ON QUASI-LINEAR PARABOLIC EQUATIONS

YOSHIAKI IKEDA*)

To Professor Kiyoshi Noshiro on the occasion of his 60th birthday.

§1 Introduction

In this paper we consider the following quasi-linear parabolic equations

$$
\begin{equation*}
L u=u_{t}-\operatorname{div} A\left(x, t, u, u_{x}\right)+B\left(x, t, u, u_{x}\right)=0, \tag{1.1}
\end{equation*}
$$

where \boldsymbol{A} is a given vector function of the variables x, t, u, u_{x}, and B is a given scalar function of the some variables. We assume that they are difined in the rectangle

$$
\begin{aligned}
R=\{(x, t) & \in E^{n+1}\left|x=\left(x_{1}, \ldots \ldots, x_{n}\right) \in E^{n},\left|x_{i}\right|<2 r, 0<t<2 r^{2}\right\} \\
& =Q_{2 r} \times\left(0,2 r^{2}\right), \text { where } Q_{2 r}=\left\{x| | x_{i} \mid<2 r\right\} .
\end{aligned}
$$

Moreover we assume that

$$
\left\{\begin{array}{l}
|\boldsymbol{A}(x, t, u, p)| \leqslant M|p|+c(x, t)|u|+e(x, t) \tag{1.2}\\
|B(x, t, u, p)| \leqslant b(x, t)|p|+d(x, t)|u|+f(x, t) \\
p \boldsymbol{A}(x, t, u, p) \geqslant \lambda|p|^{2}-d(x, t)|u|^{2}-g(x, t)
\end{array}\right.
$$

for any real vector $p=\left(p_{1}, \ldots \ldots\right.$,
p_{n}). Here M and λ are positive constants, and b, c, d, e, f and g are non-negative functions of the variables x, t such that

$$
\left\{\begin{array}{l}
b, c, e \in L^{\infty}\left[0,2 r^{2} ; L^{n+\varepsilon}\left(Q_{2 r}\right)\right], d, f, g \in L^{\infty}\left[0,2 r^{2} ; L^{\frac{n+\varepsilon}{2}}\left(Q_{2 r}\right)\right] \tag{1.3}\\
\text { for arbitrary } \varepsilon>0 \text { and } \\
\max _{0<t<2 r^{2}}\|d\|_{n+\varepsilon}(t)+\max _{0<t<2 r^{2}}\|c\|_{n+\varepsilon}(t)+\max _{0<t<2 r^{2}}\|e\|_{n+\varepsilon}(t)+\max _{0<t<2 r^{2}}\|d\|_{\frac{n+\varepsilon}{2}}(t) \\
+\max _{0<t<2 r^{2}}\|f\|_{\frac{n+\varepsilon}{2}}(t)+\max _{0<t<2 r^{2}}\|g\|_{\frac{n+\varepsilon}{2}}(t)<M,
\end{array}\right.
$$

where $\|w\|_{p}(t)=\left(\int_{Q_{2 r}}|w|^{p} d x\right)^{1 / p}$
We denote by $L^{q}\left[0,2 r^{2} ; L^{p}\left(Q_{2 r}\right)\right]$ the space of function $\varphi(x, t)$ with the following properties:

Received August 29, 1966.
*) The author wishes to express his hearty thanks to Professor T. Kuroda and Mr. T. Matsuzawa for their many valuable suggestions to the author during the preparation of this paper.
(i) φ is defined and measurable in $R=Q_{2 r} \times\left(0,2 r^{2}\right)$,
(ii) for almost all $t \in\left(0,2 r^{2}\right), \quad \varphi(x, t) \in L^{p}\left(Q_{2 r}\right)$,
(iii) $\|\varphi\|_{L^{p}\left(Q_{2 r}\right)}(t) \in L^{q}\left(0,2 r^{2}\right)$.

The function u is said to be a weak solution of (1.1) in R if u with u_{x}, u_{t} is square integrable and if u satisfies the following equality

$$
\begin{equation*}
\iint_{R}\left[u_{t} \phi+A\left(x, t, u, u_{x}\right) \phi_{x}+B\left(x, t, u, u_{x}\right) \dot{\phi}\right] d x d t=0 \tag{1.4}
\end{equation*}
$$

for any $\phi(x, t) \in H^{1,2}\left[0,2 r^{2} ; L^{2}\left(Q_{2 r}\right)\right] \cap L^{2}\left[0,2 r^{2} ; H_{o}^{1,2}\left(Q_{2 r}\right)\right]$.
Let $\quad R^{\prime}=\left\{(x, t)| | x_{i} \mid<2 \rho, 0<t<2 \rho^{2}\right\}$,
$R^{+}=\left\{(x, t)| | x_{i} \mid<k \rho, h^{+} \rho^{2}<t<2 \rho^{2}\right\}$,
$R^{-}=\left\{(x, t)| | x_{i} \mid<k \rho, h_{1}^{-} \rho^{2}<t<h_{2}^{-} \rho^{2}\right\}$
where $\rho, h_{1}^{-}, h_{2}^{-}, h^{+}$and k are arbitrary numbers such that $0<\rho \leqslant r, 0<h_{1}^{-}<h_{2}^{-}$ $<\frac{2}{3}, \frac{4}{3}<h^{+}<2$ and $0<k<\sqrt{\frac{2}{3}}$.

Then we can prove the following.
Theorem 1. If u is a non-negative weak solution of (1.1) in R, then

$$
\begin{equation*}
\max _{R^{-}} u \leqslant \gamma \min _{R^{+}}\{u+l(\rho)\}, \tag{1.5}
\end{equation*}
$$

where $l(\rho)=\rho^{\frac{\varepsilon}{n+\varepsilon}}\left\{\max _{t}\|e\| n+\varepsilon(t)+\max _{t}\|f\|_{\frac{n+\varepsilon}{2}}(t)+\left(\max _{t}\|g\|_{\frac{n+\varepsilon}{2}}(t)\right)^{\frac{1}{2}}+1\right\}$ and $\gamma>1$ is a constant depending only on $n, \varepsilon, \lambda, M, k, h_{1}^{-}, h_{2}^{-}, h^{+}$, and γ.

Remark. Moser [3] proved the Harnack inequality

$$
\begin{equation*}
\max _{R^{-}} u \leqslant \gamma \min _{R^{+}} u \tag{1.6}
\end{equation*}
$$

for every positive solution u of the uniformely parabolic equations

$$
\mathrm{Lu}=u_{t}-\sum_{i, j=1}^{n}\left(a_{i, j}(x, t) u_{x_{i}}\right)_{x_{j}}=0
$$

with measurable coefficients.
Theorem 1 does not imply the inequality (1.6). However, we can get (1.6) by the same argument as in the proof of Theorem 1.

Theorem 2. Every weak solution of (1.1) in R is bouoded in subdomain of R.

We shall give the proof of Theorem 1 in $\S 2$ and prove Theorem 2 in $\S 3$. In $\S 4$ we shall deal with the removable singularities for solutions of parabolic equations (1.1). (cf. [1]). These results are extensions of the results of Serrin [5], who considered the equation

$$
-\operatorname{div} \boldsymbol{A}\left(x, u, u_{x}\right)+B\left(x, u, u_{x}\right)=0 \quad \text { in } \Omega \subset E^{n},
$$

of elliptic type, where

$$
\begin{aligned}
& |\boldsymbol{A}(x, u, p)|<a|p|^{\alpha-1}+c|u|^{\alpha-1}+e \\
& |B(x, u, p)|<b|p|^{\alpha-1}+d|u|^{\alpha-1}+f \\
& p \cdot \boldsymbol{A}>|p|^{\alpha}-d|u|^{\alpha}-g
\end{aligned}
$$

for $x \in \Omega$. Here $\alpha>1$ is a fixed exponent, a is a positive constant and if $1<\alpha<n$, then

$$
\begin{equation*}
c, e \in L_{n /(\alpha-1)}, b \in L_{n /(1-\varepsilon)}, d . f, g \in L_{n /(\alpha-\varepsilon)} . \tag{1.7}
\end{equation*}
$$

Our conditions (1.3) with respect to the coefficients b, d, f, g correspond to the conditions (1.7) in the case $\alpha=2$.

We state two lemmas which will be often used in this paper.
Lemma 1. (Sobolev's Lemma) (cf. [4])
If $u \in H_{0}^{1,2}(\Omega)$, then

$$
\left(\int_{\Omega}|u|^{2 *} d x\right)^{\frac{1}{2} *} \leqslant K \sum_{i=1}^{n}\left(\int_{\Omega} u_{x_{i} d x}^{2}\right)^{\frac{1}{2}},
$$

where K is a positive constant depending only on n, and $\frac{1}{2^{*}}=\frac{1}{2}-\frac{1}{n}$.
Lemma 2. If $f(x, t)$ belongs to $L^{\infty}\left[0,2 r^{2} ; L^{q}\left(Q_{2 r}\right)\right]$ and if $\max _{0<t<2 r^{2}}\left(\int|f|^{q} d x\right)^{1 / q}$ $\leqslant M$ for $q>p$, then $f(x, t)$ can be written in the form $f(x, t)=f^{\prime}(x t)+f^{\prime \prime}(x, t)$, where $\max _{t}\left(\int_{Q_{2 r}}\left|f^{\prime \prime}\right|^{p} d x\right)^{1 / p} \leqslant \eta$ and $\sup _{R}\left|f^{\prime}\right| \leqslant K(\eta)$ for any $\eta>0$ and for a positivwe function $K(\eta)$ of η. Moreover $K(\eta)$ may be taken as the value $c(M) \eta^{-\frac{p}{q-p}}$, where $c(M)$ is a constant depending on M, p and q. (cf. [6])

Proof. We put

$$
f^{\prime}(x, t)= \begin{cases}k, & \text { if } k \leqslant f \\ f(x, t), & \text { if }|f|<k \\ -k, & \text { if } f \leqslant-k\end{cases}
$$

and $f^{\prime \prime}=f-f^{\prime}$. Then

$$
\left(\int_{Q_{2 r}}\left|f^{\prime \prime}\right|^{p} d x\right)^{1 / p} \leqslant 2\left(\int_{A_{k}(t)}|f|^{p} d x\right)^{1 / p} \leqslant 2\left(\int_{Q_{2 r}}|f|^{q} d x\right)^{1 / q}\left[\operatorname{meas}\left(A_{k}(t)\right)\right]^{1 / p-1 / q}
$$

where $A_{k}(t)=\left\{x \in Q_{2 r} \| f \mid>k\right\}$,
Since meas $\left(A_{k}(t)\right) \leqslant k^{-q} \int_{Q_{2 r}}|f|^{q} d x$, we have

$$
\left(\int_{Q_{2 r}} \left\lvert\, f^{\prime \prime}\left(\left.\right|^{p} d x\right)^{1 / p} \leqslant 2 M^{\frac{q}{p}} k^{1-\frac{q}{p}}\right.\right.
$$

The right hand side of this inequality does not depend on t. Therefore $\max _{0<t<2 r^{2}}\left(\int_{Q_{2 r}}\left|f^{\prime \prime}\right|^{p} d x\right)^{1 / p} \leqslant 2 M^{\frac{q}{p}} k^{1-\frac{q}{p}}$. From this we can easily verify the assertion of Lemma.

§2 Harnack's inequality.

In this section we give the proof of Theorem 1, i.e. (1.5), which Kurihara [2] recently has proved under the following conditions

$$
\begin{equation*}
b, c, e \in L^{\infty}\left[0,2 r^{2} ; L^{2 n}\left(Q_{2 r}\right)\right], \quad d, f, g \in L^{\infty}\left[0,2 r^{2} ; L^{n}\left(Q_{2 r}\right)\right] . \tag{2.1}
\end{equation*}
$$

If we prove lemmas corresponding to Lemmas 9 and 10 of Kurihara [2], then the proof of Theorem 1 can be completed, since the remaining part of the proof follows by the same method as Kurihara's.

First, we introduce some notation;

$$
\left\{\begin{array}{l}
R_{\rho \tau}=\left\{(x, t)| | x_{i} \mid<\rho,-\tau<t<0\right\} \tag{2.2}\\
H_{\rho \tau}(w)=\rho^{-n} \tau^{-1} \iint_{R_{\rho \tau}} w^{2}(x, t) d x d t \\
D_{\rho \tau}(w)=\rho^{-n+2} \tau^{-1} \iint_{R_{\rho \tau}}\left|w_{x}\right|^{2} d x d t \\
M_{\rho \tau}(w)=\rho^{-n} \max _{-\tau<t<0} \int_{Q_{\rho}} w^{2} d x
\end{array}\right.
$$

Lemma 2. 1. Assume that u is a non-negative weak solution of (1.1).
Let $v=(u+l(\rho))^{q} / 2$ and $R_{\rho^{\prime} \tau^{\prime}} \subset R_{\rho^{\prime} \tau^{\prime}}$,
(i) If $q>1$, then

$$
\begin{align*}
D_{\rho^{\prime} \tau^{\prime}}(v) \leqslant & c\left(\frac{q}{q-1}\right)^{\frac{2 n}{\varepsilon}+2} q^{\frac{2 n}{\varepsilon}+2}\left\{\frac{\rho^{\prime 2}}{\left(\rho-\rho^{\prime}\right)^{2}}+\frac{\rho^{\prime 2}}{\tau-\tau^{\prime}}+\rho^{\prime 2}+\frac{\rho^{\prime 2}}{\rho}+\frac{\rho^{\prime 2}}{\rho^{2}}\right\} \times \tag{2.3}\\
& \times\left(\frac{\rho}{\rho^{\prime}}\right)^{n}\left(\frac{\tau}{\tau^{\prime}}\right) H_{\rho \tau}(v)
\end{align*}
$$

$$
\begin{align*}
& M_{\rho^{\prime} \tau^{\prime}}(v) \leqslant c\left(\frac{q}{q-1}\right)^{\frac{2 n}{\varepsilon}+1} q^{\frac{2 n}{\varepsilon}+2}\left\{\frac{\tau^{\prime}}{\left(\rho-\rho^{\prime}\right)^{2}}+\frac{\tau^{\prime}}{\tau-\tau^{\prime}}+\tau^{\prime}+\frac{\tau^{\prime}}{\rho}+\frac{\tau^{\prime}}{\rho^{2}}\right\} \times \tag{2.4}\\
& \quad \times\left(\frac{\rho}{\rho^{\prime}}\right)^{n}\left(\frac{\tau}{\tau^{\prime}}\right) H_{\rho \tau}(v)
\end{align*}
$$

(ii) If $q<0$, then

$$
\begin{equation*}
D_{\rho^{\prime} \tau^{\prime}}(v) \leqslant c\left(1+|q|^{\frac{2 n}{\varepsilon}+2}\right)\left\{\frac{\rho^{\prime 2}}{\left(\rho-\rho^{\prime}\right)^{2}}+\frac{\rho^{\prime 2}}{\tau-\tau^{\prime}}+\rho^{\prime 2}+\frac{\rho^{\prime 2}}{\rho}+\frac{\rho^{\prime 2}}{\rho^{2}}\right\} \times \tag{2.5}
\end{equation*}
$$

$$
\times\left(\frac{\rho}{\rho^{\prime}}\right)^{n}\left(\frac{\tau}{\tau^{\prime}}\right) H_{\rho \tau}(v),
$$

$$
\begin{align*}
& M_{\rho^{\prime} \tau^{\prime}}(v) \leqslant c\left(1+|q|^{\frac{2 n}{\varepsilon}+2}\right)\left(\frac{q-1}{q}\right)\left\{\frac{\tau^{\prime}}{\left(\rho-\rho^{\prime}\right)^{2}}+\frac{\tau^{\prime}}{\tau-\tau^{\prime}}+\tau^{\prime}+\frac{\tau^{\prime}}{\rho}\right. \tag{2.6}\\
& \left.\quad+\frac{\tau^{\prime}}{\rho^{2}}\right\}\left(\frac{\rho}{\rho^{\prime}}\right)^{n}\left(\frac{\tau}{\tau^{\prime}}\right) H_{\rho \tau}(v)
\end{align*}
$$

Here c is a constant depending only on n, ε, λ and M.
Proof. Now we suppose that $q>1$. We put

$$
\bar{u}=u+l(\rho), \bar{c}=c+l(\rho)^{-1} e \quad \text { and } \quad \bar{d}=d+l(\rho)^{-1} f+l(\rho)^{-2} g .
$$

Then from (1.2) we have

$$
\left\{\begin{array}{l}
|\boldsymbol{A}(x, t, u, p)| \leqslant M|p|+\bar{c} \bar{u} \tag{2.7}\\
|B(x, t, u, p)| \leqslant b|p|+\bar{d} \bar{u} \\
p \boldsymbol{A}(x, t, u, p) \geqslant \lambda|p|^{2}-\bar{d} \bar{u}^{2}
\end{array}\right.
$$

and it is clear that $\bar{c} \in L^{\infty}\left\lceil 0,2 r^{2} ; L^{n+\varepsilon}\left(Q_{2 r}\right)\right]$ and $\bar{d} \in L^{\infty}\left[0,2 r^{2} ; L^{\frac{n+\varepsilon}{2}}\left(Q_{2 r}\right)\right]$.
We put $\phi(x, t)=q \bar{u}^{q-1} \psi(x, t)^{2}$, where $\psi \geqslant 0$ has compact support in Q_{ρ}. From (2.7) we see

$$
\begin{aligned}
& \phi u_{t}+\phi_{x} \boldsymbol{A}\left(x, t . u, u_{x}\right)+\phi B\left(x, t, u, u_{x}\right) \geqslant\left(v^{2} \psi^{2}\right)_{t}-2 v^{2} \psi \psi_{t}+4 \lambda \frac{q-1}{q} v_{x}^{2} \psi^{2}-q^{2} \bar{d} v^{2} \psi^{2} \\
& -4 M v\left|v_{x}\right| \psi\left|\psi_{x}\right|-2 q \bar{c} v^{2} \psi\left|\psi_{x}\right|-2 b v\left|v_{x}\right| \psi^{2}
\end{aligned}
$$

Thus we obtain

$$
\begin{align*}
& \iint_{R_{\rho \tau}}\left\{\left(v^{2} \psi^{2}\right)_{t}+4 \lambda \frac{q-1}{q} v_{x}^{2} \psi^{2}\right\} d x d t \tag{2.8}\\
\leqslant & \left.\iint_{R_{\rho \tau}} 2 v^{2} \psi\left|\psi_{t}\right|+4 M v\left|v_{x}\right| \psi\left|\psi_{x}\right|+2 b v\left|v_{x}\right| \psi^{2}+2 q \bar{c} v^{2}\left|\psi_{x}\right| \psi+q^{2} \bar{d} v^{2} \psi^{2}\right\} d x d t
\end{align*}
$$

By using Lemmas 1 and 2, we estimate each terms of (2.8).
First, we see

$$
\begin{align*}
& \iint_{R_{\rho \tau}} 4 M v\left|v_{x}\right| \psi\left|\psi_{x}\right| d x d t \leqslant 4 M\left\|v_{x} \psi\right\| \cdot\left\|v \psi_{x}\right\| \tag{2.9}\\
& \leqslant \frac{q-1}{q} \eta\left\|v_{x} \psi\right\|^{2}+\frac{q}{q-1} \frac{4 M^{2}}{\eta}\left\|v \psi_{x}\right\|^{2}
\end{align*}
$$

for any $\eta>0$. Here $\|f\|=\left(\iint_{R_{\rho \tau}} f^{2} d x d t\right)^{1 / 2}$,
Next, we have

$$
\begin{aligned}
& \int_{Q_{\rho}} 2 b \psi^{2} v\left|v_{x}\right| d x=2 \int_{Q_{\rho}}\left|b^{\prime}+b^{\prime \prime}\right| \Psi^{2} v\left|v_{x}\right| d x \\
& \leqslant 2 \sup \left|b^{\prime}\right| \cdot\left\|v_{x} \psi\right\|_{2}(t) \cdot\|v \psi\|_{2}(t)+2\left\|b^{\prime \prime}\right\|_{n}(t) \cdot\left\|v_{x} \psi\right\|_{2}(t) \cdot\|v \psi\|_{2}^{*}(t) \\
& \leqslant 2 B_{\eta^{\prime}}\left\|v_{x} \psi\right\|_{2}(t) \cdot\|v \psi\|_{2}(t)+2 \eta^{\prime}\left\|v_{x} \psi\right\|_{2}(t) \cdot\|v \psi\|_{2}^{*}(t) \\
& \leqslant \frac{q-1}{q} \eta\left\|v_{x} \psi\right\|_{2}^{2}(t)+\frac{q}{q-1} \frac{B_{\eta^{\prime}}^{2}}{\eta}\|v \psi\|_{2}^{2}(t)+2 \eta^{\prime} K\left\|v_{x} \psi\right\|_{2}(t) \cdot\left\|(v \psi)_{x}\right\|_{2}(t) \\
& \leqslant \frac{q-1}{q} \eta\left\|v_{x} \psi\right\|_{2}^{2}(t)+\frac{q}{q-1} \frac{B_{\eta^{\prime}}^{2}}{\eta}\|v \psi\|_{2}^{2}(t)+4 \eta^{\prime} K\left\|v_{x} \psi\right\|_{2}^{2}(t)+2 \eta^{\prime} K\left\|v \psi_{x}\right\|_{2}^{2}(t)
\end{aligned}
$$

for an arbitrary positive constant η. We put $B_{\eta^{\prime}}=\left(\frac{q}{q-1}\right)^{\frac{n}{\varepsilon}} c(\eta)$, where $\eta^{\prime}=\frac{q-1}{q}$ and $c(\eta)$ depends only on ε, n, M and η. Then we have

$$
\begin{align*}
& \iint_{R_{\rho \tau}} 2 b \psi^{2} v\left|v_{x}\right| d x d t<\left(\frac{q-1}{q}\right)(1+4 K) \eta\left\|v_{x} \psi\right\|^{2} \tag{2.10}\\
& \quad+c(\eta)\left(\frac{q}{q-1}\right)^{\frac{2 n}{\epsilon}+1}\|v \psi\|^{2}+2\left(\frac{q-1}{q}\right) K \eta\left\|v \psi_{x}\right\|^{2} .
\end{align*}
$$

Now we put

$$
\begin{aligned}
& \iint_{R_{\rho \tau}} 2 q \bar{c} v^{2} \psi\left|\psi_{x}\right| d x d t=\iint_{R_{\rho \tau}} 2 q c v^{2} \psi\left|\psi_{x}\right| d x d t+\iint_{R_{\rho \tau}} 2 q l(\rho)^{-1} e v^{2} \psi\left|\psi_{x}\right| d x d t \\
& \quad=C+E .
\end{aligned}
$$

Similarly as above, we see

$$
\begin{aligned}
& \int 2 q c v^{2} \psi\left|\psi_{x}\right| d x \leqslant 2 q C_{\eta^{\prime}}\|v \psi\|_{2}(t) \cdot\left\|v \psi_{x}\right\|_{2}(t)+2 q \eta^{\prime}\left\|v \psi_{x}\right\|_{2}(t) \cdot\|v \psi\|_{2}^{*}(t) \\
& \leqslant 2 q C_{\eta^{\prime}}\|v \psi\|_{2}^{2}(t)+2 q C_{\eta^{\prime}}\left\|v \psi_{x}\right\|_{2}^{2}(t)+2 q \eta^{\prime} K\left\|v_{x} \psi\right\|_{2}^{2}(t)+4 q \eta^{\prime} K\left\|v \psi_{x}\right\|_{2}^{2}(t) .
\end{aligned}
$$

Here we put $\quad \eta^{\prime}=\frac{q-1}{q} \eta q^{-1}$. Then by Lemma 2 we may put $C_{\eta^{\prime}}=\left(\frac{q}{q-1}\right)^{\frac{n}{\varepsilon}} q^{\frac{n}{\varepsilon}} c(\eta)$. Thus we obtain

$$
\begin{aligned}
& C \leqslant 2\left(\frac{q-1}{q}\right) \eta K\left\|v_{x} \psi\right\|^{2}+c(\eta)\left(\frac{q}{q-1}\right)^{\frac{n}{\epsilon}} q^{\frac{n}{\varepsilon}+1}\|v \psi\|^{2} \\
& +\left[c(\eta)\left(\frac{q}{q-1}\right)^{\frac{n}{\varepsilon}} q^{\frac{n}{\varepsilon}+1}+4\left(\frac{q-1}{q}\right) K \eta\right]\|v \psi\|^{2}
\end{aligned}
$$

Similarly we have

$$
\begin{aligned}
& E \leqslant 2\left(\frac{q-1}{q}\right) \eta K\left\|v_{x} \psi\right\|^{2}+c(\eta)\left(\frac{q}{q-1}\right)^{\frac{2 n}{\varepsilon}} q^{\frac{2 n}{\varepsilon}+1} l(\rho)^{-\frac{n+\varepsilon}{\varepsilon}}\|v \psi\|^{2} \\
&+ {\left[q+4 \frac{q-1}{q} \eta K\right]\left\|v \psi_{x}\right\|^{2} . }
\end{aligned}
$$

Therefore we obtain

$$
\begin{align*}
& 2 q \iint_{R_{\rho \tau}} \bar{c} v^{2} \psi\left|\psi_{x}\right| d x d t \leqslant 4\left(\frac{q-1}{q}\right) \eta K\left\|v_{x} \psi\right\|^{2} \tag{2.11}\\
& \quad+c(\eta)\left(\frac{q}{q-1}\right)^{\frac{2 n}{\varepsilon}} q^{\frac{2 n}{\varepsilon}+1}\left(1+l(\rho)^{-2 \frac{n+\varepsilon}{\varepsilon}}\right)\|v \psi\|^{2} \\
& \quad+c(\eta)\left(\frac{q}{q-1}\right)^{\frac{n}{\varepsilon}} q^{\frac{n}{\varepsilon}+1}\left\|v \psi_{x}\right\|^{2}
\end{align*}
$$

Here we have used the fact that $0<\frac{q-1}{q}<1<\frac{q}{q-1}$ for $q>1$.
Finally we consider

$$
\begin{gathered}
\iint_{R_{\rho \tau}} q^{2} \bar{d} \psi^{2} v^{2} d x d t=\iint_{R_{\rho \tau}} q^{2} d \psi^{2} v^{2} d x d t+\iint_{R_{\rho \tau}} q^{2} l(\rho)^{-1} f \psi^{2} v^{2} d x d t \\
\quad+\iint_{R_{\rho \tau}} q^{2} l(\rho)^{-2} g \psi^{2} v^{2} d x d t=D+F+G
\end{gathered}
$$

We observe

$$
\int q^{2} d \psi^{2} v^{2} d x \leqslant q^{2} D_{\eta^{\prime}}\|v \psi\|_{2}^{2}(t)+2 q^{2} \eta^{\prime} K^{2}\left\|v_{x} \psi\right\|_{2}^{2}(t)+2 q^{2} \eta^{\prime} K^{2}\left\|v \psi_{x}\right\|_{2}^{2}(t)
$$

where $\quad \eta^{\prime}=\frac{q-1}{q} \eta \frac{1}{q^{2}} \quad$ and $\quad D_{\eta^{\prime}}=\left(\frac{q}{q-1}\right)^{\frac{n}{\varepsilon}} q^{\frac{2 n}{\varepsilon}} c(\eta)$.

So we have

$$
D \leqslant 2\left(\frac{q-1}{q}\right) K^{2} \eta\left\|v_{x} \psi\right\|^{2}+c(\eta)\left(\frac{q}{q-1}\right)^{\frac{n}{\epsilon}} q^{\frac{2 n}{\varepsilon}+2}\|v \psi\|^{2}+2\left(\frac{q-1}{q}\right) K^{2} \eta\left\|v \psi_{x}\right\|^{2} .
$$

Similarly, we have

$$
\begin{aligned}
& \begin{aligned}
& F \leqslant 2\left(\frac{q-1}{q}\right) K^{2} \eta\left\|v_{x} \psi\right\|^{2}+c(\eta)\left(\frac{q}{q-1}\right)^{\frac{n}{\epsilon}} q^{\frac{2 n}{\varepsilon}+2} l(\rho)^{-\frac{n+\varepsilon}{\varepsilon}}\|\psi v\|^{2} \\
&+2\left(\frac{q-1}{q}\right) K^{2} \eta\left\|v \psi_{x}\right\|^{2} \\
&\left.G \leqslant 2\left(\frac{q-1}{q}\right) K^{2} \eta\left\|v_{x} \psi\right\|^{2}+c(\eta)\left(\frac{q}{q-1}\right)^{\frac{n}{\epsilon}} q^{\frac{2 n}{\varepsilon}+2} l(\rho)^{-2\left(\frac{n+\varepsilon}{\varepsilon}\right.}\right)\|v \psi\|^{2} \\
&+2\left(\frac{q-1}{q}\right) K^{2} \eta\left\|v \psi_{x}\right\|^{2} .
\end{aligned}
\end{aligned}
$$

Therefore, using the fact that $0<\frac{q-1}{q}<1<\frac{q}{q-1}$ for $q>1$, we obtain
(2.12) $\iint_{R_{\rho \tau}} q^{2} \bar{d} v^{2} \psi^{2} d x d t \leqq 6\left(\frac{q-1}{q}\right) K^{2} \eta\left\|v_{x} \psi^{2}\right\|+c(\eta)\left(\frac{q}{q-1}\right)^{\frac{n}{\varepsilon}} q^{\frac{2 n}{\varepsilon}+2}\left(1+l(\rho)^{-\frac{n+\varepsilon}{\epsilon}}\right.$

$$
\left.+l(\rho)^{-2\left(\frac{n+\varepsilon}{\varepsilon}\right)}\right)\|v \psi\|^{2}+6\left(\frac{q-1}{q}\right) K^{2} \eta\left\|v \phi_{x}\right\|^{2} .
$$

It follows from (2.9) $\sim(2.12)$ that

$$
\begin{aligned}
& \iint_{R_{\rho \tau}}\left(v^{2} \psi^{2}\right)_{t} d x d t+\left(\frac{q-1}{q}\right)\left\{4 \lambda-\left(2+8 K+6 K^{2}\right) \eta\right\} \iint_{R_{\rho \tau}} v_{x}^{2} \psi^{2} d x d t \\
& \quad \leqslant c(\eta)\left\{\left(\frac{q}{q-1}\right)^{\frac{2 n}{\varepsilon}+1} q^{\frac{2 n}{\varepsilon}+2}\left(1+l(\rho)^{-\frac{n+\varepsilon}{\varepsilon}}+l(\rho)^{-\frac{2(n+\varepsilon)}{\varepsilon}}\right) \iint_{R_{\rho \tau}} v^{2} \psi^{2} d x d t\right. \\
& \left.\quad+\left(\frac{q}{q-1}\right)^{\frac{2 n}{\varepsilon}+1} q^{\frac{2 n}{\varepsilon}+2} \iint_{R_{\rho \tau}} v^{2} \psi^{2} d x d t+\iint_{R_{\rho \tau}} v^{2} \psi\left|\psi_{t}\right| d x d t\right\} .
\end{aligned}
$$

Denoting that

$$
\begin{aligned}
& l(\rho)^{-\frac{n+\varepsilon}{\varepsilon}}=\left[\rho ^ { \frac { \varepsilon } { n + \varepsilon } } \left\{\max \|e\|_{n+\varepsilon}(t)+\max \|f\|_{\frac{n+\varepsilon}{2}}(t)\right.\right. \\
& \left.\left.+\left(\max \|g\|_{\frac{n+\varepsilon}{2}}(t)\right)^{1 / 2}+1\right\}\right]^{-\frac{n+\varepsilon}{\varepsilon}} \leqslant \rho^{-1}
\end{aligned}
$$

and putting $\eta=\frac{3 \lambda}{2+8 K+6 K^{2}}$, we have

$$
\begin{align*}
& \iint_{R_{\rho \tau}}\left(v^{2} \psi^{2}\right)_{t} d x d t+\lambda\left(\frac{q-1}{q}\right) \iint_{R_{\rho \tau}} v_{x}^{2} \psi^{2} d x d t \tag{2.13}\\
& \leqslant c_{1}\left(\frac{q}{q-1}\right)^{\frac{2 n}{\varepsilon}+1} q^{\frac{2 n}{\varepsilon}+2} \iint_{R_{\rho \tau}} v^{2}\left[\psi\left|\psi_{t}\right|+\psi_{x}^{2}+\psi^{2}\left(1+\rho^{-1}+\rho^{-2}\right)\right] d x d t
\end{align*}
$$

We define $\psi(x, t)=\psi_{1}(|x|) \cdot \psi_{2}(t)$, where

$$
\psi_{1}(x)=\left\{\begin{array}{ll}
0 & \text { if }|x| \geqslant \rho \\
\frac{\rho-x}{\rho-\rho^{\prime}} & \text { if } \rho^{\prime}<|x|<\rho, \\
1 & \text { if }|x|<\rho^{\prime},
\end{array} \text { and } \psi_{2}(t)= \begin{cases}0 & \text { if } t \leqslant-\tau \\
\frac{\tau-t}{\tau-\tau^{\prime}} & \text { if }-\tau<t<-\tau^{\prime} \\
1 & \text { if }-\tau^{\prime} \leqslant t<0\end{cases}\right.
$$

Then we have

$$
\psi\left|\psi_{t}\right|+\psi_{x}^{2}+\psi^{2}\left(1+\rho^{-1}+\rho^{-2}\right) \leqslant c\left\{\frac{1}{\left(\rho-\rho^{\prime}\right)^{2}}+\frac{1}{\tau-\tau^{\prime}}+1+\frac{1}{\rho}+\frac{1}{\rho^{2}}\right\} .
$$

Therefore we obtain

$$
\begin{align*}
& \text { 4) } \quad \iint_{R_{\rho^{\prime} \tau^{\prime}}}\left(v^{2}\right)_{t} d x d t+\lambda\left(\frac{q-1}{q}\right) \iint_{R_{\rho^{\prime} \tau^{\prime}}} v_{x}^{2} d x d t \tag{2.14}\\
& \leqslant c_{2}\left(\frac{q}{q-1}\right)^{\frac{2 n}{\varepsilon}+1} q^{\frac{2 n}{\varepsilon}+2}\left\{\frac{1}{\left(\rho-\rho^{\prime}\right)^{2}}+\frac{1}{\tau-\tau^{\prime}}+1+\frac{1}{\rho}+\frac{1}{\rho^{2}}\right\} \iint_{R_{\rho} \tau} v^{2} d x d t .
\end{align*}
$$

Using this, we can get (2.3) and (2.4) in the quite similar manner to Kurihara's [2].

We also obtain (2.5) and (2.6) in the similar manner.
Lemma 2.2. Let u be a non-negative weak solution of (1.1) and let $v=\bar{u}(x,-t)^{q / 2}=(u(x,-t)+l(\rho))^{q} /{ }^{2}$ for $0<q<1$. Then for $R_{\rho^{\prime} \tau^{\prime}} \subset R_{\rho \tau}$

$$
\begin{align*}
D_{\rho^{\prime} \tau^{\prime}}(v) & \leqslant c\left\{\left(\frac{q}{q-1}\right)^{\frac{2 n}{\varepsilon}+2}+1\right\}\left\{\frac{\rho^{\prime 2}}{\left(\rho-\rho^{\prime}\right)^{2}}+\frac{\rho^{\prime 2}}{\tau-\tau^{\prime}}+\rho^{\prime 2}+\frac{\rho^{\prime 2}}{\rho}+\frac{\rho^{\prime 2}}{\rho^{2}}\right\} \times \tag{2.15}\\
& \times\left(\frac{\rho}{\rho^{\prime}}\right)^{n}\left(\frac{\tau}{\tau^{\prime}}\right) H_{\rho \tau}(v), \\
M_{\rho^{\prime} \tau^{\prime}}(v) & \leqslant c\left\{\left(\frac{q}{1-q}\right)^{\frac{2 n}{\varepsilon}+1}+\left(\frac{1-q}{q}\right)\right\}\left\{\frac{\tau^{\prime}}{\left(\rho-\rho^{\prime}\right)^{2}}+\frac{\tau^{\prime}}{\tau-\tau^{\prime}}+\tau^{\prime}+\frac{\tau^{\prime}}{\rho}\right. \tag{2.16}\\
& \left.+\frac{\tau^{\prime}}{\rho^{2}}\right\}\left(\frac{\rho}{\rho^{\prime}}\right)^{n}\left(\frac{\tau}{\tau^{\prime}}\right) H_{\rho \tau}(v) .
\end{align*}
$$

This lemma is obtained by the same calculations as in the proof of Lemma 2. 1. Hence we omit the proof here.

As stated in the beginning of this section, the above two lemmas imply Theorem 1.

§3. Boundedness of weak solutions.

To prove Theorem 2, we put

$$
F(\bar{u})= \begin{cases}\bar{u}^{q} & \text { if } \bar{u}<l \\ q l^{q-1} \bar{u}-(q-1) l^{q} & \text { if } \bar{u}>l\end{cases}
$$

and

$$
G(u)=\operatorname{sign} u\left\{F(\bar{u}) F^{\prime}(\bar{u})-q\right\}
$$

for $l>1$ and $q>1$. Here $\bar{u}=|u|+1$.
At first, we prove the following lemma,
Lemma 3. 1. Let u be a weak solution of (1.1) in $R_{2 \rho, 2 \rho^{2}}$. Then, for $q>1$,

$$
\begin{equation*}
D_{\rho^{\prime} \tau^{\prime}}(v) \leqslant c q^{\frac{n}{\epsilon}+2}\left\{\frac{\rho^{\prime 2}}{\left(\rho-\rho^{\prime}\right)^{2}}+\frac{\rho^{\prime 2}}{\tau-\tau^{\prime}}+\rho^{\prime 2}\right\}\left(\frac{\rho}{\rho^{\prime}}\right)^{n}\left(\frac{\tau}{\tau^{\prime}}\right) H_{\rho \tau}(v), \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
M_{\rho^{\prime} \tau^{\prime}}(v) \leqslant c q^{\frac{n}{\varepsilon}+2}\left\{\frac{\tau^{\prime}}{\left(\rho-\rho^{\prime}\right)^{2}}+\frac{\tau^{\prime}}{\tau-\tau^{\prime}}+\tau^{\prime}\right\}\left(\frac{\rho}{\rho^{\prime}}\right)^{n}\left(\frac{\tau}{\tau^{\prime}}\right) H_{\rho \tau}(v), \tag{3.2}
\end{equation*}
$$

where $F=v$ and c is a constant depending on M, ε, n and λ.
Proof. We put $\bar{c}=c+e$ and $\bar{d}=d+f+g$. Then from (1.2), we see

$$
\left\{\begin{array}{l}
|\boldsymbol{A}(x, t, u, p)| \leqslant M|p|+\bar{c}|\bar{u}| \tag{3.3}\\
|B(x, t, u, p)| \leqslant b|p|+\bar{d}|\bar{u}| \\
p \boldsymbol{A}(x, t, u, p) \geqslant \lambda|p|^{2}-\bar{d}|\bar{u}|^{2}
\end{array}\right.
$$

We take $\phi=\psi^{2} G$ as the test function in (1.4), where ψ is a non-negative, piecewise differentiable function with support in $\rho=\left\{x| | x_{i} \mid<\rho(<r)\right\}$ and $\psi(x, t)=0$ for $t \leqslant-\tau$. Since u is a weak solution of (1.1), we have

$$
\iint_{R_{\rho \tau}}\left[\psi G u_{t}+\left(\psi^{2} G\right)_{x} \boldsymbol{A}+\psi^{2} G B\right] d x d t=0
$$

where

$$
\begin{gathered}
\psi^{2} G u_{t}+\left(\psi^{2} G\right)_{x} \boldsymbol{A}+\psi^{2} G B=\psi^{2} \operatorname{sign} u\left\{F F^{\prime}-q\right\} u_{t}+2 \psi \psi_{x} \operatorname{sign} u\left\{F F^{\prime}-q\right\} \boldsymbol{A} \\
+\psi^{2} u_{x} G^{\prime} \boldsymbol{A}+\psi^{2} \operatorname{sign} u\left\{F F^{\prime}-q\right\} B \\
\geqslant \psi^{2} v v_{t}+\lambda \psi^{2} v_{x}^{2}-2 M\left|v_{x} \psi\right| \cdot\left|v \psi_{x}\right|-b\left|v_{x} \psi\right| \cdot|v \psi|-2 q \bar{c}|v \psi| \cdot\left|v \psi_{x}\right|-2 q^{2} \bar{d} \psi^{2} v^{2} .
\end{gathered}
$$

Here we used the fact that

$$
G^{\prime}(u)= \begin{cases}\left(F^{\prime}\right)^{2} \cdot \frac{2 q-1}{q} & \text { if }|u|<l-1 \\ \left(F^{\prime}\right)^{2} & \text { if }|u|>l-1\end{cases}
$$

and $\bar{u} F^{r}<q^{\cdot} F$.
Hence we have

$$
\begin{align*}
\iint_{R_{\rho, \tau}}[& \left.\frac{1}{2}\left(\psi^{2} v^{2}\right)_{t}+\lambda \psi^{2} v_{x}^{2}\right] d x d t \leqslant \iint_{R_{\rho \tau}}\left[2 M\left|\psi v_{x}\right|\left|\psi_{x} v\right|+b\left|\psi v_{x}\right| \cdot|\psi v|\right. \tag{3,4}\\
& \left.+2 q \bar{c}|\psi v|\left|\psi_{x} v\right|+2 q^{2} \bar{d} \psi^{2} v^{2}+v^{2}\left|\psi \psi_{t}\right|\right] d x d t .
\end{align*}
$$

We estimate each terms of (3.4). First we get

$$
\begin{equation*}
\iint_{R_{\rho \tau}} 2 M\left|\psi v_{x}\left\|\psi_{x} v \mid d x d t \leqslant 2 M\right\| \psi v_{x}\|\cdot\| \psi_{x} v\|\leqslant \eta\| \psi v_{x}\left\|^{2}+\frac{4 M^{2}}{\eta}\right\| \psi_{x} v \|^{2} .\right. \tag{3.5}
\end{equation*}
$$

Further we see

$$
\begin{aligned}
& \int b\left|\psi v_{x}\right| \cdot|\psi v| d x \leqslant B_{\eta} \cdot\left\|\psi v_{x}\right\|_{2}(t)\|\psi v\|_{2}(t)+\eta\left\|\psi v_{x}\right\|_{2}(t) \cdot\|\psi v\|_{2}^{*}(t) \\
& \leqslant \eta\left\|\psi v_{x}\right\|_{2}^{2}(t)+\frac{B^{2} \eta}{\eta}\|\psi v\|_{2}^{2}(t)+2 K \eta\left\|\psi v_{x x}\right\|_{2}^{2}(t)+K \eta\left\|\psi_{x} v\right\|_{2}^{2}(t) .
\end{aligned}
$$

Thus we obtain

$$
\begin{equation*}
\iint_{R_{\rho \tau}} b\left|\psi v_{x}\right| \cdot|\psi v| d x d t \leqslant(1+2 K)_{\eta}\left\|\psi v_{x}\right\|^{2}+\frac{B^{2} \eta}{\eta}\|\psi v\|^{2}+\eta K\left\|\psi_{x} v\right\|^{2} . \tag{3.6}
\end{equation*}
$$

Similarly

$$
\int 2 q \bar{c}|\psi v| \cdot\left|\psi_{x} v\right| d x \leqslant 2 q C_{n^{\prime}}\|\psi v\|_{2}(t)\left\|\psi_{x} v\right\|_{2}(t)+2 q \eta^{\prime}\|\psi v\|_{2}^{*}(t)\left\|\psi_{x} v\right\|_{2}(t)
$$

where $\quad \eta^{\prime}=\frac{1}{q} \eta$ and $C_{\eta^{\prime}}=c(\eta) q^{\frac{\eta}{\varepsilon}}$.
Thus we obtain
(3. 7)

$$
\begin{gathered}
\iint_{R_{\rho \tau}} 2 q \bar{c}|\psi v| \cdot\left|\psi_{x} v\right| d x d t \leqslant 2 K_{\eta}\left\|v_{x} \psi\right\|^{2}+c(\eta) q^{\frac{n}{\varepsilon}}+1\|\psi v\|^{2} \\
+\left[c(\eta) q^{\frac{n}{\epsilon}+1}+4 K_{\eta}\right]\left\|\psi_{x} v\right\|^{2} .
\end{gathered}
$$

Similarly

$$
\begin{equation*}
\iint_{R_{\rho \tau}} 2 q^{2} \bar{d} \psi^{2} v^{2} d x d t \leqslant 4 K^{2} \eta\left\|\psi v_{x}\right\|^{2}+c(\eta) q^{\frac{n}{\varepsilon}+2}\|\psi v\|^{2}+4 K^{2} \eta\left\|\psi_{x} v\right\|^{2} . \tag{3.8}
\end{equation*}
$$

It follows immediately from (3.5) $\sim(3.8)$ that

$$
\begin{align*}
& \iint_{R_{\rho \tau}}\left[\frac{1}{2}\left(v^{2} \psi^{2}\right)_{t}+\left\{\lambda-\left(4 K^{2}+4 K+2\right) \eta\right\} v_{x}^{2} \psi^{2}\right] d x d t \tag{3.9}\\
& \quad \leqslant c_{1} q^{\frac{n}{\varepsilon}}+2 \iint_{R_{\rho \tau}}\left(\psi^{2}+\psi_{x}^{2}+\left|\psi \psi_{t}\right|\right) v^{2} d x d t \tag{3.9}
\end{align*}
$$

Putting $\quad \eta=\frac{\lambda}{2\left(4 K^{2}+4 K+2\right)}$, we see from

$$
\begin{equation*}
\iint_{R_{\rho \tau}}\left[\left(v^{2} \psi^{2}\right)_{t}+\lambda \psi^{2} v_{x}^{2}\right] d x d t \leqslant 2 c_{1} q^{\frac{n}{\epsilon}}+2 \iint_{R_{\rho \tau}}\left(\psi^{2}+\psi_{x}^{2}+\left|\psi \psi_{t}\right|\right) v^{2} d x d t . \tag{3.10}
\end{equation*}
$$

From this we obtain (3.1) and (3.2). We thus obtain Lemma 3. 1.
If we let l tend to ∞, then v tends to \bar{u}^{q}. Therefore by letting $l \rightarrow \infty$ in (3.1) and (3.2), and taking ψ as in the proof of Theorem 1, we get

$$
\begin{equation*}
D_{\rho^{\prime} \tau^{\prime}\left(\bar{u}^{q / 2}\right)} \leqslant c q^{\frac{n}{\varepsilon}+2}\left\{\frac{\rho^{\prime 2}}{\left(\rho-\rho^{\prime}\right)^{2}}+\frac{\rho^{\prime 2}}{\tau-\tau^{\prime}}+\rho^{\prime 2}\right\}\left(\frac{\rho}{\rho^{\prime}}\right)^{n}\left(\frac{\tau}{\tau^{\prime}}\right) H_{\rho \tau}\left(\bar{u}^{q / 2}\right), \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
M_{\rho^{\prime} \tau^{\prime}\left(\bar{u}^{q / 2}\right)} \leqslant c q^{\frac{n}{\varepsilon}+2}\left\{\frac{\tau^{\prime}}{\left(\rho-\rho^{\prime}\right)^{2}}+\frac{\tau^{\prime}}{\tau-\tau^{\prime}}+\tau^{\prime}\right\}\left(\frac{\rho}{\rho^{\prime}}\right)^{n}\left(\frac{\tau}{\tau^{\prime}}\right) H_{\rho \tau}\left(\bar{u}^{q / 2}\right) \tag{3.2}
\end{equation*}
$$

It follows from (3.1)' and (3.2)' that we have

$$
\begin{equation*}
\max _{R_{k^{\prime} \rho, h^{\prime} \rho^{2}}} u \leqslant\left(\frac{1}{\left|R_{k \rho, h \rho^{2} \mid}\right|} \iint_{R_{k \rho}, \hbar \rho^{2}} \bar{u}^{q} d x d t\right)^{1 / q} \tag{3.11}
\end{equation*}
$$

for $q \geqslant q^{\prime}>1,0<k^{\prime}<k \leqslant 2$ and $0<h^{\prime}<h \leqslant 2$. Here $r \geqslant 1$ is a constant depending only on $n, \varepsilon, \lambda, M, k, k^{\prime}, h^{\prime}, h, q^{\prime}$ and r. (cf. [2]). Hence we have Theorem 2.

Corollary. Let u be a weak solution of (1.1) in R. Then u is Hölder continuous in any compact subset of R (cf. [3]).

§4. Removable singularities.

First we introduce some notations and definition. Let $U(Q)$ be the class of functions $\psi=\psi(x, t)$ such that $\psi \in C^{1}\left(E^{n} \times E^{1}\right), \psi \equiv 1$ in a neighborhood of $Q, \psi \equiv 0$ outside some fixed sphere in E^{n} and $0 \leqslant \psi \leqslant 1$. Here Q is a compact set in the $(n+1)$-dimensional ($x, t)$-space $E^{n} \times E^{1}$.

We say that Q is an (α, β)-null set if

$$
\begin{equation*}
\inf _{\phi \in U(Q)}\left[\int_{I}\left\{\int_{E^{n}}\left(\left|\psi_{x}\right|^{2}+\psi_{t}^{-}\right)^{\alpha / 2} d x\right\}^{\beta / \alpha} d t\right]^{1 / \beta}=0 \tag{4.1}
\end{equation*}
$$

where $\alpha \geqslant 2, \beta \geqslant 2$, and I is a bounded open interval in E^{1} such that $Q \subset E^{n} \times I$ and $\psi_{t}^{-}=\max \left(0,-\psi_{t}\right)$ (cf. [1]).

We can prove the following.

Theorem 3. Let Q be an (α, β)-null set for some $2 \leqslant \alpha \leqslant n$ and $\beta \geqslant 2$. Let
 and
(4. 2) $u \in L^{b}\left[-2 r^{2}, 0 ; L^{a}\left(Q_{2 r}\right)\right]$ with $a=\frac{\alpha}{\alpha-2}(1+\theta)$ and $b=\frac{\beta}{\beta-2}(1+\theta)$ for some $\theta(0<\theta<1)$. We take $a=\infty$ when $\alpha=2$, and $b=\infty$ when $\beta=2$. Then u can be defined over Q so that the resulting function satisfies (1.4) throughout $R_{2 r, 2 r^{2}}$ and u is Hölder continuous in any compacrt subset of $R_{2 r, 2 r^{2}}$.

Proof. It suffices to show that u can be made a continuous solution in the neighborhood of any point in $R_{2 r, 2 r^{2}}$. Let $P^{\prime}\left(x^{\prime}, y^{\prime}\right)$ be in $R_{2 r, 2 r^{2}}$ and let $R_{\rho}\left(P^{\prime}\right)=\left\{P(x, t)\left|\left\|\left|P-P^{\prime} \|\right|<2 \rho\right\}\right.\right.$ be such that $R_{\rho}\left(P^{\prime}\right)$ is in $R_{2 r, 2 r^{2}}$,
where $\left\|\|P\|= \begin{cases}\max \left\{x_{1}, \ldots \ldots, x_{n}, \sqrt{-2 t}\right\} & \text { if } t \leqslant 0, \\ \infty & \text { if } t>0\end{cases}\right.$
and $P=(x, t)=\left(x_{1}, \ldots \ldots, x_{n} ; t\right)$.
By a suitable parallel transformation of variables it may supposed that $P^{\prime}=(0,0)$ and $R_{\rho}^{\prime}(P)=\left\{(x, t)| | x_{i} \mid<2 \rho,-2 \rho^{2}<t<0\right\}=R_{2 \rho, 2 \rho^{2}}$. As in the proof of Theorem 2, we put $\bar{u}=|u|+1$ for $(x, t) \in R_{2 r, 2 r^{2}-Q}$.

We now introduce an appropriate test function $\phi(x, t)$. Let $\bar{\psi}$ and ψ be nonnegative smooth functions, ψ having compact support in $Q_{\rho}=\left\{x| | x_{i} \mid<\rho\right\}$ with respect to x and $\psi(x, t)=0$ for $t \leqslant-\rho^{2}$, and $\bar{\psi}$ vanishing in some neighborhood of Q. Let

$$
\phi(x, t)=(\psi \bar{\psi})^{2} \operatorname{sign} u\left\{\bar{u}^{u^{q-1}}-1\right\} \times q
$$

for $q \geqslant q_{0}>\frac{1}{2}$.
By the same manner as in the proof of Lemma 2.1 or 3.1, it follows that

$$
\begin{gather*}
\int v^{2}(\psi \bar{\psi})^{2} d x+\lambda\left(\frac{2 q-1}{q}\right) \iint_{R_{2 \rho}, 2 \rho^{2}-Q} v_{x}^{2}(\psi \bar{\psi})^{2} d x d t \tag{4.3}\\
\leqslant c_{1} q^{\frac{2 n}{\varepsilon}}+2 \iint_{R_{2} \rho, 2 \rho^{2}-Q}\left[(\psi \bar{\psi})^{2}+(\psi \bar{\psi})_{x}^{2}\right] v^{2} d x d t+\iint_{R_{2 \rho}, 2 \rho^{2}-Q}(\psi \bar{\psi})(\psi \bar{\psi})_{t} v^{2} d x d t
\end{gather*}
$$

Here $v=\bar{u}^{q}\left(q \geqslant q_{0}>\frac{1}{2}\right)$.
Now, we use the following lemma (cf. [1]).

Lemma 4.1. If Q is an (α, β)-null set for some $2 \leqslant \alpha \leqslant n$ and $\beta \geqslant 2$, then Q is of measure zero and there exists a sequence $\eta^{\nu} \in U(Q)$ such that $\eta^{\nu} \rightarrow 0$ almost evervwhere in $E^{n} \times I$ as $\nu \rightarrow \infty$.

We replace $\bar{\psi}$ in (4.1) by the elements $\bar{\psi}^{\nu}=1-\eta^{\nu}$ Then $\bar{\psi}^{\nu}=0$ in the neighborhood of Q and $\bar{\psi}^{\nu} \rightarrow 1$ almost everytwhere as $\nu \rightarrow \infty$. Since

$$
\left(\psi \bar{\psi}^{\nu}\right)\left(\psi \bar{\psi}^{\nu}\right)_{t}=\left(\psi \psi_{t}\right)\left(\bar{\psi}^{\nu}\right)^{2}+\psi^{2}\left(\bar{\psi}^{\nu} \bar{\psi}_{t}\right) \leqslant\left|\psi \psi_{t}\right|\left(\bar{\psi}^{\nu}\right)^{2}+\psi^{2}\left(\eta^{\nu}\right)_{t}^{-}
$$

and since

$$
\left(\psi \bar{\psi}^{\nu}\right)_{x}^{2}=\left(\psi_{x} \bar{\psi}^{\nu}+\psi\left(-\eta_{x}^{\nu}\right)\right)^{2} \leqslant 2 \psi_{x}^{2}\left(\bar{\psi}^{\nu}\right)^{2}+2 \psi^{2}\left(\eta_{x}^{\nu}\right)^{2},
$$

it follows from (4.3) that

$$
\begin{equation*}
\int\left(\psi \bar{\psi}^{\nu}\right)^{2} v^{2} d x+\lambda\left(\frac{2 q-1}{q}\right) \iint_{R_{2 \rho, 2 \rho^{2}-Q}}\left(\psi \bar{\psi}^{\nu}\right)^{2} v_{x}^{2} d x d t \tag{4.4}
\end{equation*}
$$

$$
\leqslant c_{2} q^{\frac{2 n}{\varepsilon}}+2 \iint_{R_{2 \rho}, 2 \rho^{2}-Q}\left[\left(\psi \bar{\psi}^{\nu}\right)^{2}+\psi_{x}^{2}\left(\bar{\psi}^{\nu}\right)^{2}+\left|\psi \psi_{t}\right|\left(\bar{\psi}^{\nu}\right)^{2}+\psi^{2}\left\{\left(\eta_{x}^{\nu}\right)^{2}+\left(\eta^{\nu}\right)_{t}^{-}\right] v^{2} d x d t\right.
$$

Now consider

$$
\begin{aligned}
& \iint\left\{\left(\eta_{x}^{\nu}\right)^{2}+\left(\eta^{\nu}\right)_{\bar{t}}\right\} v^{2} d x d t \leqslant \int\left[\left(\int\left\{\left(\eta_{x}^{\nu}\right)^{2}+\left(\eta^{\nu}\right)_{\bar{t}}^{-\alpha}\right\}^{\alpha / 2} d x\right)^{2 / \alpha}\left(\int \bar{u}^{\frac{2 q^{\alpha}}{\alpha-2}} d x\right)^{\frac{\alpha-2}{\alpha}}\right] d t \\
& \leqslant\left[\int\left(\int\left\{\left(\eta_{x}^{\nu}\right)^{2}+\left(\eta^{\nu}\right)_{\bar{t}}\right\}^{\alpha / 2} d x\right)^{\beta / \alpha} d t\right]^{2 / \beta}\left[\int\left(\int u^{\frac{2 q_{\alpha}}{\alpha-2}} d x\right)^{\frac{\alpha-2}{\alpha} \cdot \frac{\beta}{\beta-2}} d t\right]^{\frac{\beta-2}{\beta}} .
\end{aligned}
$$

If we put $q=q_{0}=\frac{\theta+1}{2},(4.2)$ implies

$$
\iint\left\{\left(\eta_{x}^{\nu}\right)^{2}+\left(\eta^{\nu}\right)_{t}^{-}\right\} v^{2} d x d t \leqslant c\left[\int\left(\int\left\{\left(\eta_{x}^{\nu}\right)^{2}+\left(\eta^{\nu}\right)_{t}^{-}\right\}^{\alpha / 2} d x\right)^{\beta / \alpha} d t\right]^{2 / \beta} .
$$

Letting $\nu \rightarrow \infty$, we obtain from the dominated convergence theorem that

$$
\begin{align*}
& \int \psi^{2} v^{2} d x+\lambda\left(\frac{2 q_{0}-1}{q_{0}}\right) \iint_{R_{2 \rho, 2 \rho^{2}-Q}} \psi^{2} v_{x}^{2} d x d t \leqslant c_{2} q_{0}^{\frac{2 n}{\varepsilon}+2} \times \tag{4.5}\\
& \quad \times \iint_{R_{2 \rho, 2 \rho^{2}-Q}}\left\{\psi^{2}+\psi_{x}^{2}+\left|\psi \psi_{t}\right|\right\} v^{2} d x d t,
\end{align*}
$$

where $v=\bar{u}^{q_{0}}$, and c_{2} does not depend on q. Therefore, if ψ is chosen as in Theorem 1, we have

$$
\begin{equation*}
H_{\rho, \rho 2}^{\prime}\left(\bar{u}^{k p_{0} / 2}\right) \leqslant \gamma_{1} H_{2 \rho, 2 \rho^{2}}^{\prime}\left(\bar{u}^{p_{0} / 2}\right)^{k} \tag{4.6}
\end{equation*}
$$

where $\quad p_{0}=2 q_{0}>1, k=1+\frac{2}{n}$ for $n>2$ and $k=\frac{5}{3}$ for $n=1,2$ and $H_{\rho \cdot \rho}^{\prime}{ }^{2}(u)$
$=(\rho)^{-n}\left(\rho^{2}\right)^{-1} \iint_{R_{\rho}, \rho^{2}-Q} u^{2} d x d t$. Here γ_{1} depends only on $p_{0}, M, \lambda, n, \varepsilon, \alpha, \beta$ and ρ.
Now, to proceed the arguments, we define for $q \geqslant p_{0}>1$,

$$
F(\bar{u})= \begin{cases}\bar{u}^{q}, & \text { if } 1 \leqslant \bar{u} \leqslant l, \\ p_{0}^{-1}\left[q l^{q-p_{0}} \bar{u}_{0}^{p_{0}}+\left(p_{0}-q\right) l^{q}\right], & \text { if } l \leqslant \bar{u}\end{cases}
$$

and

$$
G(u)=\operatorname{sign}\left\{F(\bar{u}) F^{\prime}(\bar{u})-q\right\} \quad-\infty<u<+\infty .
$$

Then it is clear that F is a continuouly differentiable function of \bar{u}, and G is a piecewise smooth function of u with corners at $u= \pm(l-1)$. Moreover, these functions have the properties:

$$
F \leqslant\left(q / p_{0}\right) l^{q-p_{0}} \bar{u}^{p_{0}}, \bar{u} F^{\prime} \leqslant q F
$$

and

$$
G^{\prime}(u)=q^{-1}(2 q-1)\left(F^{\prime}\right)^{2} .
$$

We may now substitute $\phi(x, t)=(\psi \bar{\psi})^{2} G(u)$ into (1.4). Then we find by the same argument as in Theorem 1 or Theorem 2 that

$$
\begin{gather*}
\int(\psi \bar{\psi})^{2} v^{2} d x+\lambda\left(\frac{2 q-1}{q}\right) \iint_{R_{2 \rho, 2 \rho \rho^{2}-Q}}(\psi \bar{\psi})^{2} v_{x}^{2} d x d t \tag{4.7}\\
\leqslant c_{3} q^{\frac{2 n}{\varepsilon}}+2 \iint_{R_{2 \rho, 2 \rho^{2}-Q}-\psi^{2}}\left[(\psi \bar{\psi})^{2}+\psi_{x}^{2} \bar{\psi}^{2}+\left|\psi \psi_{t}\right| \bar{\psi}^{2}+\bar{\psi}^{2}\left\{\bar{\psi}_{x}^{2}+\bar{\psi}_{t}^{-}\right\}\right] v^{2} d x d t
\end{gather*}
$$

where $\quad v=v(x, t)=F(\bar{u})$.
Since $v \leqslant$ Const. $\bar{u}^{p_{0}}$, it is clear as in the earlier part of the proof that

$$
\iint_{R_{2 \rho, 2 \rho^{2}-Q}\left\{\bar{\psi}_{x}^{2}+\bar{\psi}_{t}^{-}\right\} v^{2} d x d t \leqslant \text { Const. }\left[\int\left(\int\left\{\bar{\psi}_{x}^{2}+\bar{\psi}_{t}^{-}\right\}^{\alpha / 2} d x\right)^{\beta / \alpha} d t\right]^{2 / \beta}, ~}^{\text {and }}
$$

Replacing $\bar{\psi}$ by $\bar{\psi}^{\nu}=1-\eta^{\nu}$ and letting $\nu \rightarrow \infty$, we obtain

$$
\begin{align*}
& \int \psi^{2} v^{2} d x+\lambda\left(\frac{2 q-1}{q}\right) \iint_{R_{2} \rho^{2}, \rho^{2}-Q} v_{x}^{2} \psi^{2} d x d t \tag{4.8}\\
& \leqslant c_{3} q^{\frac{2 n}{\varepsilon}}+2 \iint_{R_{2 \rho, 2 \rho^{2}-Q}}\left\{\psi^{2}+\psi_{x}^{2}+\left|\psi \psi_{t}\right|\right\} v^{2} d x d t .
\end{align*}
$$

Let $l \rightarrow \infty$. Then $v \rightarrow \bar{u}^{q}$. If we choose ψ as in the proof of Theorem 1 or Theorem 2, we see

$$
\begin{equation*}
H_{\rho, \rho^{2}}^{\prime}\left(\bar{u}^{k q}\right) \leqslant \gamma_{2} H_{2 \rho, 2 \rho^{2}}^{\prime}\left(\bar{u}^{q}\right)^{k} \quad\left(q \geqslant p_{0}\right) . \tag{4.9}
\end{equation*}
$$

Now iterate the inequality (4.6), (4.9) starting with $q=q_{0}$. This yields the conclusion

$$
\begin{equation*}
\max _{R_{\rho, \rho^{2}-Q}} \bar{u} \leqslant r\left\{\iint_{R_{2} \rho, 2 \rho^{2}-Q} \bar{u}^{p_{0}} d x d t\right\}^{1 / p_{0}} \tag{4.10}
\end{equation*}
$$

On the other hand,

$$
\left\{\iint \bar{u}^{p_{0}} d x d t\right\}^{1 / p_{0}} \leqslant\left[\int\left\{\int \bar{u}^{a} d x\right\}^{b / a} d t\right]^{1 / b}
$$

so that the right side of (4.10) is finite. Thus we have shown that u is uniformly bounded on the set $R_{\rho \cdot \rho^{2}-Q}$.

Next we show that u can be extended to a continuous solution of (1.1) throughout $R_{\rho, \rho^{2}}$. Choosing ψ such that $\psi \equiv 1$ in $R_{\rho, \rho^{2}}$, we have from (4. 5)

$$
\iint_{R_{\rho}, \rho^{2}-Q} \bar{u}^{\bar{p}_{0}-2}\left|u_{x}\right|^{2} d x d t \leqslant c_{5} \iint_{R_{2} \rho, 2 \rho^{2}-Q} \bar{u}^{p_{0}} d x d t \leqslant \text { Const. }
$$

Since $p_{0}<2$ and \bar{u} is bounded in $R_{\rho, \rho^{2}}-Q$, this proves that u_{x} is in $L_{2}\left(R_{\rho}, \rho^{2}-Q\right)$.

We shall show that if u is put to be equal to zero on Q, the resulting function is strongly differentiable in $R_{\rho, \rho^{2}}$.

For any smooth function $\phi(x, t)$ with compact support in $Q_{\rho}-Q$ we have

$$
\iint_{R_{\rho, \rho^{2}}} u \phi_{x} d x d t=-\iint_{R_{\rho}, \rho^{2}} u_{x} \phi d x d t
$$

Putting $\phi=\psi \bar{\psi}$ where ψ has compact support in Q_{ρ}, we get

$$
\iint_{R_{\rho}, \rho^{2}-Q} u\left(\psi \bar{\psi}_{x}+\bar{\psi} \psi_{x}\right) d x d t=-\iint_{R_{\rho} \cdot \rho^{2}-Q} \psi \bar{\psi} u_{x} d x .
$$

Thus, replacing $\bar{\psi}$ by $\bar{\psi}^{\nu}=1-\eta^{\nu}$ where η^{ν} is given in Lemma 4. 1 and letting $\nu \rightarrow \infty$, we have from the dominated convergence theorem

$$
\begin{equation*}
\iint u \psi_{x} d x d t=-\iint \psi u_{x} d x d t \tag{4.11}
\end{equation*}
$$

the integrals being evaluated over the set $R_{\rho \cdot \rho^{2}}-Q$. If we put $u_{x x}=0$ on Q, the relation (4.11) becomes valid over all of $R_{\rho, p^{2}}$. Thus the assertion is proved. Finally if ϕ has compact support in Q_{ρ} and if $\phi=0$ on Q, then

$$
\iint\left\{u_{t} \phi+\boldsymbol{A} \phi_{x}+B \phi\right\} d x d t=0 .
$$

Again setting $\phi=\psi \bar{\varphi}^{\nu}$, we easily obtain, in the limit as $\nu \rightarrow \infty$,

$$
\iint\left\{u_{t} \psi+\boldsymbol{A} \psi_{x}+B \psi\right\} d x d t=0
$$

which is valid whenever ψ has compact support in $R_{\rho \cdot \rho^{2}}$. It follows that u, defined over Q as above, is a weak solution of (1.1) in $R_{\rho, \rho^{2}}$. By Corollary in the end of $\S 3$, we can redefine u on a set of measure zero so that it is Hölder continuous in $R_{\rho, \rho^{2}}$. The redefinition cannot effect the values of u on $R_{\rho, \rho^{2}}-Q$, where it is already continouous. Since measure of Q is zero, the resulting function u is a (Hölder) continuous solution of (1.1) in $R_{\rho, \rho^{2}}$, that is, in a nonempty neighborhood of the point P. This completes the proof.

Reference

[1] D.G. Aronson: Removable Singularities for Linear Parabolic Equations, Arch. Rational Mech. Anal. 17, 79-84 (1964).
[2] M. Kurihara: On Harnack's inequarity for parabolic partial differential equations. I. II., Funkcialai Ekvacioi Voll. XVII Nro 3. TULIO (1965).
[3] J. Moser: A Harnack inequality for parabolic differential equations, Comm. Pure. Appl. Math. 17, 101-134 (1964).
[4] L. Nirenberg: On elliptic partial differential equations, Ann. Scuola. Norm. Sup. Pisa Vol. 13, 115-162 (1959).
[5] J. Serrin: Local behavior of solutions of quasilinear equations. Acta Math., 111, 247-302 (1964).
[6] G. Stampacchia: Le probleme de Dirichlet pour les équations elliptiques de second order a coefficients discontinus; Ann. Inst. Fourier. 15, 189-258 (1965).

Added in proofs: During the proofs of this paper, Professor Serrin informed me that he and Aronson obtained more precise results than mine (cf. Notices of Amer. Math. soc., 13 (1966), p. 381) and that Ivanov also gave the same results as mine.

The author wishes to express his hearty thanks for kind comments of Professor Serrin.

