three conditions;
() XYeR->X+Ye® (i) if X% and 0 €8(CX)), then (0dXe R
and (iii) M is closed in {M,]] .}

The smallest subspace containing 9 (< M) is denoted by &(R) and is said to
be generated by %. It is easy to see S(X)z[S@dX; 0 e 0K X>)].

Let 9% be a subset of M and set ®t={YV € M;Y is orthogonal to every X of
R} We can easily show that 0 is a subspace, &%R)-=R+ and RN)NNL={0}.

PROPOSITION 4.1. Let X and Y be elements of M.  There exist unique
Y € &X) and Y"1 (X) such that Y=Y"+Y".
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Proof. First we shall note that < X,Y ), is absolutely continuous with
respect to ¢ X> in the following sense. If @ @K X>) satisfies ¢=¢* and

S@d( X>=0, then §¢d< X,Y>=0. For, since S@d( X>=0 implies Sq)a’X:O we
have gd)d (X Y>=< S@dX, Y »=0, which implies the absolute continuity.

Therefore, we can choose ® € $(< X,Y ) such that (X, Y ), = S:@d( X>,. Set
Y’=S<DdX and Y”=Y—Y’. Then < X,Y" »=< X, Y >—< X,Y’ »=0, showing that

X1Y". The uniqueness is clear.

DeriniTION 4.3, Y7 is called the projection of Y to the space {(X) and is
denoted by Pyx)Y .

Let {X"} be a sequence of M. We can choose a sequence {Y”} such that
these are mutually orthogonal and {({X"})=8({Y"}). The proof is due to usual
Schmidt’s orthogonalization method. Indeed, define Y* by induction as

n—1
Yr=Xnr— Elps(Yf)X". Then it turns out that {Y*} are mutually orthogonal

and {Y"})=g({X"}). Now let Z be any element of 9. Then {Ej]lPsm)Z} isa

‘Cauchy sequence in {I,|| ||.}. For since Z"_L_‘_Z—_.: Pgv+, we have
Zy=<2z" >+1§1< PyynZ .

Noting that i‘i {PyyZ)» 1increases, f‘,1< PscyyZ» —0. Consequently,

{éIPS(Yi)Z} is a Cauchy sequence. Define Z’= lim Zn‘,lPsz(yt)Z and Z'=72-Z7.

N—>00 1=

‘Then 2" is orthogonal to {({Y™}). Thus we have proved

Tueorem 4.1. (i) Let Nt be a subspace of .  There is a sequence {Y™} such
that they are mutually orthogonal and Q{Y"})=%R. (ii) Any element of M can be
decomposed uniquely to Z=2'+2Z" where 22N and 2" € NL. Furthermore,

Z'=lim Zn} PyyoZ .

#n—s00 t=1

DeriniTION 4.4, Z’ is called the projection of Z to the space Mt and is
denoted by PnZ.

COROLLARY. ML) L=n .

Proof. It is clear that (RY)- > N. Let Z be any element of (M)t We
have only to prove Z=PeZ. Since Z—PaZ € R-nM1), we have Z=PxZ .
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II. Case of Markov processes. We shall discuss further detailed structure
of the square integrable martingales 9t when the underlying probability space
is that of a Hunt process. As a result, it turns out that 9t is generated by
additive functionals of the Hunt process.

Throughout this and the following sections, we treat the case of Hunt process.
So we shall give here the definition of Hunt process. Let S be a locally compact
Hausdorff' space with a countable base and oo a point adjoined to S as one
point compactification. Set S*=Su{w}. The topological s-algebra of S is
denoted by Bg and the set of all bounded Bg-measurable functions is denoted
by B(S). Let (2,%) be a basic measurable space and x,w), a measurable
mapping from [0, o)X 2 to S* such that it is right continuous and has left hand
limits with respect to ¢ and z,(w)= for ¢t = ¢(e)=inf{t > 0; 2,(w)=}. The
shift operator 4, is defined as z,(6,0)=%,.s(0). B, is a s-subalgebra of & genera-
ted by the set {z,(0) € E} (s< ¢, E € Bg). Let P,,z € S, be a family of proba-
bility measures on (2, %) such that P,(B), B e B, is Bs-measurable and P,(x,(o)
=z)=1. Set Fo=NP.—completion of Bw, where P#:S,a(d:zc)Pz and g runs all
bounded Radon measure over S, and &,={B€ &.;Vu, 35, B, such that
Pu(B4ABp)=0}. M=(%,{, %, P,) is called a Hunt process if each P, has the strong
Markov property and quasi-left continuity of sample paths, i.e., for every
increasing sequence of stopping times {7,} converging to T, zy, converges to
xr on the set {T <} a.s. P,. Itis well known that &, has no time of discon-
tinuity.

Under this definition of Hunt process, definitions and arguments such as
§8 1-3 and the first part of this section require more careful treatment, because
the family of measures P,,x € S is given on (2,%,). Every fact concerning
the measure P should be replaced to the fact concerning the family of measures
P,xeS.

A real valued function X,(0), t € [0, ), o € 2 is called a functional if it is
&,~measurable for each ¢ and is right continuous a.e. P,(vz < S). A func-
tional X, is called a martingale if E (] X,]) <o and E,(X,/§)=X, a.e. Py(vx).
M is the space of all martingales such that E,(X3})<co for every ¢ >0 and
XeS and that E,(X,)=0 for every « € S. %«* is the family of natural increasing
processes (and also functionals) A, such that E,(4;)<<o for t >0 and z € S.
The definitions of M*°° and A are made in a similar way. We introduce
semi-norms || ||, over M by the formula || X||,,,=E,(X?). Then

ProposITION 4.17. {01 lz.c} s complete.
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Proof. Let {X*} be a Cauchy sequence. Set e, (¢, %)=(|X"—X"l,,, and
define

n(z)=min{n; sup e, (i, 2) < 1/32%}, i=1,2,......
m2>n
m>n

Then n,(x) is Bs-measurable for each ¢ and so #n;(x,(0)) is Fo—measurable.
Since

| (X — X7 |[, , < 1/3% for each x and t<i<j ,
we have by a martingale inequality

P,( max |X"Fo— X0 | > 1/21) < (2/3)2
0<s<Lk

for every x and k< i=<j. Set 2={w; X% (v) converges uniformly on any
bounded interval in [0, o)}, then by Borel-Cantelli’s lemma P,(2)=1 for every
2. For o € @ define X,(0)= lim X?%d(0), then X € M and X, converges to X.
The uniqueness of X is cleau:.—oo

Theorem 1.1 is modified in the following way.

TueoreM 1.1V, For X,Y € I, there is a unique <X, Y> € U, such that
Ez((Xt"Xs)(Yt_Ys)/%s)=Ez;(< X: Y>c_< X; Y >x/%s) f07 every x eS.

Proof. The proof of Theorem 1.1 is based on Meyer’s decomposition
theorem [8,9]. Let Z, be a supermartingale relative to (&,, P,) belonging to
the class (D) and 1t1_1:£1o Z,=0 relative to P, for every z& S. By Meyer’s
decomposition there is an increasing process A{” such that Z,=E (AP |F,)— A,
for each . We can prove that there is a functional A, such that A,=A{” a.e.
P,, i.e. Z,;=FE ,(A«[%;)—A,. This argument will be treated in Appendix. Using
this fact, the proof of this theorem is just the same as that of Theorem 1.1.

Let # and @,, be the spaces of processes defined in § 2. Define semi-norms

by 10l <x>.+(t)=E, (S:qiid(X)x )I/Z. Let L (< XD) be the intersection of @ and

the completion of @,, with respect to semi-norms || ||<x>,s(¢). The conclusion
of Lemma 2.1. is still valid if we take P,, || |l<x>.s(t) for P,|| |l<x>(t). The
proof is the same as that of Lemma 2.1. Using this fact, we can prove

Tueorem 1.2/, For Xe M and @< LKX)), there is a unique Y €M
satisfying

t
<Y’Z>”=So@’d< X,Z>, a.e. P, for cvery Z& M .
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A subspace R is defined in a similar way. Also closed set is defined by the
topology I ||;,, in this case. Propositions and theorems in Part I are also

valid and the proof is quite similar.
A functional X, is called an additive functional (a.f.) if it satisfies X,(0)+X,(0,0)
=X,:s(0) for all ¢,s>0 a.e. P,. The set of all a.f”.s is denoted by A. Let

feB(S) and u=G.f=E. (S:oe‘”f(xt)dt) and define

(4.1) Xte=ulw)—u(e)— | (anlz)—flz)ds

Then X7 is a square integrable a.f. . Since E (X7-*)=0,
E(XT88) =X+ E(X1%(0,0)/F) =X+ E (XT*)=X]* .

Therefore X{*e M .

TaeoreM 4.2.9  {X7*; fe B(S), a >0} generates Nt .
Before the proof we prepare the following

Lemma 4.1. (1) If X, is of M, then so is
(4.2) Xi=e Xo+af e X,ds .
(i) If XeV then X* Y. (iil) If X" is of the form (4.1) then
(4.3) Xf""“:e‘“u(xt)—u(xo)—}—S:e‘”‘f(ms)ds .

The proof can be obtained by elementary calculations and it is omitted.
Proof of theorem 4.1. Suppose Y 1 X7 for all fe B(S) and a>0. Then
We shall show first

(4.4) E(f(@yses)(Yusrs—Y)[Es)=0
for all f € B(S). From Lemma 4.1, we have for any « >0,
E. (X7 =X{**)(Y,~Y,)[3:)=0 .
On the other hand since
E. (XLo*—=XT7**)Y,~Y)/3:)=0,

we have
(4.5) E. (XLo—XP%)(Y,~Y,)/&)=0.

Noting the relation

6) c.f. Motoo, Watanabe [10].



ON SQUARE INTEGRABLE MARTINGALES 227

XLes—Xime=—esula)+| e fln,)du
the left hand of (4. 3) is
(4.6) E(\"ee flwdu (v, —Y )/,

H

©o

|
([ e £l (E(Y /50— Y )du/F,)
(]

=B([ e flaa ) (Vi =Y )duf3,)
where Y, =Y, ;. Therefore from (4.5) and (4.6) we have

E (f(@urs)(Vars—Y5)[EFs) =0

and since ¢ is arbitrary we have (4.4). Now let O0=¢,< ;< t,<...... < t, and
S eeenne , fn€ B(S). Using the Markov property and noting (4.4),

e f@ V=Y )duls,)

0

B (@) e Fal80 )Y )= 2 B (@) Pl NV =)

1 jﬂ))(Ytjn—Yt!)):O Py

n—1
=]_§0E. (fi@sy)eooeee fyea(@e VEsy |, (Fit2(y,, g, )eeeee Ful@y 4
which implies Y¢,=0. Therefore Y,=0.

CoROLLARY. IMNY generates M and M, NY generates 9N, .
ExamprLe. Let x, be an N-dimensional Brownian motion; z,=(B%®,
B®™). Then au—f= ——Au The formula on stochastic integral implies together

with this relation that X7 defined by (4.1) satisfies

xpo= 3|

1=1

au (%)
gt (Wald BS
Therefore M=(X*; fe B(S)={(BY,...... ,B®). This fact together with
N ot
Theorem 4.1 shows that every x of It is represented as X,= Zlgo@ﬁdB(s“.
§ 5. Formula on stochastic integrals. II
Let us define M, as the orthogonal complement of the subspace M., We
will first discuss the structure of 9t,. Let p be a metric on S. Set for conveni-

ence p(x,{o})=co for every 2 € S and X.(x, ¥)=X(o(zn>e}(%, ¥) . Define P,.(¢, E)
étxs(xs_, %:)15(2s),” E € Bg, and I'*={E € Bg; E,(P:(t, E)) << o for every t >0

7) 2g_=limax,_
) hio ST
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and z € S}. Itis known in [11] that there exists a non-negative continuous
a.f. ¢? and a kernel »n(x, dy) such that

t
(5.1) 0.t E)=Pu(t, B)=| {{ 2:(2,, v)n(a,, dy)}dos, Eer.
is a square integrable martingale. The system (n(x,dy), ¢?) is called a Levy
system. Further qe(t, E) and q./(¢, F) satisfy

(5.2) <q.(t, E),q./tF) >=S:{SEaneve'(xs, yIn(xs, dy)}des .

Let f(¢,y, ) be a B, «)X Bs X§~—measurable function such that f(¢,y, 0)
L(¢") for any fixed y. Set

171E=E({ (§ 76 v 2nia, du))de) "
Fo={f;ll fll§®< oo for every ¢ >0 and z € S} .
ProposiTiON 5.1.  For every f < Fo, we can associate Q,(t) of Md denoted
byS:SSf(s, v, *)a(ds, dy) in such a way that (i) if
(3.3)  Sf(s, Y, )=0Xe(20, YA&(Y), @€ L(<g.(.,E)>), e>0,EcT",

then

t

(54‘) Qf(t)=So@sqS(ds’ E),
(i) if f,g€ Fq and a,b € R, then
(5-5) Qaf+by=an+ng :

(i) 1 Qsllea=lLI1&" .
Furthermore, Q, is uniquely determined by these properties.

Proof. 1If f is of the form (5.3), define @, by (5.4). When f= élf" and

S =0 (2, ¥)XE(Y), define Q,= z{le s. By the definition of stochastic integral

and (5.2)

t
<Qs, Qpr>1={ 01014 < Qe B, g B>

St[SEmE,q)gq)gxe‘Vel(xa; y)n(x,, dy)}d¢g

0

[{1,7ts,
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and so

(5.6) 111" = 3 B(<Qp Q>0 =Il 115" .

Let 7 be any element of F,. We can choose {f*} such that each sf* is a linear
combination of the form (5.3) and || f—/*||§*—0. Then {@s is a Cauchy
sequence by (5.6) and @, defined by lim Qr-is of M,. It is clear that (ii) and

(iii) are satisfied by f for this Q,. The uniqueness will be obvious.

ProrosITION 5.2. Me={Q,; f € Fo} .

Proof. By the above proposition, it is clear that {Q,; f € Fo}=%{q.(+, E);
¢>0, E€I.}. On the other hand it is known in [9] that

MaNA=8(q(-, E); e>0, Ec€I')NA.

Therefore we get the proposition.

The orthogonality of X,Y € 9t‘°° is also defined by <X,Y>=0. Many
arguments in the preceding sections and this section can be extended to M*°°.
Let 9Mi°¢ be the orthogonal complement of Mi°c. We will call f(¢, v, o)
belongs to F§°¢ if there exists a sequence of stopping times {7,} converging
to oo such that

E([™( (s, v, 0tz by < 0, n=12,.....

The stochastic integral Q,(¢) € M:°°, f € Fi°° is defined similarly as in Propo-
sition 6.1 and we have MMi°°={Q,; f € F{°} .

A functional ¢, is called quasi-left continuous (q.1.c.) if it has jumps only at
the discontinuity points of sample path. Let ¢, be a purely discontinuous
q.l.c. functional. There exists a (s, ¥, w)-measurable function f(s, ¥, ) such

that ¢,(w)= P f(s, s, ). We shall write such ¢, as
(@, 5-)>0, st

P0)={ | s(s, 5, 0)Pws, ay) .

Tuarorem 5.1.  Let F be a C~class function on RY. Let XV e ML,
Q€ M, o> € AL and Pyit) be a purely discontinuous q.l.c. functional such
that f®.gP=0. Set AP=XP+Quo(t)+¢P+Peo(t), and £=(fP,......, f¥)g
=(gY, ety g, Ae=(AP, ......, AP").  Suppose that one of the following conditions is

satisfied; (i) Each] gf is bounded, (ii) each £ is bounded. Then the following

[

Jormula is satisfied
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(5.7) Fla)-Fa)=3 (25 <As>dX<“+§§< (4,+1(5, 9, )~ F(A))a(ds, dy)

+[ crearrisy - £5,9, o A)Inla., dyde?

-2
N ot
+R0+ 3 [T A+ 3 (5o (AN, XD,
where G(s, y, 0))=F(A;+g(s, ¥, 0) = F(4,) .

Proof. We shall consider the case N=1 for simplicity. Assume that
f(s, Y, ©)=2e(2s-, 9)g(s, ¥, ©) and g(s,y, 0)=%e(#s-, ¥)g(s, ¥, ®). Define Ty=0 and

To=inf{t >Tp-1; p(2,-, @) >} .

Then T,% as n—+o and jumps of @, and P, occur only at {7,}. Therefore,
using Theorem 2.2,

F(AT,,/\L—)—F(AT,L-l/\t)

TNt
= F({Ar, it Xeni=Xn,nd = | (s, 0, 0)n(®e, dv)det+@rani—grand}
Ta-1 At
—F(Az, )
Tant T, At TaAt
= Paax+ " Plaside+ (0N [ Panfis, . i, dy des
1 (Twr
g | P A< X >, .

On the other hand,
Z {F(AT Al:)—F(FT,,/\t~)}

=[] Pt s, 5, - FANIPs, ay)

{F(A;+f(s,y, w)—F(A)}q(ds, dy)

-,

+{.] Pactats, v, o) - FaP@s, av)

N

I,

SSS As+g(s,y, 0)—F(A,)}P(ds, sy)
|
|

[ ePa £(s, 9, o)~ FaD Iz, dy)de? .

Substituting the above calculation to
F(A)~F(Ay)= B{F(Ar,n)—F(Ar a3+ DAF(Ar,pe-)—F(Ar, a0} >

we get the desired formula.
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Now let us consider the general case. Without loss of generality, we may

assume that X, Q, are of It and ¢, is of ¥, i.e.,
E(KX))<o,E. [g:{gf(s, Y, 0)?n(x;, dy)}d¢§:l< oo and E. (¢,) < .

Let 19;i=1,......,6 be the 1-st, ...... , 6-th term of the right hand side of (5.7),
respectively.  Set fu(s, ¥, 0)=2e (%5, ¥)Xe(¥)f(s, ¥, ®); let e,L0 and E, 1S
(E,eTe,). Then || f—fall§"—0 as n—oo, so that Q) converges to @, in
[[ Ils,;,—norms. We may assume that @, (t) converges uniformly to @,(¢) on
any compact set of [0, «), because we can choose such subsequence from {Qy,}.
Set A7=X,+Qr,+¢,+P,(t). Then (5.7) holds for A,=A}. Let I{;n=1,
i=l,......,6 be the corresponding terms to I when A, is replaced by A47.
Since {I},i=3,...... ,6 are Stieltjes integrals for almost all w, it is clear that 7>
converge to 1. We shall show that I’ -7 and I > I if (i) is satisfied.
Since A% converges to A, uniformly on [0, ¢),

E(10=I019=E.[ [ {F(4)— F(Aanya<X>,] >0 as n oo .
Therefore lim I>=1°. Now, by the mean value theorem
F(A+1(5,9, ) —F(A)=F(A+F (5,9, )N f(s: ¥, ),
F(AS+ (s, ¥y )= F(AD =y en(@0 ¥)1m, (W) F (AL Fuls, 45 D F(s, 45+,
where f and f, are (s,y, o)-measurable functions satisfying |f|<|f| and
| Ful =1 fal.

Therefore
E( I®—[®]2)

= 2B [ | | | (1=2e. (0 )15, @) P AL+ Fols, 9, 02 (s, 9, )l dy) ot |
+ 2B [ [ [ {(Piar+ Futs v, )= FlAA Fls, 0, 0 (s 0, Pl dy) ot |

Note that F/(A%+f,) = F/(A,+f). Then each term of the right hand of the
above converges to 0. Therefore I — I, Thus we have proved the theorem
when F’ is bounded. Now, suppose that (ii) is satisfied. Let F, be a C?-class
function such that F’, is bounded and F(x)=Fy(z) for |z|<M+suplf].
Then (5. 7) is satisfied for such Fy. Set Ty=inf{t>0; |4, > M}. Clearly
each term of (5. 7) corresponding to Fy is equal to each term corresponding
to F respectively for ¢t <7y Thus (5. 7) is satisfied for F.
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§ 6. A factorization of multiplicative functional.

In this section, each functional X,(w) is assumed to be defined on [0, {(»)),
i.e., it is right continuous and has left hand limits for #€[0, {(0)) and &[> t]-
measurable, where &,[ > ¢] is the ¢-field obtained by the restriction of &, on
the set {{> ¢}

A nonnegative functional «,(w) is called a multiplicative functional (m.f.), if
ay(w)ay(0,0)=a,s(0) holds for every ¢, s> 0 such that t+s<{(0) and if E (a,;
¢ >1) <1 is satisfied for every x € S and ¢ >0. Ito, S. Watanabe [5] proved
that any m.f. «, can be factorized to the products of two m.f’s such as
a,=a®ai’; where of” is a local martingale and «$” is a natural decresing
process, i.e., a{’(w)is a decresing function of ¢ and has jumps only at the
continuity points of sample paths. The purpose of this section is to investigate
the detailed structure of «”. Throughout this section, we will assume that the
terminal time ¢ is accessible, i.e., there exists a sequence of stopping times
T, =T, =<.... < { converging to ¢.

TueoreM 6. 1. Let «, be a m.f. satisfying 0<a,<oo (t<Q). Then o,
s a local martingale if and only if; (i) there exists a X< IM:°° N A, (ii) there

exists Bgxs-measurable function f(x,y) satisfying g: fiom(x)de? << oo (t <) and
[ (&= =Don(zde?

Sz, y)— fi(x, y), and (ii) ¢,=log a, is represented as

< oo (¢<<(), where fi(x,y)=rf(x, YU i<y and fo(x,y)=

00=X14+Q,(1)+ Py [ (/1= 1= f)on(a)d gt~ (¢/+= Don(a)dpt— <X,

Lemma 6.1.  Leat X{e M N A,Q, MiEN (fs bounded), ¢, A N A
and P,(t) a purely discontinuous q.1.c. a.f. such that gf=0. Then

(6. 1) a;=exXp (X3+Q/(t)+¢t+Pa(t))

is a local martingale if and only if

(1) S:(e”—l)O(nx,)dqoS <o for t<C.

t t
8) | ron@)aps={{{ s, n@, a}aor.
It should be remarked that in the sequel the notation Q(t) = S:Sh(xs,y)q(ds, dy) for
h=nh(z,y) is understood as Qp(f) of §5for W(¢,y, w)=h(x,_(w),y). So this notationis the

same as in [11]. The same remark should be applied for Ph(t)=S:Sh(xs, y)P(ds, dy).
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@ —e=[le 1= Nonlm)H e~ Dona}dot+—5<XD, for 1<
Proof. 1. By the formula on stochastic integral (5. 7), we have
(6.2) a—1={adX,+([ ™ —1)qds dy)+{ado. + 5 [[aacx,
+[ e’ 1= fron@) dot +( [ _ase™~1)Plas, ay)
Jasle n(x)des+| ) asle s, dy).
If (1) is satisfied, S:as(e"—l)on(x,)dqo,< o, so that S:a,(e"—l)P(ds, dy)
—S:a,(e"——l)on(xs)dga‘; is a local martingale. Hence under (1),
t t t
(6. 3) [sasdot112] aacx >+ e’ — 1= Pon(z)dy?
+{ aer—Don(a)aps =0

is a necessary and sufficient condition that a,—1 is a local martingale (see
Corollary of Theorem 1.3). It is clear that (6.3) is equivalent to (2).
Therefore we have only to prove (1) if «, is a local martingale.

2. Set gt=¢gV 0 and g-=g A 0. We shall prove first that

(6. 4) \S:(eg‘—l)on(x,) ded|< oo for 1<t
From (6. 2),
P —1= _S:(l—-e"'("" V) ePo—(OP(ds, dy).
Therefore
(6. 5) E.(er-®0—1)=—E.({ {[1— e~ 2)er-on(a,, ay)}do? ).

which shows that the right hand of (6. 5) is finite, implying (6. 4).
Next we shall show 5:(e"’—1)°n(ms)d§0s< oo (1<{). Let {gi(x,y)} be a

nonnegative increasing sequence of bounded Bg.s-measurable function such
that ¢g;tg* and Qu.eMi°°NA.  Set ai=a.exp(Pg—PF;+). Then we get
n

t
0

a?—1=local martinga1e+S:aﬁdgo,—l-%s‘:a?d(X‘)s—X (e";— 1on(xs)deS.



234 HIROSHI KUNITA AND SHINZO WATANABE

Let {T,} be an increasing sequence of stopping times converging to ¢ and
satisfying that the local martingale part, S:AT'" a;dg, and S:AT’" a;d<{X°), are all
integrable. Then we have

tAT,,

E(ainr)—1=E(],""a: d¢s)+% B[ aracxey,)

—E.(S:ATma?(e";— Di(e,) do?).

Noting that a7 increases to a,, we get
tAT,, tAT,
E.(anr)—1=E({; asd%)-l-—;— E ([ aacx,

—E.(St/\T”as(eg‘—l) on(x,)dg?),

0

which shows that the last term of the right hand is finite. Thus
S:(eg*——l)on(xs)dqa‘} is finite.  Since |er—1<|e"—1|v|e"—1|, we obtain (1),

Proof of theorem 6.1. 1°. The sufficient condition has already been proved
at Lemma 6.1. To prove the necessary condition, we will show first
that ¢, is a q.l.c. a.f. Indeed, since a,ar, is martingale, the discontinuous
points of a;rr, are the discontinuous points of sample paths. Thus ¢, is a

g.l.c. a.f. Set ¢,=X)40,>1 s<t<cdp,. Then ¢, can be written as P,(¢) and ¢
satisfies  g(@, ¥)X(jon9))<1y=0 (see [11]). By the argument at the proof of

Lemma 6.1, S:(l-—eg')on(xs)dgag is finite. Thus

pe=exp(P,-()— |, (1—er)on(z,) d¢?)
is a local martingale by Lemma 6.1.

2°.  We shall show that «,8;' is also a local martingale. By Lemma 6. 1,
we get

p=1=( (g e r e = 1P(ds, ay)—{ gt (1—e)on(z,)dg?.

Let {T»} be an increasing sequence of stopping times such that 7T,<¢,
Tn1¢, ExG:ATmasﬁEl(l—eg')°n(xs)d<p2><oo (t>0, x€S) and aar. 1S 2

martingale. Then, for Be& Far.
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E-(Olt/\rmﬁ;ll\m; B)—E‘(Uls/\rmﬁgll\m; B)
=E.(aenrJ " (1) P(ds, dy); B)—E (aens.|

=0.

tATn
SATm

tAT,

~1(] —e9)o 0.
AT g (1—em)on(a.)d¢t; B)

3°. Set 7,=a,8:* exp (—P,*(t)) and ¢,=log7,. Then ¢, is a q.l.c. a.f. whose
absolute values of jumps are less than 1. Therefore ¢, is locally square
integrable (i.e. gr,1=E. [|¢r,|21<<o0). Since logz is concave and increasing
function and since 7, is a supermartingale, ¢, is a regular supermartingale
belonging locally to the class (D) (in the sense T, 1o’ ¢{°=¢.ar, is class (D))
by Jensen’s inequality. Therefore, by Meyer’s decomposition, there exists a
unique A, of A¢*°° such that X,=¢,+ A, is alocal martingale. Moreover, we
can prove that A, is an a.f.» Furthermore, X, can be decomposed to sums of
XieMmionAd and @,eM:°°NA® Thus we have proved that

0= Xt +Qu(t)+ A+ P ()4 P ()= (e — Don(w.)d?.

Since @, and P, have no common jumps, g. h=0. Define f(z,y) by g(=,¥) if
lg(z,y)|=1 and h(x,y) if 0<< |h(x,y)| < 1. Then ¢, can be written as

0= Xi+Q,,(1)+A+Pry()—{ (2= Donla,)de

Applying Lemma 6. 1, we get the desired formula.
From Theorem 6. 1, a m.f. which is a local martingale, can be factorized
to the product of two m.f’s g, and 7,; 8, is a continuous m.f. represented

as exp (X ‘;—%(X”},) and 7, is a discontinuous m.f. represented as

exP(Qn(l‘)-}-sz(t)“g;(ef‘_1—f1)°n(xs) dw?—S:(efz-—l)on(xs)dd), both of which

are local martingales. Further, g, and 7, are orthogonal in the sense that the
product of two local martingales is also a local martingale. It should be noted
that the discontinuous part 7, is uniquely determined by Bg,s-measurable
function f(x,y). We will call 7, to be generated by f(x, y).

The situation of jumps of sample paths is closely related to Lévy system
(n(x, dy), ¢?). It is interesting to know how the Lévy system may be changed
by the transformation of Markov process by a m.f. «,, The change of Lévy

9) Itis not clear that A, is an a.f. from Meyer’s decomposition. We were informed the
proof from Tanaka by private comunication ommitting here.
10) If X, is an a.f, then X¢ and Q; are also a.f’s. See [10].
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system depends only on discontinuous part of «,. Precisely,

THEOREM 6. 2. Lé¢t a mf. a, O<a,<oo for t<() be a local martingale
and let it be represented as Theorem 6.1. Let M®*=(X%,(% F§, P3)W by a standard
process which is obtained from transformation by a,.  Then (e’ Vn(x, dy), ¢?) becomes
a Leyy system of M°.

Proof. Let h(z,y)=0 be a Bgis—measurable function such that E_(P,(¢)?)
< oo. Let T<{ be a stopping time such that S:AT a, dXeM, a,arisa
martingale and E,,c(at/\TSZAThon(x,,) d¢3>< . Since
tAT

anr—1=[""[ @’ P =D a(ds, dy) + | wiax,

0

we get
EoQu(t ADaunr) = Eo(Qut AT ™ (e’ ™~ D)gtds, dy)

=EI<S:ATas(ef—— Dhon(z.)de?).

Thus we have
Eo{auntPut NT)=Eo(ane]," hon(z)dot)+ Eo(| " asle’ = Dhon(z)dot)

= Ez(a,/\TS:ATefh on(x;) dgog) ,
which implies
ExPt AT)=E(|"" ¢ hon(a) do3). 19

The above formula shows that (e/"¥’n(x, dy), ¢?) is a Lévy system of M* by
the definition.

Exampre 1. Let S be a countable set with discrete topology and
M=(z,,¢, &, P,) a markov chain (Hunt process) over S. Set z,(o)=inf{¢ >0;
2 (o) F2(0)}), ¢z  =E(t;), n(x,y)=Py(2,,=y) and g¢,,=¢.0(x,y). We wil
assume 0<g,<<o and y‘ésn(x,y)zl. Set P,(x,y)=P,(x,=y). Since

lim P,(a;,y) =du.y (

= qz,
-0

-0

11) For the definition of M¢, wee [6].
12) If B is an element of B,, then Pyla,; B,{ >t)=Pz(B;{ >t). See [6].



ON SQUARE INTEGRABLE MARTINGALES 237

{gs.,,t} is a Lévy system of M (See S. Watanabe [11]) and M is uniquely
determined by ¢, and ¢, ,, which means that there is no continuous part for
any m.f. and every m.f. is generated by Sx S-function f(zx, y).

Let f(x,y) be a finite valued function satisfying %‘,sef =] (g, y) < co. Then

Z}S(efz"-”’—l)qx,y< o and Z‘,sfl(x, Y)q,., <oo; so that the m.f. @, generated
ye e

by such f(x,y) is a local martingale. The process transformed by «, has
{e’®¥q, ., t} as its Lévy system. Conversely, let M and M’ be two Markov
chains defined on the same state space S. The corresponding quantities
relative to M’ are denoted by g¢., q., and II'(x,y). We will assume that
O<g, <o, O<gi<oo, and Esﬂ(x, y)= y%"_.sﬂ’(x, y)=1. Assume further
gsy >0 implies ¢, ,>0. Define f(z,y)=logg,;,—logg,,. Itis easy to see
that this f(»,y) satisfies the condition (2) of Lemma 6.1. Therefore there
exists a m.f. generated by f(x,y). Since the process transformed by «, has the
Lévy system {e’“:%q,.,,t}, M coincides with M’. Thus we get the following
statement: Let M and M’ be Markov chains defined on the same state space S and let
0<g, <o, O0<gi<oo and yZE}SH(x, y)=y§sﬂ’(x, y)=1. A necessary and sufficient
condition that M’ can be obtained from transformations by a m. f. which is a local
martingale is that I1(x,y)=0 implies II'(x,y)=0 and vice versa.

From the above argument, in the case of Markov chain, transformations by
m. f.’s contains time changes by inverse functions of strictly increasing a.f.’s
as its special case. Indeed, if a Markov chain M has the system {q,, II(x, %)},
the time changed process M’ has the same quantity 7I(x, y) and different quantity
gz; so that f(x,y)=logg.,—logq, ,=logg,—logg, is only a function of =z,
and the chain transformed by the m. f. generated by this f(x)=f(x, y) coincides
with the time changed process M'.

Another special case is the case that f(x,y) satisfies Esef V%, y)=1. In

this case, the transformed process has the same quantity ¢, as the original one.
In particular, if ¢’*¥) is of the form #&(x)/k(y), then h(x) is a harmonic
function and the transformation is nothing but (super)harmonic transformation
(or h-path process).

ExampLe 2. Let 2,=(BY,...... ,B™) be an N-dimensional Brownian
. . N oot .
motion. Then every XeIRi°°N A is represented as X,= Z}ISO fx,)dB®, where
1=
) N op
f9=1,...... , N are measurable functions on R"; so that (X),= 2‘180 FO(x,)2ds.
1=

Therefore, every multiplicative functional being a local martingale can be
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represented as

exp [iglgf(t)( dB(i) ZZV: Sf(t) x )2ds]

This was obtained by Wentzel [12]. Transformation by such m.f. is so called
that of ““drift” and does not contain time change. This fact is quite different
from the case of Markov chain in Example 1.

§ 7. Decomposition of additive process.

It is known (Lévy [7], It6 [4]) that any right continuous additive process
may be decomposed uniquely to sum of a Gaussian additive process and a
jump type additive process such that these are mutually independent. We
shall prove this fact using the formula on stochastic integral obtained in §5.

A right continuous stochastic process (X, P), t & T=[0,b] is called an
additive process (or process with independent increments) if, X, —X, _,, i=1,2,
...... ,n, are independent if 0< ¢, < t, < t,<....<t,=b. For the simplicity
we shall assume that X, has no fixed discontinuity and X,=0 a.e. P. Set
(7. 1) P(E)= Z‘t, tx(X,—X,-) and o(t, E)=E(P(E)) .

s<
[ Xe—X,-1>0

It is easy to see that P,(E) is an additive process. Define X} =SIX]>1xP,(dx).
Then X,— X! is an additive process whose absolute values of jumps are less
than or equal to 1, so that X,—X} is locally integrable. Define

(7. 2) Xi= 15%[SE<IX|S1th<dx)— SKIXISlxo(t, dx)].

Then X3 is a locally square integrable martingale and is an additive process.
Set

(7. 3) X/=X}+X? and X;=X]—-X{
Since X§ is a continuous additive process, it is a Gaussian process.’> Set

m(t)=E(X;) and X{=X{—mlt).

TueoreM 7.1.  The decompostion X,=X?+XI]+m(t) satisfies the following
conditions: (1)

(7. 4) E(e ”X‘) exp{~%azv(t)} where »(¢)=E(|X9]?),

13) See for example [4].
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(7. 5) E(*)= exp Smsl(e"ﬁ  _1—iga)a(t, dx)+glxl>l(e"ﬂx—— Do, dz) .

(2) X¢ and X are mutually independent.

Proof. To prove that X? and X are mutually independent, it is sufficient
to show that for every real «, g,
TAXY-X9) eiﬁ(X{—Xg)):E(eiA(Xg-Xg>)E(eia(X{-Xg)) '

(7. 6) E(e
Note that X° and X{ are a.f.’s and local martingales and X} is a purely
discontinuous q.l.c. a.f., relative to (%', P). The argument at §5 together
with Lemma 7.1 implies that XJ is represented as Q,(¢)+P,(t), where
(s, z), (£, y)=y—x. Set F(xl,a2)=e T AD=aX? and A®=gX{ and
apply Theorem 5.1,19 we have

{eiﬁ(y—Xu)'— 1_ Z,B(y——Xu)}a(du’ dy—Xu)

7*#=]ocal martlngale+g e 5S|y x.|<1

t a8 iBU-X,) _ —x =L oftrep
AR IRC Do(du, dy—X.) == a*| 122v(du),

where 7%= ¢ie(X}-XD+iBX{-X{)  Therefore,

E(rsf)

=[ B [~ atan+|, _ (P —1=igo)oldu, d)+( (%1 odu, dv)}.

The above integral equation has a uniq. ¢ solution

E(Ti‘j‘f)=exp[—%a2{v(t) (s }+S (e**—1—ip)a((s, t], dx)

|2| <1

+Sm>1 (e®*—1)a((s, t], dx):l
=E(@T)ECH).
Thus we have proved the theorem.

Remark. (1) When X, is temporally homogeneous, it is easy to see that
X? and X{ are also temporally homogeneous and hence X?¢ is a Brownian

motion.

14) If X, is temporally homogenous, X, may be considered as a Hunt process and it is easy
to see that (n(z, E),?) becomes a Levy system, where n(z,E)=q(l,E—z). If X, is not
temporally homogeneous, X, is no longer a Hunt process, obviously. However, o(f, E)

¢
works similarly as Levy system does in Hunt process. In fact Z f (g, 5)— S S f(2y,v)a (du, dy)
0
is a martingale if it is integrable, where o((s,¢,E) = a(t E) o(s,E). Thorem 5.1 is
applicable with a slight modification.
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(2) In the same way as above we can prove easily P,(E) is a Poisson process
such that if ENF=¢ then {P,(E)} and {P,(F)} are mutually independent.

§8. Appendix. Supermartingale and the corresponding increasing
process of a Markov process.

The material treated in this section is certain refinements and generalization
of the results of P.Meyer [8, 9] in the case of Hunt process.

Let M=(x,,¢,%,, P,) be a Hunt process. An increasing process A, is said to
belong to the class (U) if A, has no common jumps with sample paths, i.e.

P,(A,#A,- and z,#z, for some ¢t>0)=0, vz S.

The set of all A, belonging to the class (U) is denoted by Uy.

THEOREM 8.1. Let X, be a supermartingale belonging to the class (D). Suppose
that ltim X,=0 holds a.e. P,. There exists a unique A, of Ay satisfying

(8. 1) X,=E (A.[F,)—A, ae. P, V>0 vaeS,

where A.= }Lrg A, Furthermore, of X, is regular then A, is of UL

The above A, is said to generate X,. The theorem is a modification of a
fundamental result of [8. 9]. It follows from [8, 9] that for each x there exists
an increasing process A% such that X,=E(A9[F,)—A but it is not clear at
the first sight that there exists a functional A, such that 4,=A% for each z.

Let T be a stopping time. According to [9], T is said to be totally inaccessible
(in the weak sense), if it is strictly positive not infinite a.e. P, for some z and for
each increasing sequence {7} of stopping times converging to T,

(8. 2) P.(vn,T,<T<<0)=0, vz S.

T is said to be tnaccessible if there exists A of &, such that P,(A) >0 for some
z and the stopping time

T 0)=T(w) if oA
=oc0 if oA

is totally inaccessible. Further, 7 is said to be accessibleif T is not inaccessible.
The following theorem is proved in [9] in the case that semi-group operator
of the Hunt process maps C(S) into C(S).®

15) C(S) is the space of all bounded continuous functions on S.
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THEOREM 8. 2. Let T be a stopping time. (1) T is accessible if and only if
(8. 3) P (xp=2p-, T<0)=P,(T<®), Yz &S,

where xr-is the left-hand limit of sample paths x, at T, where x,=2,-.
(2) T is totally inaccessible if and only if

(8. 4) P (xr5%r-, T<0)=P,(T<o), VyxeS.

(8)  There exist accessible stopping time T, and totally inaccessible stopping time T,
satisfying T=min (T, T,), and for any such Ty and T,

{T,=T< oo};——.s{.xT=xT" T < oo}
{T,=T < o}={zr#xr-, T <o}
The stopping time defined by
T1={ T on {#r=2,-, T < o0}
+oo otherwise

is called the accessible part of 7.

Meyer [9] called an incresing process A, to be natural if, for any stopping time
T totally inaccessible, P,(Ar#Ar-)=0 holds (Yx € S). From Theorem 8. 2, we
have immediately

CoROLLARY. An increasing process A, is natural if and only if it is of AL,
Before the proof of these theorems, we prepare several lemmas.

Lemma 8. 1 Let X be a regular supermartingale belonging to the class (D) for each
P,. There exists A, of A¢ satisfying (8. 1).

Proof. 1° Let p,X, (h>0) be a right-continuous version of E.(X,.,/&.).

It is easy to see that p,X, can be defined independently of the family of
measures P,, x €S. Set

A= (X,~p.X)ds and X}=E.(A%F)— A
We shall prove

(8. 5) P,(Sthp]A’:—A’;I >e)—=0

as h and k tend to 0. It is known in [8] that, if X, is bounded, E (| AX—A%|?)
converges to 0 as z and % tend to 0, and that in general case, there exists a
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sequence of bounded regular supermartingales X’;(x) relative to a fixed measure

P, such that Xt=§}1X’;(x) a.e. P,. Set

A7) =X i(a)— En(X Lo (@)F)ds -

Then E,(|A""x)—A"*x)|?) convergeto 0 as & and k tend to 0. Since

E.(| AR —AL) = 3 EL(| A% @)~ ATH(x)])
E.(|A%(@)— A%2)]) < 2E.(X§(a),
3 EXH(@)= Eu(X) < oo.

The Lebesgue convergence theorem is applicable and we get }}ilfno E (|AL—AL])

=0. Therefore, by Doob’s inequality concerning martingale, we get

(8.6) ePy(sup| Eo(Az—AZ|E.) | > ¢) = EL(|Az—AZ]).

On the othérhand
| X=X =1 X — X< Xo—p X, if B >E,
and we get by the argument of Shur-Meyer (e.g. [9]),
(8. 7) Pm(sutplX’;—X’fl >e) < Pz(sgpIXL-X';I >e) < Py(T), < o0) =0, (h,k—0),

where T,=inf{¢t >0; X,—p,X,>¢}. Consequently, from (8.6) and (8. 7),
we get

P,(supl|Ai—At| > ¢) < P.(sup| E.(AL—A%S)| >-5-)

&
+Pz<sutlp|X’;—-X’f| > —2-) >0,  (hk—0).

2°. To prove the lemma, it is sufficient to show that there exists A, of A¢
satisfying Pw(seplAt—A’;l >%>—>0 as & tends to 0. Let {¢,} (>0) be a
decreasing sequence satisfying Xl e, < 0. Set e,(x, A, k)=Px(51t1p|A’Z—A’{I > e,).

Let P,(x) be the upper bound of % where j is a positive integer satisfying
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sup e,(x, h,k)<e, Itisclear that P,(x) is §s-measurable and P,(z) >0 as
b h>j-1

%o(@)) .

n —» o0 ; so that A is of A+ and satisfies

ilpz (Slilp I Afn(xo) _ Af’nﬂ(%) l > 67.) < 4o,

Set 2={o; AP”(I"(‘"))(w) converges uniformly as # tends to infinity}. Then by
Borel-Cantelli’s lemma, 2 is §-measurable set and P,(2)=1 holds for every z.

Define A,(0) as lim Af"(z"(”’))(w) for w € 2, then this A, is the desired one.

The uniqueness of the above A, immediately follows from

Lemma 8.2.  Let A, and B, be of Uy generating the same supermartingale.
Then A,=B.,.

Proof. Let Y,(w) be a bounded process adapted to {%,} and continuous
from the left. Set C,=A,—B,. Let {T,}, T,=S be an (¢, Y,)-chain. Then,
since (C,, &) is a martingale,

E (Y7,(Craa—Cr,)[Fs)=0 as. P,

Letting ¢ — 0, we obtain
E{,, ,YudCI3,)=0 ae. P.

The above formula also holds when Y, is of the form g¢(x,), g € C(S) because
C has no common jumps with sample path x,. Therefore, we get

E ([ G f(2.)dCuJ3.)=0.
But the left-hand of the above is
E([, ACE (|, e f (2 d1f5.)5:)
=£. ([, dCuf; e o, ats,)
=E. (|7 e f(w)dt(C,—C IS, ),

so that we have

(8. 8) E(f(2:) (Co—Co)/[3:)=0.
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Now by a similar argument as the proof of Theorem 4. 2 we get C,=0.

Now we will give the

Proof of Theorem 8. 2. The “if” part of (2) is clear from the quasi-left
continuity of sample paths. Suppose that T is accessible. It is known [9]
that, for each fixed x, T is left approximable i.e., there exists an increasing
sequence of stopping times {7} such that T7Z<T and T=limTZ hold a.e.

71—

P.. The quasi-left continuity of sample paths implies (8. 3) immediately.
We shall prove the “only if” part of (2). Define

— 1 —_
U‘—x{t2T>0}’ Ui ~"X{th>o and op=2,_} and Ui=U,—U;.

Since the supermartingale X, generated by U, is regular, the supermartingales
X% (i=1,2) are also regular. Thus there exists V, of & generating X}, so that
V,=U: by Lemma 1.2. Therefore U;=0 i.e.,, U,=Uj, which means (8. 4).
The “if” part of (1) can be obtained from “only if” part of (2). Now Let
T be any stopping time. We define T, by T if 2,=2,_ and by +co if z,%2,-.
In the same way, we define T, by T if 2,5 2,- and by +co if x7=2,-. Then
T, is accessible, T, totally inaccessible and satisfies T’=min(T,,T,). Thus we

have accomplished the proof.
Finally we will give the

Proof of Theorem 8. 1. When X, is regular, we have already proved the
theorem in Lemma 8. 1. Suppose that X, is not necessarily regular. For

¢ >0, we define a sequence of stopping times inductively as
To=0,T,=inf{t =T, ,; | X,;—X,-| >e}n=1,

and T, as the accessible part of T,. Set

and Al= lilm A¢. It is clear that A] is of AL. Set Xi=E(Al/F.)— A} Then
elo
we can show that X§{=X,— X7 is regular supermartingale, so that there exists a

unique A$ of A{ generating X,. Thus 4,=A{+A4] is what we want.

Remark. 1If, in Th. 8.1, X, is an a.f. then A, is an a.f. as is easily seen

from the above construction of A,.
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