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Introduction. The electric capacity of a conductor in the 3-dimensional
euclidean space is defined as the ratio of a positive charge given to the conductor
and the potential on its surface. The notion of capacity was defined mathe-
matically first by N. Wiener [7] and developed by C. de la Vallée Poussin, O.
Frostman and others. For the history we refer to Frostman’s thesis [2].
Recently studies were made on different definitions of capacity and related
notions. We refer to M. Ohtsuka [4] and G. Choquet [1], for instance. In
the present paper we shall investigate further some relations among various
kinds of capacity and related notions. A part of the results was announced in
a lecture of the author in 1962.1

1. Let E and F be locally compact Hausdorff spaces and &(x, y) be a lower
semicontinuous function on E x F, satisfying —oo < @(z,y) < co. This function
is called a kernel. As measures we shall consider only non-negative Radon

measures with compact support in E or in F.  The potential S(D(x, y)dp(y)
(S(D(x, y)dv(x) resp.> of a measure g (vresp.) will be denoted by @(x, p)(D(v, )

resp.) and the double integral {{0(z, y)dp(y)dv(2)={0(z, £)dv(z) by B(s, z).

Let X be any non-empty set in E and gz be a measure in F. We set
V(X> ) =sup @(xs .u) and U(X’ F‘) =inf¢(x: #)'
zeX reX
Let Y be any non-empty set in F, and denote by Z/ the class of unit measures

with compact support in Y. We put
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1) Capacity, Symposium on potential theory, Hakone, 1962.
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VX(Y)— 1nf V(X, ¢) and Ux(Y)=sup U(X,p).

“EUy

Similarly we define Vy(X) and Uy(X) by inf sup o(v,y) and sup inf @(v, y)

veUy Y€Y veugyel
respectively. B. Fuglede [3] proved the identity V;(K)=Ug(E), where K is a
non-empty compact subset of F.
In the special case E=F we set
Wi(X)= inf 0(p, p), V(X)= inf V(S,,p) and U(X)= sup U(S, p).
reEUY HEUy HEUr

If the adjoint kernel &(x, y)=®(y, 2) is considered, the corresponding quanti-
ties will be denoted by W;(X), V(X) and U(X). We shall establish

TureoreM 1. Suppose E=F and let K be a non-empty compact set in E. Then

< \Vi(K)=Ux(E)

Vi(K) = ﬁK(K)J {VE(K>= Ux(E)
UK)=U(K) ,

Wi(K)= W(K)<V(K)=V(K) < {
Vi(K) = Ux(K)

and these relations can not be improved in general.

Proof. The equalities V;(K)=Ux(E) and Vz(K)=Ux(E) are special cases
of the above quoted identity due to Fuglede. The equalities Vi (K)=Ux(K)
and Vg (K)=Ug(K) are further special cases. The equalities V(K)=V(K) and
U(K)=U(K) were found by Ohtsuka [5]; cf. [6] too. It is evident that
W (K)=W(K). Thus all equalities are justified.

The inequality W;(K) < V(K) follows from

W(K) = [0(a, m)dp(z) = sup 0(x, 1)

which is valid for any p&%/x. The inequalities V(K) <V, (K) <Vz(K) and
Ux(K) =U(K) are clear.

We shall give examples in which the inequalities are strict. Consider
first the space E consisting of two points z, and z,. If the kernel @ is given

1 1
by the matrix (j_ 1), then W, (K)=7/8 and V(K)=1 for K=E. If we consider
2

the symmetric kernel given by <2 1) K)=1 but Vg(K)=3/2. If K ctonsists

of one point %, and @ is given by (2 1) , then U(K)=Vg(K)=1 but V4(K)=2.
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If K consists of two points and @ is given by G %) , then V;(K)=Vx(K)=1 but

U(K)=2. Our proof will be completed if we can find a kernel for which
Vx(K) <Vx(K). This is possible, because Vx(K) =1 but Vx(K)=2 for K consist-

ing of two points and (D=G % .

2. Suppose still E=F. We define D,(X) by

1 .
———— inf (2, x5) .
T YA L CRL)
This increases as n >o. In fact, if we exclude the terms containing z, and
denote the remaining sum by 3I®, then
i#j

Z,Q(xi: xf) = le

1#]

é‘-l Z00(wi, 0,) = 1412 kZ:}l(n—l)(n—-Q)Dn_l(X)

=n(n—1)Du-1(X).

‘We set
lim D, (X)=D(X).

Nn—>00

It is a known result that D(K)=W(K); see, for instance, Choquet [1]. In case
K is a compact set in E; and @ is Newtonian, 1/D(K) is called the transfinite
diameter of K.
We come back to the general case where E and F may not be the same.
Consider two non-empty sets X and YV in E and F respectively. We set
nR,(X,Y)=sup inf 31 (2, 9;) .

Yq,y cevere L U€Y weX 1=1

We shall .assume R,(X,Y) > —co and show that lim R,(X,Y) exists. Choose

Nn—>00

¥,€Y such that in}f{d)(x, y,) >—co. Then nR,(X,Y)= inf{n@(x, y,) >—oco. If
re re

Y1y venens s Yny D1y coenes , €Y, then
() Rosn (X, Y) Z inf | 510(2, 9)+ 23 0(2, 7,)}
reX|i=1 j=1

>inf 3 ) +inf 3 j
= inf 3 0(x,v) +inf 3 0(z,7)) ,

eX 1=1
from which it follows that
(R+MR (X, Y) = nR, (X, Y)+mR,(X,Y) .
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On the other hand,

nkR,(X,Y)=Fk sup inf i o(x,y;)
Y1, e, Yo €Y X i=1
nk
< sup inf 3 &(z,9;) =nkR,.(X,Y).
Ny eeenee M€Y z€X j=1

Therefore
(nEk+m)Rupim (X, Y) = nkR (X, Y)+mR (X, Y) = nkR (X, Y)+mR (X, Y)

and hence

~ _ nk m

Given ¢, 0 < e <1, we choose #, such that

im R, (X,Y)—e if Tim R,(X,Y) <o,

Ruo(X,Y) =
1/e it Hm R.(X,Y)=co .

Next we choose k, such that, for any k=%, and every m (0 <m=<m,—1), it
holds that

nk >1—e¢ and

m —
b e En(XY) > —e

In case Tim R,(X,Y)=oo, (1) yields

N—>00

Ruim(X,¥) = 178 —¢

for any k =k, and every m, 0 <m < n,—1. It follows that lim R,(X,Y)=co.

n—rco

In case lim R,(X,Y) < o, we choose , (0 < m;, < n,—1) such that

7n—>»00

lim R, (X,Y)+e  if lim R,(X,Y)>—oco ,
(2)  Ruprm(X,Y) <17 e
—1/e if lim R, (X,Y)=—co .

n—>o0

It holds on account of (1) that

Hm Rugksm(X, V) = Rno(X,Y) ZTm R (X,Y)—e¢ .

k>
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This and (2) yield lim R,(X,Y) =Tim R,(X,Y). Thus lim R,(X,Y) exists. We
shall denote this limit by R(X,Y).
Remark. There is an example in which lim R,(X,Y) does not exist. Take

the z-axis as X=F and {1, 2, ...... } as Y=F. We define o(z,n) by (—1)"a.
Then R,(X,Y)=—co if n is odd and R,(X,Y)=0 if » is even.
Let us establish

THEOREM 2. Let K be a non-empty compact set in E, and Y be any non-empty set
in F. Then R(K,Y) exists and
RK,Y)=Ux(Y) .
Proof. First we note that R,(K,Y)=sup inf &(z,y)>—co, whence

yeY zeK

R(K,Y)=lim R,(K,Y) exists. For each n

Ru(K,Y)=-L sup inf 3 0(x, ;) < Ux(Y)

Yy, vesees , €Y 2K i=1

so that R(K,Y) < Uk(Y). To prove the inverse inequality take p€%/y. Given
¢>0, we can find a continuous function &.(x,y) on KxS, such that
0. (x,y) <0(x,y) on KxS, and

. - B
min 9 (x, ) = min &(z, z)—e .

k
There exist a finite subdivision S,= UY; into mutually disjoint Borel sets Y5, ...... s
i=1
Y, and points y, Y7, ...... , Y:€Y; such that
I@e(x’ y)—@e(xy yz) i <e

whenever xeK and yeY, for each i. We have

; D.(x,y)p(Y;)—0.(x, ;z)[ = ; SY ‘ O (,y)—P(x,y)|dp(y) < ¢
on K and hence
i . \ > mi —e>mi - 9.
gg}{l 12 2. (2, y:)p(Y:) = 1;21}3 0. (2, p)—e= le’élII(I D(x, pr)— 2

We approximate each z(Y;) by a non-negative rational number 7; such that
2r,=1 and
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min 3 @, (2, ¥:)#(Y,) < min 3 @, (x, y,)7;+e < min 31 (x, y,)7r:+e .
K i K 1 K 1
Set 7,=p,/q with integers p,=0 and ¢ >0, and consider
—;—[pl(b(m, Y1)+ 2. 0(2, ¥5)+ ...+ 0:0(2, yk)]

Tts minimum on K is not greater than R,(K,Y). Thus

miI? O(x, p) < Ry(K,Y)+3e.

Since we can take ¢ arbitrarily large, le’élllg O(z, p) = R(K,Y)4+3¢, whence
Iagig o(x,p) < R(K,Y). Because of the arbitrariness of pe%’y, we have
Ux(Y) < R(K,Y), which gives the equality.

3. Finally we prove

THEOREM 3. Let X be a non-empty set in E and L be a non-empty compact set in
F. In order that there be pe 2/, such that @ (z, p)=co for every x€ X, it is necessary
and suffficient that Ux(L)=oo.

Proof. Suppose that there is a measure p&%/, such that @(z, z)=oco for
every xX. Then

Ux(L)=sup inf @(x,p)=c.

reu;, X

Conversely assume Ux(L)=co. For each k there is &%/, such that

@ (%, 1) >2° on X. Naturally 2'112"‘#&67/1) and

q)(x, ’§12‘kyk =co for every ze X.

Using Theorem 2 we obtain the following generalization of the so-called
Evans-Selberg’s theorem.

CoroLLARY. Let K and L be non-empty compact sets in E and F respectively.
In order that there be n=%/, such that ®(x, p)=oo for every x K, it is necessary and
sufficient that R(K, L)=o.



ON VARIOUS DEFINITIONS OF CAPACITY AND RELATED NOTIONS 127

REFERENCES

f1] G. Choquet: Diameétre transfini et comparaison de diverses capacités, Sém. Théorie du
potentiel, 3 (1958/59), n° 4, 7 pp.

2] O. Frostman: Potentiel d’équilibre et capacité des ensembles, Thése, Lund, 1935, 118 pp.

T3] B. Fuglede: Le théoréme du minimax et la théorie fine du potentiel, Ann. Inst. Fourier,
15 (1965), pp. 65-87.

4] M. Ohtsuka: Selected topics in function theory, Tokyo, 1957, in Japanese.

5] M. Ohtsuka: An application of the minimax theorem to the theory of capacity, J. Sci.
Hiroshima Univ. Ser. A-I Math., 29 (1965), pp. 217-221.

6] M. Ohtsuka: Generalized capacity and duality theorem in linear programming, ibid.,
30 (1966), pp. 45-56.

T7]1 N. Wiener: Certain notions in potential theory, J. Math. Phys. M.I.T., 3 (1924), pp.
24-51.

Department of Mathematics, Faculty of Science, Hiroshima University








