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§ 0. Introduction.
Theory of real and time continuous martingales has been developed recently

by P. Meyer [8, 9]. Let {.Xt,%t} be a square integrable martingale on a pro-

bability space P. He showed that there exists an increasing process ζ Xyt such

that

E((Xt-Xsms) = E«X>tlds)-<X>s a.e. P for t>s>0.

The above formula suggests us that some results concerning Brownian motion

can be generalized to those of martingale. Actually, if ζχyt==t, Xt is a

Brownian motion (See [2, Theorem 11. 9], also Theorem 2.3 of this paper),

and in general, many continuous martingales may be obtained by time

changes of Brownian motions ([3] and Theorem 3.1 of this paper).

Stochastic integral concerning martingale was defined by Meyer [9], Courrege

[1] and in some special case, by Motoo and S. Watanabe [10], In the present

paper we shall discuss a formula on stochastic integral which is a generalization

of Itό's formula [4] concerning Brownian motion. Let Xt be a Brownian

motion and / be a C2-class function. Itό's formula is the following:

f(Xt) -

We shall show in § 2 that when Xt is a continuous martingale, the above formula

is still valid if ds is replaced by dζ xys. When Xt is not continuous, the

formula becomes a more complicated form (See § 5). There, Levy system

introduced by one of the authors [11] plays an important role.

The formula on stochastic integral will be applied to two problems. In § 6,

we shall discuss the structure of multiplicative functionals of a Markov process.

Roughly speaking, every multiplicative functional with mean 1 is factorized

into two mutually orthogonal martingales; one is continuous multiplicative

functional and the other is a jump type one. § 7 is devoted to giving another

proof of Levy-Itό's decomposition of additive process (process with independent
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increments), using the formula on stochastic integral.

§ 4 is devoted to other problems. Let %R be the set of all square integrable

martingales with mean 0. When $R is defined on the probability space of a

Hunt process, Wl can be spanned by additive functionals. In particular, if Xt

is a martingale denned on the probability space of TV-dimensional Brownian

motion B={Bι

t

1), , B? ), then Xt is represented as Σ \ ΦfdB^, where Φ'p are

processes adapted to gv

§ 1. Square integrable martingale.

Let (Ω, g, P) be the basic probability space where g is complete with respect

to P, and suppose we are given an increasing family 3?£ of <;-algebras ^ίCg,

0 ^ ί < o o , each containing all P-null sets and g,= Π 3 ί + ε . A non-negative
e>0

random variable T is called a stopping time if {T ̂  O e S ί for every t ί> 0. Given

a stopping time T we shall define

%T={A e g ; A Π{T < t} e g, for every ί ̂  0>.

gr is clearly a ^-algebra containing all P-null sets such that if Tn]rT then

DEFINITION 1.1. g t is said ίo have no time of discontinuity if Tn^T implies

V Srn=Sr> where V gΓ denotes the smallest ίx-algebra containing all %Tn.

DEFINITION 1.2.

(1.1) HJί = {the set of all right continuous real valued processes Xt adapted to

the family %t such that E(X2

t)<oo for every t e [0, oo) and E(Xt/%s) = Xs for

every t ^ s.}

(1.2) 2ftβ={Xe 2ft; Xf is continuous in * for almost all α>}.

(1.3) Ttloc = {the set of all processes Xt such that there exists an increasing

sequence {Tn} of stopping times such as Tn t °° and Xf^^Xt^Tn e 2K for every

*=1,2, }.

(1.4) sJΛc0C={^ί e fflίlZoc; Xt is continuous in t for almost all ω}.

Xf e TO is nothing but a square integrable martingale.

DEFINITION 1.3.

(1.5) SΓ={the set of all natural increasing processes2) At such that E(At)< oo

1) T, Tn, are stopping times.
2) For the definitions see [8] or Appendix.



ON SQUARE INTEGRABLE MARTINGALES 21 1

for every t e [0, oo)}.

(1.6) %+ιoe = {the set of all increasing processes At such that there exists an

increasing sequence {Tn} such as T ^ t 0 0 and A^=ΛtATn e $t+ for every n.}

(1.7) %={At=AT-AT', Aψ^%+ t = l,2>.

$tZ o c is defined in a similar way. Finally %+

c, %
+

c

loe, are all continuous

elements in %+, Vί+loc, respectively.

THEOREM 1.1. (i) For X,Y e sJtt there exists a unique {up to equivalence)

<X, Y> e 21 such that

(1.8) £[(Xe-X.)(Fί-r.)/8r.] = £[<X,r>t-<X,F>,/3r,] z.e. for every f^se[0,oo).

(ii) i w X, F<Ξ2KZ O C fλ*r* exists a unique {up to equivalence) ζX, Y><BΨ0C such that

(1.9) E[(XtATn - XSΛτn)(YtΛTn - YSATMS] = £t< X ϊ'λΛΓ. - < X, K >.ΛΓfl/Sf] a.e.

yί?r ^^rv ί ^ 5 e [0, oo) «wί/ ̂ ^rv Tn such that XtΛτn, Yt/\τn ̂  3K.

Proof. If X= y G 3R, the existence and the uniqueness of ζ X, Y y was proved

in Meyer ([8, 9; Th. 4, Th. 5]). For X,Fe3K set <X, F>= 1/4KX+F,

X+F>—<X—F, X— Y}). Then (1.8) holds and the uniqueness is easy to see.

If X,Fe9# Z 0 C , take Tn^oo such that X?> = XtΛTn> YT=Ythτn^
s%l for every w.

Then ( F . D e a for every n and by the uniqueness of <XCw),FCw)>, we

have

Y^χ m^n /e[0,oo)

Hence there exists a unique <Z, F> e ^ί'o c such that

and (1.9) is clearly satisfied.

THEOREM 1.2. ζX, Yy defined in the previous theorem is continuous if both X

and Y are quasi-left continuous (Xt is called quasi-left continuous if for every increasing

sequence of stopping times Tn t T, XTn -> Xτ a.s. on {T < oo}) : in particular if one of

the following conditions is satisfied;

(i) Both X and Y are continuous,

(ii) {$t} has no time of discontinuity.

Proof Take any stopping time S such that XtΛs a n d ^tΛs are uniformly

integrable. Then quasi-left continuity implies that XtAs and YtAs are regular

and so ζX.Yy is continuous by Th. 3 of [8]. Clearly (1) implies the quasi-left
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continuity of X and Y. If (2) is satisfied then XtAτn=E{Xtl^tATn) -> E{Xtl^tAτ)

For simplicity, we shall write <X, Xy as

DEFINITION 1.4. A sequence {Tn} of stopping times is called a chain if

(1.10) T0=0, Tn<Tn+1 and limTn=+oo a .e.
n-+oo

Let Xt be a right-continuous process having left limits in [0, oo) adapted to

the family %t. A chain {Tn} is called an (ε, Xt)-chain or ε-chain for Xt if, for

almost all ω,

sup \Xt—Xg\< ε .

For every right continuous process Xt having left limits, an (ε, XJ-chain

always exists.

Let C={Tn} and Cr={T'n} be two chains. Cr is called a subdivision of C (Cf <C)

if {T Jω)} c {Tn{ω)} almost all α>. For given C and C7 there exists C" such that

C7XC and C"<C.

THEOREM 1. 3. If X G SDtc0C, ίÂw ίfer^ m ^ a sequence Cλ;={T^)} of

such that Ck>Ck+1) s u p l T ^ - T ^ I - ^ O (i->oo) and for almost all ω

( 1 . 1 1 ) Σ(Xτ^Λt-Xτ™1Λt)2-+<X>t-<X>o ( * - > o o ) forevery t^O.

Proof Let Cfc={T$f3}, A;=l,2, be a sequence of chains such that Ck>Ck+i

and C* is a l/2fe-chain for Xt, <X>t and At=t.

Clearly we may assume that Z e Ttc> Then writing T^At = an for simplicity,

(1.12)

and noting

(1.12) =
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^^E[(Xt-X,Y] .

Hence (1.11) holds.

COROLLARY. If 2Ji^0Cn?Xέ0C 3 X then Xt-X0=0.

Proof. If Xe3Jicn2ic, Xt is written as Xt=Ac-Bt where

Then, if {Tn} is an (s, Z)-chain,

Σ ( r . » i . 1 , ) f S | i . t 1 , 1 Λ t | ( Λ ί )

By Theorem 1.3, <X> t-<X> 0 = 0 which concludes that Xt = X0 a.e.

Remark. This corollary is a particular case of a general uniqueness theorem

of Meyer [9].

§ 2. Formula on stochastic integral I.
Λί

We shall first define the stochastic integral of the form Yt=\ ΦsdXs, where
Jo

Xt is a martingale and Φt is a process adapted to the family %t, t > 0 and

satisfying conditions described below. Set

(2.1) Φ={Φt{ω)\ {t,a>)-measurable real valued process such that Φτ(ω) is g>-

measurable for each stopping time T>?

(2.2) Φrc={Φt(ω); bounded right continuous process having left-hand limits},

and define for ψ <Ξ 91+ semi norms || \\φ[t) over Φ by \\Φ\\φ(t) = E([ Φ\dφ\τ .

Set L2(φ) = Φf)Φrc, where Φrc is the closure of Φrc with respect to seminorms

, MO .
THEOREM 2.1. For every X^yR and Φ e L2(ζXy), there exists a unique

Y(=Έl satisfying

(2.3) <Y,Z\ = *\Φsd<iX,Z>s a.e. P for any Z e= SK .
J o

DEFINITION 2. 1.3) F of the above theorem is called the stochatic integral

S t
ΦsdXs .

o

Before the proof, we prepare the following

LEMMA 2.1. Let X,Y e 9Ή and Φr, Φ" e Φ. Suppose that

3) This definition of stochastic integral is due to Motoo, Watanabe [10].
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IIΦ'

Tht

and

(2.4)

Proof.

\\<X>(t)<oo

M\ Φ'sΦ'sd ζ X,
Jo

Since

HIROSHI

and \\Φ"\

γys<ΞK

Φ>sΦ,d<X,

KUNITA AND SH

<r>(^)< oo.

γ\)mφ>

yt ^ o, 4 )

we have

a.e. P.

Set ιpe=<X>e+<F> f, then there exist ψ\ψ*,ψ* <= # such that

<X\=^Ψ\dφ., <X,Y>C = {'ψidφ., <7>t= \'ψidφ. .
Jo Jo Jo

In fact we only have to set for example

h 10

Now since

iaXΛ-bYyM\aΨ1

sJo

there exists Ωab e gr with P(Ωab)= 1 such that if ω^Ωab there exists Γα δ(ω)c[0 5 oo)

with I ί/ςos(ω) = O and for s $ Tα&(β>) ,
J[0, tJf]TabQω)

Set 0 = Π Ωab and T(ω)= U T » for co e β. Then P{Ω)=\ and if α> e £f
α, 6 rational

then I dφs = 0 for every / and if 5 Φ T[ω)

l{ω) + 2abΨ2

s(ω)+bΨ3

s(ω) ^ 0

for every rational a, b and hence for every real α, b. Therefore, for every real

a, b and s

and so integrating by dφs on [tl912]

4)
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(2.5) «2f2 Φ's(a>Ydζ Xys(ω)+2ab [ V,(ω)ΦΪ(ω)rf< X, Y>s(ω)

ω) ̂  0, ω e β.

Putting ίi = 0 and ί2-^ and taking the expectation, we get

a2 \\Φ> \\<x>{t)2+2abEQtφ'9Φ
rid<X9 Y>s)+b2 II Φ" \\<x>(t) ^ 0 .

Thus we get (2.4). From (2.5), we have also that if ω e Ω,

(2.6) Jtfa(ω)Φ';(ω)d<X,Y>t(ω) < ^ ί J ί 5 φrsM2d<X>s(ω)+Jt j φ » 2 rf< K >.(ω)}

and this implies \ Φ'sΦ'rsd<Xy Y>s e ^ί.
Jo

/V00/ 0/* Theorem 2.1. First we consider the case that Φ is a step function,

i.e., there is an increasing sequence of stopping times {TnJ such that Tn-+ 00

a n d Φs(ω) = ΦTn_1{ω) if Tn-X ^

Define

It is easy to see that Yt belongs to 3JI and satisfies (2.3). Now, let Φ be any

element of L2(<X>). We can choose a sequence of step functions {Φn} c #

such that \\Φ-Φn\\<x>{t)-^0. Set Yn=\φndX. Then, by (2.3) we get

so that there exists Fc=lim Yn

t e Tt. From Lemma 2.1, we have
n—>oo

yty'2 ->• o ,

Therefore

The following formula is a generalization of a formula of K. Itό [4] in the

case Xt is a Brownian motion and φt = 0.

THEOREM 2.2. Let F e C2(RN) = the set of all twice continuously differentiable
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functions on RN. Let Xψ, ,X\m^mι

c

0C and φγ\ ,φ™<Ξψc

0C. Then, setting

Aψ = χγ+φγ and At = (A?\ 9AT), we have

(2.7) )= Σ -|~rU.)rf.Y«>+ , Σ τ Ί££-r(A,)d<xm, X*>s
i=i Jo ox ί,y=i ^ Jo α# dar

~^~ Σ \ ~^ ϊ~{As)dφ£ .
f=iJo ααj

Proof. For simplicity, we assume that iV=l. Let X G 1 S O C and φ e Ψc

oc.

Set for M > 0 ,

1 oo if { }• = φ .

If we can prove (2.7) for X^ = XtATM and φΐI=φtAτMy then letting M->oo5

we obtain (2.7). So without loss of generality we can assume that \Xt\ and

| ^ t | are bounded (^M/2). Let F e C2(Rι). For ^=1,2, , we take a sequence

of chains Ck={T^} of stopping times such that Ck>Ck+1 and Ck is a l/2fc-chain

for Xe, <X>t, \φ\t and ί, here |ςp|c is the total variation of φt. Writing

T™\t = 0n, we have

where 4̂̂ ,,-! ̂  fn_! ^ -Atfn or ^L^^J < f

integral it is easy to see that

I,

when k-+ oo . Set

1 oo

A tt=l

_! .^ ̂ 4tfn. By the definition of stochastic

l
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=/ 3 +/ 4 +/ 5 .

Then

IΛI^-sup |F"(*)l4irl3 !*»,.—^..J^ -L sup | | * "(ss)||ί>|t->0(fc-».oo).
*<=[-Λί,Λf] •< » - l 4 xs[-M,Ml

In the same way, |/5|->0 as &-» oo. Now, by the same calculation as in (1.12),

ι—\- Σ ^"(^«.-,)« *>*„-< X>.»->)}2]
4 W = l

oo

Σ "(A,riΆX:-X;-iY+ Σ iΓ"(A.n.1)
2« X>,,-< X >,,_1)

2]
n = l Λ = l

^ sup

as fc->oo, Also

where 5(fc)= sup \F(x)~F(y)\ . Hence Γ2-^ -^-XF"(A8)d<X\. It is

easy to see that E\I2-Γ2\-Ϊ 0. Therefore 72 -+ 4 f F7/ (Λ)rf < X>s and the
2, Jo

proof is complete.

As an application of this formula we shall prove a theorem of P. Levy

(Theorem 11.9, Chap. VII of Doob [2]).

THEOREM 2.3. Let Xψ^m°\ / = 1,2, , N and <X"\Xφ>t=δut, then

Xt = (Xc

t

i:>, , X[m) is an N-dimensional Brownian motion, that is,

(i) Xt—Xs ^ independent of%s (t^s) ,

(ii) Xt-Xt is Gaussian i.e. E(ei<e-x

Proof. For ξ , χ ε R*r, let F{x) = ei<^x> then from (2.7) we have
N ?t fip 1 N

Take any A e gs. Then noting £(f-^(XJtfXJgC) = 0? we have
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Or equivalently,

E(ei<e.xt-x.>. A) = P(A)-^2~[tE(ei<t'x«-χ*>; A)du

From this integral equation we see at once

Since this holds for every A e gί,, we get

and (i) and (ii) follows from this.

§ 3. Time change (optional sampling) of an N-dimensional

Brownian motion.

As before we assume that we are given [Ω, 3r, P) and an increasing and right

continuous family %t .

DEFINITION 3.1. τ-{Tu,u ^[0, oo)} is called a time change function with

respect to g, if

(i) for each u e [0, oo), Tu is a stopping time and Tu< oo.

(ii) for almost all ω, u e [0, oo) ->TU e [0, oo) is a continuous and increasing

function.

DEFINITION 3.2. For a right continuous process X adapted to the family

%t and a time change function τ={Tu}y we define a new process {Xu, 3v} by

Z W = XΓM and 3ί = g2v We shall call {Xu,%uy is obtained from {Xt,gt} by time

change with respect to τ .

By a fundamental theorem (optional sampling theorem) due to Doob [2],

Xt €= m\°\^tf) implies XM e 3Kί0C(gJ. Dubins, Schwarz [3] proved that a large

class of 1-dimensional continuous martingales can be obtained from 1-dimen-

sional Brownian motion by time change. We shall generalize this theorem in

the following manner.

THEOREM 3.1. Let Xt = (Xc

t

1\ , Xc

t

m) (X0 = x e= RN) be a continuous process

with values in RN adapted to the family %t such that for every harmonic function h{x)

on RN

(3.1) Xh

t

5) SD^Oί) is the space of square integrable martingales relative to (2f£, P).
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and for every open interval Id [0, oo)

(3.2) P(sup \Xt-Xs\>0) = l .
ί,5G/

Then there exists an N-dimensional Brownian motion process {_BU, %%} and Xt is obtained

from it by time change.

Remark. If iV=l, then every harmonic function is of the form ax+b and so

this theorem contains the result of [3].

Proof Since h{x) = x\ x = (x\ , xN) is harmonic, XT~Xψ e Wlι

c°%

t = l,2, , N. We shall first prove that there exists A <=%\oc such that

>t = δitjAt9 f , y = l , 9N. Since h{x) = xίxi (i^j) is harmonic

By Theorem 2.2,

XψXψ-xγxφ- Σ \ - ^
fc=lJθ OX

But the left side is in W\oc and the right side is in ψc

oc. Therefore by the

Corollary of Theorem 1.3, <XCί\Xa'}t = 0. Now take h{x) = {xi)2-{xj)2. Since

this is harmonic, we see by the same argument that < Xw}t—<X°')>t e Wlι

c

oc

and so <Xm>t = <Xa>>t. Thus, setting Λ = <XO)>ί we have < XCί\

Now we shall prove, using the assumption (3.2) that At is strictly increasing

in t with probability one. For simplicity we shall assume in the future

E(At) < oo for every t > 0, since the argument can be reduced to this case by

truncating by stopping times. Suppose At is not strictly increasing with posi-

tive probability, then for some rational r > 0

(3.3) Pβδ>0, Ar+δ=Ar)>0 .

This is equivalent to

(3.4) P ( T r > r ) > 0 ,

where Tr is given by

m \iπ£{t>r;At>Ar}

Note that Tr is stopping time and also ATr — Ar since At is continuous. Now

set for ε > 0
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Then we have

(3.6) P(S}lr when e | 0 ) = l .

In fact for every η>r ,

{S*r^η for all ε > 0 } c {|X s-X r | ^ ε, s e [r,?], for all ε > 0 }

and probability of the latter set is zero by (3.2). Let rf > r then by (3.4) and

(3.6) there exists ε > 0 such that

P ( Γ r Λ r / > S ) > 0 .

Then

and this is a contradiction. Thus we have proved that with probability one

At is increasing.

Now set for u > 0

Then Tu is a stopping time (%t) and by optional sampling theorem of Doob.

we have, for 5 ̂  s' and u^v

(3.8)

and

(3.9)

Then X^)== l ί m I ^ Λ s exists with probability one and also in L2-sense and if
s—>oo

we set

(3.10) %u= V dτuAs
5>0

we have
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(3.11) E(Xίi'\dv) = Xvί' a. s.

and

(3.12)

Thus XCJ\ f = 1,2, ,Λf are square integrable martingales with respect to

§u such that

(3.13) <Xa\X^>u=δijAooKu .

Now let (Yuy (δ J be an iV-dimensional Brownian motion defined on a probability

space C0',ffi,P'). Let Ω*=ΩxΩ', %t=%uxGu, P*=PxP' and define

For each /, 0 ̂  / ^ oo, At is an stopping time (§?) since

Then Fw", YUXA^ and X^0 are all martingales (%t) and so ^L0 is a martingale

(g*). Also we have by (3.13) that <BW,BU >yu = δLj{u-u Λ Aoo+u AAoo) = δuu.

Then by Th. 2.3, {Bu, 8?) is an Λ/"-dimensional Brownian motion. As we have

remarked above, t -> At is a time change function (g£) and clearly

This proves the theorem.

Remark. For almost all ω , {Xt, t e [0, oo)}={^w? u e [0, ̂ 4oo)}. So if

(3.14) P( sup
ίe[0,oo

then we have

(3.15)

§ 4. Orthogonal decomposition of the space of square integrable

martingales.

I. We shall assume here that the probability space (Ω, %, P) is separable

(i.e. L\Ω,%,P) is separable). We define semi-norms || \\t over 2JΪ by the

formula || X\\t = £(Xf), XeaTC. Then

PROPOSITION 4.1. {SJ}J, || ][ t} is a separable complete space.

Proof. First we shall show the completeness. Let {Xn} be a Cauchy
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sequence in %R. Since -[X71} are martingales, by Doob's inequality [2, Chap.

VII, Theorem 3. 2] we have

P(sup \X<l-Xΐ\^c)<Hc2E((Xϊ-XΐY) -> 0
0<s<ί n, m—>oo

for every c > 0. Therefore Xn

t converges locally uniformly to Xt a. e. P. It is

clear that X is an element of sDt and satisfies \\X—Xn\\t-+0 as w->oo. The

uniqueness of such Xt is also clear. Next, we will show the separability. Let

LQ

2{P) be the space of all g-measurable functions / such that E{f2)< oo and

E(f) = 0. Let X{ be the right continuous version of E{fl%t) and W={X{;

/ e L°2{P)}. Then 3Jl° is dense in {3K,|| | | J . Let {fn} be a dense sequence of

LJ(P). Then {X{w} are dense in 2JΪ°. Indeed, let / be any element of L\{P) and

~{fniy a sequence converging to / in Ll(P) space. Then, by Jensen's inequality

we have

xί^η^Edf-fnηη -> o

Therefore {X^*} converges to χf.

DEFINITION 4.1. X, 7 G S01 are called orthogonal and denoted by XJ_F if and

onlyif <Z,y> = 0.

Meyer defined that X, Y e 9JI are orthogonal if XέFf is a martingale. Our

definition is the same as Meyer's one. Indeed, since

E((X-Xs)(Yt-Ys)IFs) = E(XtYtIF8)-XsYs ,

< X, Y >Ξ=0 if and only if XtYt is a martingale.

DEFINITION 4.2. A subset 9ΐ of Wl is called a subspace of 2JΪ if 3ΐ satisfies the

following three conditions;

(i) I , F £ ^ - > Z + F <= 5R, (ii) if X e ^ and Φ G #(< X», then Jφ^X e 91

and (iii) % is closed in {SK,|| |[J.

The smallest subspace containing 81 (c Tt) is denoted by S(9Ϊ) and is said to

be generated by 5ft. It is easy to see 2(X)=l\φdX; Φ ε # « J f » J .

Let !ft be a subset of 9ft and set 9l-L={F G I F is orthogonal to every X of

91}. We can easily show that 31 is a subspace, S(5W)J-=%±'and S(9ΐ)n^J-={0}.

PROPOSITION 4.1. Let X and Y be elements of 3ft. ΓΛ*r* mrf

that Y=Y'+Y".
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Proof. First we shall note that <X, F>c is absolutely continuous with

respect to <X> in the following sense. If Φ G # ( ( I » satisfies Φ=Φ2 and

\φd< X > = 0, then \φd< X,Y} = 0. For, since \φd{ X > = 0 implies \φdX= 0 we

have \Φd <X, F> — < \ΦdX, F> = 0, which implies the absolute continuity.

Therefore, we can choose Φ <= #(<X,F» such that (X,Y>t = \ Φd<X}s. Set
Jo

Yf = \φdX and F ' ^ F - y 7 . Then < X, Y" > = < X, F>-< X, F' > = 0, showing that

X±Y/r. The uniqueness is clear.

DEFINITION 4.3. F' is called the projection of F to the space 2(X) and is

denoted by Ps(x)F .

Let {Xn} be a sequence of 3Jί. We can choose a sequence {Yn} such that

these are mutually orthogonal and 2({Xn}) = 2({Yn}). The proof is due to usual

Schmidt's orthogonalization method. Indeed, define Yn by induction as
n-l

Yn = Xn—ΣίP2(γi)Xn. Then it turns out that {Yn} are mutually orthogonal

and 2({Yn}) = 2({Xn}). Now let Z be any element of $Ά. Then {ΣPs(r*)2} is a

ί = l

n

Cauchy sequence in {3K,|| | | J . For since Z n l Σ P s ( r * ) j we have

n tn

Noting that Σ < PΆCY^Z > increases, Σ < Psxy^Z > -> 0. Consequently,

} is a Cauchy sequence. Define Z'= lim Σ Psxy^Z and Z"^Z—Z'.
i — l n—>oo t = 1

Then Z7/ is orthogonal to S({FW». Thus we have proved

THEOREM 4.1. (i) Let %l be a sub space of Wl. There is a sequence {Yn} such

that they are mutually orthogonal and 8({Yn})=%l. (ii) Any element of Wt can be

decomposed uniquely to Z=Zf+Z" where Z' e 3d and Z" e 3l\ Furthermore,

n—>oo i=l

DEFINITION 4.4. Zf is called the projection of Z to the space 9ΐ and is

denoted by P^Z.

COROLLARY. (5KJ-)J-=5W: .

Proof. It is clear that (^-L)J- D JR. Let Z be any element of (Sΐ-1)-1-. We

have only to prove Z=PκZ. Since Z—PκZ<^ Sΐ-1 Π (Sΐ-1)-1-, we have Z=
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II. Case of Markov processes. We shall discuss further detailed structure

of the square integrable martingales ffll when the underlying probability space

is that of a Hunt process. As a result, it turns out that 2ft is generated by

additive functionals of the Hunt process.

Throughout this and the following sections, we treat the case of Hunt process.

So we shall give here the definition of Hunt process. Let S be a locally compact

HausdorίF space with a countable base and oo a point adjoined to S as one

point compactification. Set S* = Su{<*>}. The topological <7-algebra of S is

denoted by Bs and the set of all bounded ^-measurable functions is denoted

by B(S). Let (Ω, 3?) be a basic measurable space and xt{ω), a measurable

mapping from [0, oo)χQ to S* such that it is right continuous and has left hand

limits with respect to t and aji(ω) = oo for t ^ζ(α))=inf{ί > 0 ; αc(ω) = oo}. The

shift operator Θt is defined as xs(θtω) = xt+s(ω). %$t is a <r-subalgebra of gf genera-

ted by the set {xs(ω) e E} (s< t, E e B8). Let Px, x e S, be a family of proba-

bility measures on (Ω, gr) such that PX(B), B e Sdt is immeasurable and Px{x0{ω)

= x)=\. Set goo = ΠP^-completion of S3oo, where Pμ=\μ{dx)Px and μ runs all

bounded Radon measure over S, and z$t={B ^ 8L; V/*, 3 ^ e S3t such that

Pμ(BJBμ) = 0}. M=(xt9 ζ, $t, PΛ) is called a Hunt process if each P^ has the strong

Markov property and quasi-left continuity of sample paths, i.e., for every

increasing sequence of stopping times {Tn} converging to T, xTn converges to

xτ on the set {T< oo} a. s. Px . It is well known that g?t has no time of discon-

tinuity.

Under this definition of Hunt process, definitions and arguments such as

§§ 1-3 and the first part of this section require more careful treatment, because

the family of measures Pχy x e S is given on {Ω,%t). Every fact concerning

the measure P should be replaced to the fact concerning the family of measures

A real valued function Xt(ω), t e [0, oo), ω e Ω is called a functional if it is

gfi-measurable for each t and is right continuous a.e. Px(vx e S). A func-

tional Xt is called a martingale if Ex{\Xt\)< oo and Ex(Xtl%$)=Xs a.e. Px{vx).

Tt is the space of all martingales such that Ex{X2

t) < oo for every t > 0 and

I G S and that ^ ( ^ = 0 for every x e S. ^l+ is the family of natural increasing

processes (and also functionals) At such that Ex{At) < oo for t > 0 and a e S

The definitions of Έίιoc and 2X are made in a similar way. We introduce

semi-norms [| \\Xtt over m by the formula H-YIL.^B^f). Then

PROPOSITION 4.P. {9K, ]| I \ X t t } is complete.
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Proof. Let {Xn} be a Cauchy sequence. Set en,Jt9 x) = \{Xn-Xm\\ttX and

define

wi(a?) = min{»; sup em%ml(i)x)< l/32ί>, i = l,2,
m>n
m' >n

Then ftiix) is J5s-measurable for each i and so Wi(sco(<w)) is goo-measurable.

Since

| | ( Z ^ W - Z V ^ ) | | i f a ; ^ l/32ί for each a? and t^i^j ,

we have by a martingale inequality

P,( max |X;«W-X;iW|>l/2*)

for every a? and &^ f < / . Set Ω={_ω; Xn^x^ω)\ω) converges uniformly on any

bounded interval in [0, oo)}y then by Borel-Cantelhvs lemma Px(Ω)=l for every

x. For ύ ) £ β define Xs{ω)= ]imXyx \ω)9 then I G 3R and Xn converges to X
ί = oo

The uniqueness of X is clear.
Theorem 1.1 is modified in the following way.

THEOREM 1.1'. For X, Y e 9ft, ίΛm? is a unique <X, Y> e ^ c such that

Ex((Xt-Xs)(Yt-Ys)l($s) = Ex«X,Y>t~<X,Y>sl
(8s) for every x <=S .

Proof. The proof of Theorem 1.1 is based on Meyer's decomposition

theorem [8,9]. Let Zt be a supermartingale relative to (S«>-PJ belonging to

the class (D) and lim Zt = 0 relative to Px for every x e 5. By Meyer's

decomposition there is an increasing process A^ such that Zt = £'a.(i42?)|Sί)—^t

c<r)

for each t. We can prove that there is a functional At such that ^ ^ Λ ^ a . e .

Px, i.e. Zt = Ex{Aool%t)—At. This argument will be treated in Appendix. Using

this fact, the proof of this theorem is just the same as that of Theorem 1.1.

Let Φ and Φrc be the spaces of processes defined in § 2. Define semi-norms

by ||Φ||<x>, ί ί(ί)=iϊar (^Φ*d<X>,)ll2 Let L « Z » be the intersection of Φ and

the completion of Φre with respect to semi-norms || \\<x>,x{t). The conclusion

of Lemma 2.1. is still valid if we take PXi || \\<x>,x(t) for P,|| ||<x>(ί). The

proof is the same as that of Lemma 2.1. Using this fact, we can prove

THEOREM 1.2'. For X<=Wl and Φ<ΞL{(X}), there is a unique Y<=ffll

satisfying

^sd(X9Zys a.e. Px for every Z e l .
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A subspace $K is defined in a similar way. Also closed set is defined by the

topology || I It, * in this case. Propositions and theorems in Part I are also

valid and the proof is quite similar.

A functional Xt is called an additive functional (a.f.) if it satisfies Xt{ω)-\-Xs(θtω)

= Xt+s{ω) for all t, s>0 a.e. Px. The set of all a.f7. s is denoted by A. Let

/ G B ( S ) and u = G«f=E. (^° e-Λtf{xt)dt) and define

(4.1) Xζ>« = u(xt)-u(xQ)-\\au(xs)-f{xs))ds .
Jo

Then X{ α is a square integrable a.f. . Since Ex(Xf

t *) = 0,

Therefore X{'* e fΰt .

THEOREM 4.2.6) {X/>α; / e £(S), α >0> generates m .

Before the proof we prepare the following

LEMMA 4.1. (i) ijf X* is of SUt, ίΛ̂w JO if

(4.2) X? = £-αίX ί+«(VαsXs</s .

(ii) // l ε F ίfe^ Xα e F. (iii) // Z / > α ίy of the form (4.1)

(4.3) Z / > a ' a = ̂ -a^(a;t)-^(^o)

The proof can be obtained by elementary calculations and it is omitted.

Proof of theorem 4.1. Suppose Y ±Xf'« for all / e JB(S) and α > 0 . Then

We shall show first

(4.4) E(f(xu+s)(Yu+s-YMs) = 0

for all / G B(S). From Lemma 4.1, we have for any a > 0 ,

£. ((X{ α α-X{-α)(F t-F s)/g s) = 0 .

On the other hand since

E. ((Xί'"*~Xf

t'«'°)(Yt-Ys)l%s) = 0 ,

we have

(4.5) ί

Noting the relation

6) c.f. Motoo, Watanabe [10].
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the left hand of (4. 5) is

(4.6) E

where Y'u = YuAt. Therefore from (4.5) and (4.6) we have

and since t is arbitrary we have (4.4). Now let 0 = / 0 < t1< t2< < tn and

fly , fn e B{S). Using the Markov property and noting (4.4),

E. {fx(xu) fjxt )Yt )= Σ E. (MxtJ fn(xt ){YtJ+1—Ytj))
n » y = Q n

which implies Ytn = 0. Therefore F c =0.

COROLLARY. 3^ΠV generates Tt and Wlcf)\f generates Wtc .

EXAMPLE. Let xt be an Λf-dimensional Brownian motion; xt = (Bγ\ ,

B[m). Then au—f—-ψ-Δu. The formula on stochastic integral implies together

with this relation that X{>α defined by (4.1) satisfies

N

Therefore Tl = 2(Xf

t'
a; f ^ B{S)) = 2(B[1\ , £<">). This fact together with

N pt

Theorem 4.1 shows that every X of Tt is represented as Xt= Σ I Φ\dBT

§ 5. Formula on stochastic integrals. II

Let us define Wtd as the orthogonal complement of the subspace Wlc. We

will first discuss the structure of 33td. Let p be a metric on S. Set for conveni-

ence p{x, {oo}) = oo for every x e S and χs(x, y) = X{p(χ,y)>ε}{x, y) . Define Pe[t,E)

α;s_, α;sfc(ίrs),7) £ e fi5, and Γ ε = { ^ e £ s ; Ex{Pe{t, E)) < co for every * > 0

7) ^
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and x e 5}. It is known in [11] that there exists a non-negative continuous

a.f. φ\ and a kernel n{x9 dy) such that

(5.1) qe(t, E) = Ps(t, £)-J0(J/«(*.> VX**> dyψφl

is a square integrable martingale. The system (n(x, dy), φ°t) is called a Levy

system. Further qε{t,E) and qe'{t,F) satisfy

(5.2) <qε(t,E),qε,(t,F)> = \ \\Xeveixs,y)n(xs,dy)}dφ°s .

Let f(t,y,ω) be a ^[o,oo)X^sxgoo-measurable function such that f(t,y,ω) <

for any fixed y. Set

FQ={f;\\f\\QX< °° for every ί > 0 and x e 5}- .

PROPOSITION 5.1. i w ^^rv f ^ FQ, we can associate Qf{t) of Md denoted

®y\ \ Z(5' 2/' ')Q(ds, dy) in such a way that (I) if

(5.3) f{s,y, )=ΦsXe(Xs,y)XE(y), Φ<EL«qe(.,E)»,

then

(5.4) 0/(

(ii) if f,g ^ FQ and a,b e Λ1,

(5.5) Qa

(ϋi) n^iu.^ii/iir.
Furthermore, Qf is uniquely determined by these properties.

Proof. If/ is of the form (5.3), define Qf by (5.4). When / = Σ 3 / * and

fι=^Φί

sXei{xS)y)XEi{y), define Q / =Σ3Q/ i . By the definition of stochastic integral

and (5.2)
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and so

(5.6) 110/11̂ = ΣΣ

Let / be any element of FQ. We can choose {fn} such that each fn is a linear

combination of the form (5.3) and | |/-/n l lQ*-»0. Then {Q/« is a Cauchy

sequence by (5.6) and Qf defined by lim Q/ is of Ttd. It is clear that (ii) and
n-*oo

(iii) are satisfied by / for this Qf. The uniqueness will be obvious.

PROPOSITION 5,2. %fld={Qf; f e FQ} .

Proof. By the above proposition, it is clear that {Qf; f <Ξ FQ}=2{qe{-, E);

ε>0y E G Γε}. On the other hand it is known in [9] that

WtdΓιA=2(qε(',E); ε>0, E <B Γe)ΠA .

Therefore we get the proposition.

The orthogonality of X,YELW1OC is also defined by < Z , F > = 0 . Many

arguments in the preceding sections and this section can be extended to Ttloc.

Let Ttι

d

oc be the orthogonal complement of mι

e

oc. We will call f{t,y,ω)

belongs to Fι

Q

0C if there exists a sequence of stopping times {Tn} converging

to oo such that

QTAt{\(s, y, ωYn{xs,by)}dφ°s)< oo, n = 1, 2,

The stochastic integral Qf{t) e ΊStd°\ f e Fι

Q

0C is defined similarly as in Propo-

sition 6.1 and we have Wd

0C={Qf\f*Ξ Fι

Q

0C} .

A functional φt is called quasi-left continuous (q.l.c.) if it has jumps only at

the discontinuity points of sample path. Let φt be a purely discontinuous

q.l.c. functional. There exists a (5, y, <y)-measurable function f(s,y,ω) such

that φt(ω)~ Σ f(s, xs, ω). We shall write such φt as
( ) > 0 <t

THEOREM 5.1. Let F be a C2-class function on RN. Let Xw<=Wlι

c

0C,

QjU ) e ^ftι

d

oc, φψ e %ι

c

oc and Pgu>{t) be a purely discontinuous q. l .c. functional such

that /">.0">=O. Set A?=X?>+Qf«>(t)+φ\"+Pg«*t), and f = (/(1), ,f™)g

= (flrc t >, , gim), At = {Aψ, , A\m). Suppose that one of the following conditions is

satisfied; (i) Each t is bounded, (ii) each / c o is bounded. Then the following

formula is satisfied
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(5.7) F(At)-F(A0)=^\^~r(As)dXc

s"+\]s(F(As+f(s, V, ))-F{As))q{ds,dy)

iF(A.+f(s, y, ))-F{A,)-Hf{s, y, )4~^{As))}n{xs, dydφ\

where G{s,y,ω)) = F(As+g(s,y,ω))-F(As) .

Proof. We shall consider the case N=l for simplicity. Assume that

f(s,y,ω) = χε{xs-,y)g{s,y,ω) and g{s,y, ω) = Xε(xs-,y)g(s,y, ω). Define 7 0 = 0 and

Then T n t ° ° as n-^oo and jumps of Qf and Pg occur only at {Tn}. Therefore,

using Theorem 2.2,

F(ATnAt-.)-F(ATΛ_ιM)

~F(ATn_lAt)

At

Af \ F'(A,)f(s,y, )n(x» dy )dφ»

On the other hand,

= \'\ {F(As+f(s, y, ω))-F(As)}P(ds, dy)

+ Γ( ίF(As+g(s, y, ω))-F(As)}P(ds, sy)

= \'\ {F(As+f(s, y, ω))-F(A.)}q(ds, dy)
t) QJ S

+Q{F(As+9(s, y, ω))-F(As)}P(ds, dy)

- Γ [ iF(A,+f(s,y,ω))-F(A,)Mx.,dy)dφ'i

Substituting the above calculation to

F(At)-F(AQ)= Σ{F(ATnAt)

we get the desired formula.



ON SQUARE INTEGRABLE MARTINGALES 231

Now let us consider the general case. Without loss of generality, we may

assume that Xt, Qf are of 9ft and φt is of $lc, i.e.,

oo and E. (φt) < oo .

Let 7 α ) ; ί = l, ,6 be the l-st, , 6-th term of the right hand side of (5.7),.

respectively. Set fn(s,y,ω)=χen(%s,y)XEn(y)f(s,y,ω); let εn^0 and EnΐS

(En&Γen). Then [1/—/n]lβlΛ?->0 as n->oo, so that Q/n{t) converges to Qf in

|| ||tfΛ.-norms. We may assume that Qfn{t) converges uniformly to Qf{t) on

any compact set of [0, oo), because we can choose such subsequence from {Q/n}.

Set A«t=Xt+QfΛ+φt+Pg{t). Then (5.7) holds for At=An

t. Let J«>;ff=l, ,

z = l, ,6 be the corresponding terms to 7Cί) when At is replaced by A".

Since {7^}, / = 3, ,6 are Stieltjes integrals for almost all ω, it is clear that Ic

n

iy

converge to ICί\ We shall show that 7S?

1)->7α) and 7^2)->7C2) if (i) is satisfied.

Since An

s converges to As uniformly on [0, t),

* υ as n -> oo .

Therefore lim 7C

W

1) = 7C1). Now, by the mean value theorem

F(A,+f(s, y, -))-F{As) = F'(As+f(s, y, -))f(s, y, •),

F(A«+fn(s, y, -))-F(A"s)=χεn(xs, y)χEn{v)Ff{An^fn{sί y, •))/(«, V, •),

where / and fn are (5, y, immeasurable functions satisfying | / | ^ | / | and

Therefore

-%ε n (^, y)xgΛ(v))F'(An

a+fn(s9 y, ) ) 2 /(^ 2/, )2)^(α;s, dy)dφ{\

n(x,,dy)dφϊ] .

Note that F^yi + Λ ) -> F/(AS+/). Then each term of the right hand of the

above converges to 0. Therefore 7C

W

2) -* 7C2). Thus we have proved the theorem

when Ff is bounded. Now, suppose that (ii) is satisfied. Let FM be a C2-class

function such that F'M is bounded and F{x) = FM{%) for \x\ < M + s u p | / | .

Then (5. 7) is satisfied for such FM. Set Γ^^infO > 0; \At\> M}. Clearly

each term of (5. 7) corresponding to FM is equal to each term corresponding

to F respectively for t <TM Thus (5. 7) is satisfied for F.
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§ 6. A factorization of multiplicative functional.

In this section, each functional Xt(ω) is assumed to be defined on

i.e., it is right continuous and has left hand limits for ίe[0,ζ(ω)) and 3ίc[ζ> t]-

measurable, where gt[ζ > t] is the tf-field obtained by the restriction of %t on

the set {ζ > O

A nonnegative functional at(ω) is called a multiplicative functional (m.f.), if

•at{ω)as{θtω) = at+s(ω) holds for every t,s>0 such t h a t t + s<ζ(ω) a n d if Ex{at

ζ>t)<l is satisfied for every x <Ξ S and t > 0. Ito, S. Watanabe [5] proved

that any m.f. at can be factorized to the products of two m.f.'s such as

«t = «ί0)«ί1)J where αc

t

0) is a local martingale and a^ is a natural decresing

process, i.e., a\i:>{ω) is a decresing function of / and has jumps only at the

continuity points of sample paths. The purpose of this section is to investigate

the detailed structure of a\°\ Throughout this section, we will assume that the

terminal time ζ is accessible, i.e., there exists a sequence of stopping times

Tλ<T2^ < ζ converging to ζ.

THEOREM 6. 1. Let at be a m.f. satisfying 0 < α t < o o (t<ζ). Then at

is a local martingale if and only if; (i) there exists a X\ e Wlι

c

oc Π A> ' (ii) there

S t
f\°n{%s)dφQ

s < oo (t < ζ) and

I j^-l jowία?,)^? < o o ( ί < ζ ) , where f1{xίy)=f(x,y)X{\/(χ,y)\<i} and f2(x,y) =

f(%>y)—fi{x>y), and (n) φt = log at is represented as

LEMMA 6.1. Let X\ e ^ J o c n i , e ; e ^° n

c Π (/; bounded), φt e ^J o c Π L̂

ŵrf Pg(ί) a purely discontinuous q.l.c. a.f. J ̂ Λ ί t o gf^O. Then

(6. 1) α^expίXΣ+QΛO+^+PΛ*))

ij Λ /o^β/ martingale if and only if

(1) ^o(e°-l)o(nxt)dφ°t<oo for t<ζ.

8)

It should be remarked that in the sequel the notation Qh(t) = \ \h{xs,y)q{dsidy) for

.h=h(x,y) is understood as Qh'{t) of § 5 for h'(t,yyω)=h(xt-(ω),y). So this notation is the

same as in [11]. The same remark should be applied for Ph(t) = [t[h(x8iy)P(dstdy).
Jo J
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(2) -φt = \t

0{(ef-l-f)°n(xs)+(eg-l)°n(x*)}dφϊ+~<X°>t for t<ζ.

Proof. 1. By the formula on stochastic integral (5. 7), we have

(6. 2) a-l = \lasdXs

a!(ef-1 -/>»(*.) dφ°. +Qs a,(egίx» *>-1) P(ds, dy).

If (1) is satisfied, ^as{eg— \)°n(xs)dφs< <χ>, so that Va,{e°— l)P(ds, dy)

— \ as(e9—\)°n{xs)dφ°s is a local martingale. Hence under (1),

(6. 3)

is a necessary and sufficient condition that at— 1 is a local martingale (see

Corollary of Theorem 1.3). It is clear that (6.3) is equivalent to (2).

Therefore we have only to prove (1) if at is a local martingale.

2. Set g+=g\/ 0 and g~=g Λ 0. We shall prove first that

(6.4) \l(er-l)°n{xs)dφ°t < oo for / < ζ .

From (6. 2),

Therefore

(6.5) £.(e^--co-l)==-

which shows that the right hand of (6. 5) is finite, implying (6. 4).

Next we shall show \(eg+—l)°n(xs)dφs<co (t<ζ). Let igi{x,y)} be a

nonnegative increasing sequence of bounded j^s-measurable function such

that g+^g+ and Qg^mι

d

0CriΛ. Set arl = at exp (P^-iV). Then we get

α?-1 =local martingale+J^^ s+^-j^
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Let {Tm} be an increasing sequence of stopping times converging to ζ and

satisfying that the local martingale part, Γ A Γ m asdφs and \tATm asdζXcys are all
jo jo

integrable. Then we have

Γ"«; dφs)+± E.QlATman

s d<xcys)

Noting that an

t increases to at, we get

which shows that the last term of the right hand is finite. Thus

(e9+—l)on{xs)dφ°s is finite. Since \eg — l<\eg*—l\v\eg~—l\, we o b t a i n (1),

Proof of theorem 6.1. 1°. The sufficient condition has already been proved

at Lemma 6. 1. To prove the necessary condition, we will show first

that φt is a q.l.c. a.f. Indeed, since atATn is martingale, the discontinuous

points of atATn are the discontinuous points of sample paths. Thus φt is a

q.l.c. a.f. Set ψt=H\AφΛ>ι,s<^t<ςΔφs. Then ψt can be written as Pg(t) and g

satisfies g(x,y)X{\g(χ,y )\<i} = 0 (see [11]). By the argument at the proof of

Lemma 6.1, \ {l—eg~)°n(xs)dφ°s is finite. Thus

is a local martingale by Lemma 6.1.

2°. We shall show that aφj1 is also a local martingale. By Lemma 6. 1,

we get

Let {Tm} be an increasing sequence of stopping times such that T m < ζ ,

Tmϊζ,Ex^
ATmasβγ{l-eg-)on(xs)dφή<oo (f>0, x e S) and atATm is a

martingale. Then, for B e %sΛτm
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I 'ΛΓ.; B)-£.(α.Λr,.j371Λr»; B)

(XtArΛ \ {e-9~~l)P{ds,dy);B)-E.[atAτΛ β-s

1{\-e9~)on{xs)dφ°s;B)

= 0.

3°. Set Tt = atβ;1 exp (—Pg+{t)) and ψt = logϊt. Then ψt is a q.l.c. a.f. whose

absolute values of jumps are less than 1. Therefore ψt is locally square

integrable (i.e. ^Tn^ooE. [\ψTn I
2]< °°) Since log x is concave and increasing

function and since Tt is a supermartingale, ψt is a regular supermartingale

belonging locally to the class {D) (in the sense 7\,t°°5 ψT=ΨtAτn is class (D))

by Jensen's inequality. Therefore, by Meyer's decomposition, there exists a

unique At of Sϋ+

C

loc such that Xt=φt+At is a local martingale. Moreover, we

can prove that At is an a.f.9) Furthermore, Xt can be decomposed to sums of

Xc

t^mι

c

0CΠA and Qh<=mι

d

ocnA.1^ Thus we have proved that

Since Qh and PQ have no common jumps, g. h = 0. Define f{x,y) by g(x,y) if

\g{x,y)\>l and h(x,y) if 0 < |/z(ίc, 2/)I < 1. Then ψt can be written as

Applying Lemma 6. 1, we get the desired formula.

From Theorem 6. 1, a m.f. which is a local martingale, can be factorized

to the product of two m.f/s βt and Tt; βt is a continuous m.f. represented

as exp(xc

t—^-<XC>Λ and Tt is a discontinuous m.f. represented as

t x p i Q / Z O + P / ^ - J ^ - l - / ! ) ^ both of which

are local martingales. Further, βt and ϊt are orthogonal in the sense that the

product of two local martingales is also a local martingale. It should be noted

that the discontinuous part ϊt is uniquely determined by Z^xs-measurable

function f(χ, y). We will call Tt to be generated by f(x, y).

The situation of jumps of sample paths is closely related to Levy system

{n{x, dy), φ°t). It is interesting to know how the Levy system may be changed

by the transformation of Markov process by a m.f. at. The change of Levy

9) It is not clear that At is an a.f. from Meyer's decomposition. We were informed the
proof from Tanaka by private comunication ommitting here.

10) If Xt is an a.f., then Xc

t and Qf are also a.f/s. See [10].
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system depends only on discontinuous part of at. Precisely,

THEOREM 6. 2. Let a m.f. at ( 0 < at< °° for t < ζ) be a local martingale

and let it be represented as Theorem 6.1. Let M« = {XI ζα, F ?, Pi) n> by a standard

process which is obtained from transformation by at. Then (efix'v)n(x, dy), φ°t) becomes

a Levy system of M*.

Proof Let h{x, y)^0 be a jB5xS-measurable function such that Ex{Ph(t)2)

< oo. Let T<ζ be a stopping time such that \ asdXc

s^Wc, atΛτ is a

martingale and Ex(at/\τ\ hon(xs)dφf)< oo. Since

atAτ-1 = \lAT\sas(e«*'>y)-l)q(ds, dy)

we get

Thus we have

efh°n{xs)dφ°J,

which implies

Ex(Ph(t AT)) = E*xQlATefho n(x.) d

The above formula shows that (enx y)n{x,dy),φ°t) is a Lέvy system of Mα by

the definition.

EXAMPLE 1. Let S be a countable set with discrete topology and

M=(xt,ζ9fϊt9Px) a markov chain (Hunt process) over S. Set ^(ωHinfO > 0 ;

Seίω^Boίω)},^1=£*(*-!), π{x,y)=Px{xri = y) and qx,v = qxΏ.{x,y). We will

assume 0 < ^ < o o and Σί π{x,y)=l. Set Pt{x9y) = Px{%t=zy)> Since
2/εs

lim fi(«.») =qx_v {x¥,y) and lim 1- Pfr*) =qx

11) For the definition of M , wee [6].
12) If B is an element of S3*, then P*(tf, B, ζ > t) = P%{B; ζ >t). See [6].
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ίQx.yyt} is a Levy system of M (See S. Watanabe [11]) and M is uniquely

determined by qx and qXtV9 which means that there is no continuous part for

any m.f. and every m.f. is generated by SxS-function f{x,y).

Let f{x,y) be a finite valued function satisfying Σ enXtV)1l{x, y) < oo. Then
2/eS

2 (ef*(x v)—l)qx y<oo and Σ fλ{x, y)2qx y < oo so that the m.f. at generated
y^S ' y&S

by such f(x, y) is a local martingale. The process transformed by at has

{ef(x'y)qXty, t} as its Levy system. Conversely, let M and M be two Markov

chains defined on the same state space S. The corresponding quantities

relative to M are denoted by qX9 qx<y and Π'{xyy). We will assume that

0<tf Λ <oo, 0 < ^ ; < o o , and Σ Π{x,y)= Σ 77'(α,2/)=l. Assume further
yeS 2/eS

^>2/ > 0 implies qXtV > 0. Define f(x, y)=logqί,y—log^t2/. It is easy to see

that this f(x,y) satisfies the condition (2) of Lemma 6.1. Therefore there

exists a m.f. generated by f(x, y). Since the process transformed by <xt has the

Levy system {ef(x'y)qXty, t}, M coincides with M. Thus we get the following

statement: Let M and M be Markov chains defined on the same state space S and let

0 < Qx < °°> 0 < q'x < oo and Σ Π(x, y) = Σ Π'(x, y) = 1. A necessary and sufficient

condition that M! can be obtained from transformations by a m. f. which is a local

martingale is that Π(x,y) = 0 implies Πf{x,y) = 0 and vice versa.

From the above argument, in the case of Markov chain, transformations by

m. f.'s contains time changes by inverse functions of strictly increasing a,f/s

as its special case. Indeed, if a Markov chain M has the system {qx, Π{x, y)},

the time changed process M has the same quantity Π{x, y) and different quantity

q'x\ so that f(x, y)=logqx,y—logqXty = logqx—logqx is only a function of x,

and the chain transformed by the m. f. generated by this f{x)=f{x, y) coincides

with the time changed process M'.

Another special case is the case that f(x,y) satisfies Σ ef(x'y)Π(x,y)=l. In
2/6S

this case, the transformed process has the same quantity qx as the original one.

In particular, if ef(x>y) is of the form h(x)lh(y), then h(x) is a harmonic

function and the transformation is nothing but (super) harmonic transformation

(or /z-path process).
EXAMPLE 2. Let xt = {&\\ ,Bψ) be an Λί-dimensional Brownian

motion. Then every X^Wlι

c

0C Γ\A is represented as Xt= Σ \ f(i\xs)dBCi

s\ where

JV c t

f(i\ i = l, 9N are measurable functions on RN; so that <ZX= Σ I f(ί\xs)
2ds.

Therefore, every multiplicative functional being a local martingale can be



238 HIROSHI KUNITA AND SHINZO WATANABE

represented as

exp ( Σ [f(i)(xs)dBψ-4r Σ \f(ί\xs)
2ds).

This was obtained by Wentzel [12]. Transformation by such m./. is so called

that of "drift" and does not contain time change. This fact is quite different

from the case of Markov chain in Example 1.

§ 7. Decomposition of additive process.
It is known (Levy [7], Itό [4]) that any right continuous additive process

may be decomposed uniquely to sum of a Gaussian additive process and a

jump type additive process such that these are mutually independent. We

shall prove this fact using the formula on stochastic integral obtained in §5.

A right continuous stochastic process {Xt9P), ί e Γ = [ 0 , ί ] is called an

additive process (or process with independent increments) if, Xt—Xt._v z = l,2,

,w, are independent if 0 ^ tQ< t1< t2< <tn<b. For the simplicity

we shall assume that Xt has no fixed discontinuity and X0 = 0 a.e. P. Set

(7.1) Pt(E)= 2 xE(Xs-Xs-) and σ(t,E) = E(Pt(E)) .
\Xs-Xs-\>0

It is easy to see that Pt(E) is an additive process. Define X\ = \ xPt(dx).

Then Xt—Xt is an additive process whose absolute values of jumps are less

than or equal to 1, so that Xt—X\ is locally integrable. Define

( 7 2) x ί

Then X\ is a locally square integrable martingale and is an additive process.

Set

(7. 3) X{=X\+Xl and X\=X{-X{

Since X\ is a continuous additive process, it is a Gaussian process.13) Set

m(t)=E(Xc

t) and X°t = Xc

t-m{t).

THEOREM 7.1. The decompostion Xt=X°t+X{+m{t) satisfies the following

conditions: (1)

(7.4) E(e*Xh = expί-±a*v(t)} where v(t) = E(\X°tn

13) See for example [4].
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(7. 5) E{e&X{)= expί, ,Λe*' -l-iβx)σ[t, dx) + \ {e^-\)e{t, dx).

(2) X°t and X{ are mutually independent.

Proof. To prove that X°t and X{ are mutually independent, it is sufficient

to show that for every real a, β,

(7. 6) Eie'***-*0* e^-xi^Eie^-x*^

Note that X°t and X{ are a.f.'s and local martingales and X\ is a purely

discontinuous q.I.e. a.f., relative to (ί({ia?), P). The argument at § 5 together

with Lemma 7.1 implies that X{ is represented as Qf(t)+Pf{t), where

/((s,aO,(*,y)) = y-«. Set F(aj1,α2) = β i(χl+a5l), ^J^α-Y? and A<f = βXJ

t and

apply Theorem 5.1,14) we have

martingale+fV ff, y , O W l f - s : ) - l - ί i

where r^t = ei<xo

t-xo

s)+iκx{-xi\ Therefore,

^ ^ ^ ^ — 1 —/.S^)^^

The above integral equation has a unίq, e solution

9ft) = exp [--i- a*{v(t)-υ(s)}+\ ^ (eiβx-1 - iβx)σ((s,t],dx)

Thus we have proved the theorem.

Remark. (1) When Xt is temporally homogeneous, it is easy to see that

X°t and XJ are also temporally homogeneous and hence X°t is a Brownian

motion.

14) If X { is temporally homogenous, Xt may be considered as a Hunt process and it is easy
to see that (n(x,E),t) becomes a Levy system, where n(x,E)=σ(l,E—x). If Xt is not
temporally homogeneous, Xt is no longer a Hunt process, obviously. However, σ{t,E)

works similarly as Levy system does in Hunt process. In fact Σ / ( # s _ , %s)— \ \f(xuy y)σ (^u> dy)
s^t Jo J

is a martingale if it is integrable, where σ((s,t,E) = σ(t>E)—σ(s,E). Thorem 5.1 is
applicable with a slight modification.
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(2) In the same way as above we can prove easily Pt{E) is a Poisson process

such that if EΠF=φ then {Pt{E)} and {Pt{F)} are mutually independent.

§ 8. Appendix. Supermartingale and the corresponding increasing

process of a Markov process.

The material treated in this section is certain refinements and generalization

of the results of F.Meyer [8, 9] in the case of Hunt process.

Let M={xt,ζ,%t,Px) be a Hunt process. An increasing process Λt is said to

belong to the class (U) if At has no common jumps with sample paths, i.e.

Px{Ati=At- and xtψxt- for some ί > 0 ) = 0, v# e S.

The set of all At belonging to the class (U) is denoted by Wu.

THEOREM 8.1. Let Xt be a supermartingale belonging to the class (D). Suppose

that limXf^O holds a.e. Px. There exists a unique At of%u satisfying
ί » o o

(8.1) Xt=Ex(AJ%t)-At a.e. Px, v

where A»= limAt. Furthermore, if χt is regular then At is of $£.
ί-»co

The above At is said to generate Xt. The theorem is a modification of a

fundamental result of [8. 9]. It follows from [8, 9] that for each x there exists

an increasing process Acf such that X^EiA^/dt)—^V but it is not clear at

the first sight that there exists a functional At such that At=Acf for each x.

Let T be a stopping time. According to [9], T is said to be totally inaccessible

(in the weak sense), if it is strictly positive not infinite a.e. Px for some x and for

each increasing sequence {Tn} of stopping times converging to T,

(8.2) Px(Vn,Tn<T< oo)=0, *x e S.

T is said to be inaccessible if there exists A of %τ such that PX{A) > 0 for some

x and the stopping time

TA{ω) = T(ω) if O I G A

= oo if ω e A

is totally inaccessible. Further, T is said to be accessible if T is not inaccessible.

The following theorem is proved in [9] in the case that semi-group operator

of the Hunt process maps C{S) into C{S). 15>

15) C{S) is the space of all bounded continuous functions on S.
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THEOREM 8. 2. Let T be a stopping time. (1) T is accessible if and only if

(8. 3) Px{xτ=xτ-, T< oo)=pa.(T< oo), vx e S,

jr-w1 the left-hand limit of sample paths xt at T, where xo = xo- .

(2) T is totally inaccessible if and only if

(8. 4) P*{xτ¥*xτ-, T< <*>) = px(T< oo), v x e s.

(3) 7%£r£ £.m£ accessible stopping time Ύλ and totally inaccessible stopping time T2

satisfying T=nan(Tl9T2), and for any such T1 and T2

a.s.

^y—{_xτ=^xτ-, T< oo>.
a.s.

The stopping time defined by

T on {xτ = xτ-, T < 00}

+00 otherwise

is called the accessible part of T.

Meyer [9] called an incresing process At to be natural if, for any stopping time

T totally inaccessible, PX(AT¥=AT-) = O holds (vs e S). From Theorem 8. 2, we

have immediately

COROLLARY. An increasing process At is natural if and only if it is of s&£.

Before the proof of these theorems, we prepare several lemmas.

LEMMA 8. 1 Let Xbe a regular supermartingale belonging to the class (D) for each

Px. There exists At of %+

c satisfying (8. 1).

Proof 1° Let phXt {h>0) be a right-continuous version of E.{Xt+fJ%t).

It is easy to see that phXt can be defined independently of the family of

measures Pχy U G S . Set

Ah

t~ \ —r-(X,—phXs) ds and

We shall prove

(8. 5) Px(sup\Ah

t— A]

t

as h and k tend to 0. It is known in [8] that, if Xt is bounded, EX(\AZ-Ai\2)

converges to 0 as h and k tend to 0, and that in general case, there exists a
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sequence of bounded regular supermartίngales X"(x) relative to a fixed measure

Px such that Xt=f]Xn

t(x) a.e. Px. Set
l

Then Ex{\A"ίh(x)-A";k{x)\2} converge to 0 as h and k tend to 0. Since

The Lebesgue convergence theorem is applicable and we get lim Ex(\At—A*\

= 0. Therefore, by Doob's inequality concerning martingale, we get

(8. 6) εP,(sup IEX(AΪ-A£|&) I > β) ̂  Ex( \ A*-A* \).

On the otherhand

\X1-X1\^\X-Xh

t\<X-VhXt if h>k,

and we get by the argument of Shur-Meyer (e.g. [9]),

(8.7) Px(

where Th=inf{t >0; Xt-phXt>ε}. Consequently, from (8.6) and (8.7),

we get

P,(sup I A\-A\ I > ε) < Pβ(sup I EX(AΪ-A*ldt) | > - |-)

+P,(sup I Xϊ-X* I > - |-) -> 0, (A, fc -y 0).

2°. To prove the lemma, it is sufficient to show that there exists At of StJ

satisfying p/sup|Ae—i4?| >-§-)-> ° a s A tends to 0. Let {e j (>0) be a

decreasing sequence satisfying Σ ε n < oo. Set en{x,h,k) = Px(sup\Ah

t—Ak

t\>εn).

Let Pn(x) be the upper bound of -~- where j is a positive integer satisfying
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sup en{x, h, k) < εn. It is clear that Pn(x) is gs-measurable and Pn(x) -> 0 as

n -> oo so that A is of 21+ and satisfies

(sup I Λf"(Io) - A P ^ I > ε J < +00.

4 f n ( ί C ° ( α ) ) )
Set Ω—{ω\ ^4fn(ίC°(α)))(ft>) converges uniformly as n tends to infinity}. Then by

Borel-Cantelli's lemma, Ω is g-measurable set and Px{Ω)=l holds for every x.

Define Λt{ω) as lim^4 Λ(*o(ω))(<ϋ) for ω e ϋ?, then this ^4t is the desired one.
W—>oo

The uniqueness of the above At immediately follows from

LEMMA 8.2. Let At and Bt be of %+

π generating the same supermartingale.

Then At = Bt.

Proof. Let Yt{ω) be a bounded process adapted to {%t} and continuous

from the left. Set Ct=Ae-Bt. Let {Tn}, Tn^S be an (e, FJ-chain. Then,

since (Ct, Sc) is a martingale,

) = 0 a.s. Px.

Letting s ->• 0, we obtain

= O a.e.

The above formula also holds when Yu is of the form g{xu), 9 e C(S) because

C has no common jumps with sample path xt. Therefore, we get

But the left-hand of the above is

=E

so that we have

(8.8)
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Now by a similar argument as the proof of Theorem 4. 2 we get C^O.

Now we will give the

Proof of Theorem 8. 2. The "if" part of (2) is clear from the quasi-left

continuity of sample paths. Suppose that T is accessible. It is known [9]

that, for each fixed x, T is left approximable i.e., there exists an increasing

sequence of stopping times {T£} such that T%<T and T=\\mT% hold a.e.
n—>oo

Px. The quasi-left continuity of sample paths implies (8. 3) immediately.

We shall prove the * only if" part of (2). Define

Since the supermartingale Xt generated by Ut is regular, the supermartingales

χ\ (f = 1,2) are also regular. Thus there exists Vt of % generating X\, so that

Vt = Ul by Lemma 1.2. Therefore £/J = 0 i.e., Ut = U2

t, which means (8.4).

The Mf" part of (1) can be obtained from NVonly if" part of (2). Now Let

T be any stopping time. We define Tx by T if xτ = xτ- and by +oo if χτi=χτ-.

In the same way, we define T2 by T if xτψxτ- and by +oo if χτ = χτ-. Then

Tx is accessible, T2 totally inaccessible and satisfies T=min{T1,T2). Thus we

have accomplished the proof.

Finally we will give the

Proof of Theorem 8. 1. When Xt is regular, we have already proved the

theorem in Lemma 8. 1. Suppose that Xt is not necessarily regular. For

ε > 0, we define a sequence of stopping times inductively as

and T* as the accessible part of T*. Set

and Λ{= limAf. It is clear that A{ is of «£. Set X{ = E(ALl%t)-Ai}. Then
e j O

we can show that Xc

t=Xt—X{ is regular supermartingale, so that there exists a

unique A\ of 9ΪJ generating Xt. Thus At=Ac

t-{-A{ is what we want.

Remark. If, in Th. 8. 1, Xt is an a.f. then At is an a.f. as is easily seen

from the above construction of At.



ON SQUARE INTEGRABLE MARTINGALES 245

REFERENCES

[ 1 ] P. Courrege, Integrates stochastiques et martingales de carre integrable, Seminaire
Breϊot-Choquet-Deny 7e annee (1962/63) 7.

[ 2 ] J.L. Doob, Stochastic processes, New York (1953).
[ 3 ] L.E. Dubins, G. Schwarz, On continuous martingales, Proc. Nat. Acad. Sci. U.S.A.

53(1965), 913-916.
[ 4 ] K. Itό, Lectures on stochastic processes, Tata Institute of Fundamental Research, Bombay

(1961).
[ 5 ] K. Itό, S. Watanabe, Transformation of Markov process by multiplicative functional,

Ann. Inst. Fourier, Grenoble 15(1965), 13-30.
[ 6 ] H. Kunita, T Watanabe, Notes on transformations of Markov processes connected with

multiplicative functionals, Mem. Fac. Sci. Kyushu Univ. 17(1963), 181-191.
[ 7 ] P. Levy, Theorie de Γaddition des variables aleatoires, Paris (1937).
[ 8 ] P.A. Meyer, A decomposition theorem for supermartingales, Illinois J. Math. 6(1962),

193-205.
[ 9 ] P.A. Meyer, Decompositions of supermartingales The uniqueness theorem, Illinois J.

Math. 7(1963), 1-17.
[10] M. Motoo, S. Watanabe, On a class of additive functionals of Markov process, J. Math.

Kyoto Univ. 4(1965), 429-469.
[11] S. Watanabe, On discontinuous additive functionals and Levy measures of a Markov

process, Japanese J. Math. 36(1964), 53-70.
[12] A.D. Wentzel, Additive functionals of multidimensional Wiener process, D.A.N. SSSR,

139(1961), 13-16.

University of Illinois, Nagoya University

and

Stanford University, Kyoto University






