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1. In a recent note bearing the same title (SIAM Journ. of Numerical

Analysis, Vol. 3, 1966), I showed that there existed Weierstrass zeta functions

having a vanishing pseudo-period. Cf. line 8, p. 376 of Saks-Zygmund, Analytic

Functions. Professor Peter Henrici kindly pointed out to me that the mere

existence of a Weierstrass zeta function with a vanishing pseudo-period was

readily concluded from a classical formula of the theory of elliptic functions

(Hurwitz-Courant, Funktionentkeorie, 5th ed., p. 210) which reduces the question

to the study of the zeros of

1 » kx*
12 - Σ - π r > W<1

Here the presence of a zero on ]0, 1 [ is obvious. However a much stronger

result was implicit in my note since the argument there employed serves to

show that any ordered pair of complex numbers, not both zero, appears as the pseudo-

period pair of some Weierstrass zeta function, and in fact even more.

The argument of the cited note is based on the study of a system of functional

equations associated with the modular group, the use of the modular function

λ, and the big Picard theorem. Thus it may be said that the note treated

a theme of the classical Weierstrass function theory with methods that draw in

some part on ideas stemming from the Weierstrass theory. Professor Krishna

Chandrasekharan remarked to me that the study of systems of functional equa-

tions of the kind treated in the cited note were of interest for Fuchsian and

Fuchsoid groups in general. Actually, certain systems of this more general

type were studied in an earlier paper of mine (A generalization of the Aumann-

Caratheodory "Starrheitssatz", Duke Math. J . 1941).

In the present paper we study the pseudo-period pairs of the Weierstrass
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zeta functions. The system of functional equations entering into the treatment

of the question will be handled with the aid of part of the theorem of Denjoy

and Wolff concerning holomorphic maps of the open unit disk into itself.

2. We start with an ordered pair (ωl9ω2) of complex numbers satisfying

Im(ω1ω2)^ 0. We let Ω denote the additive subgroup of © generated by

{ωuω2}. By the Weierstrass zeta function associated with Ω, which we denote by ζy

is meant the meromorphic function on (£ assigning to z the value

X + s (_J_+_L+ « ) f (2. l)
z \ Z—ω ω ωz J ' v /

the sum being taken over the nonzero members of Ω. For each ω e Ω we have

where η(ω)^&. We term (η(a>ι)9 rj{ω2)) the pseudo-period pair of ζ associated with

(ωl9ω2). Our goal is to show the following theorem:

The map (ωuω2) ->• (37(0)1), ηM) maps {Im(zxz2) =̂= 0} onto {|Zil + | z 2 | > 0 > .

Further, each point 0/~-C|zi| + l 2 2 | > O } has infinitely many non-equivalent preimages with

respect to this map.

Here it is understood that (ω/, ω2

f) is equivalent to (ωu ω2) provided that

ω1

f = σ{aω1+bω2), ω2 ^a^cω^dω^^ where σ&&—{0} and a, b, c> d are real

integers satisfying \ad—bc\=l.

It is well-known that {η{ω^)9 η[ω2)) =̂  (0, 0) for allowed [ωuω2). Further

rj{ω) is homogeneous of degree —1 with respect to (Ω9ω). We consider normal-

ized (ωl9 ω2) of the form (1, α), Ima =̂= 0,

and introduce

The function F takes the value — i at i, is meromorphic on (£—R and satisfies

the system of functional equations

F[S(a)] = S[F(a)] (2.2)

for every Mobius transformation S belonging to the modular group, that is,

for S of the form

S(z) = (az+b)l(cz+d),

where β, b> c, d are real integers satisfying ad—bc= 1. The verification of (2. 2)

is readily made on noting the fact that for given (ωl9 ω2) the map ω -*η{ω) is a
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homomorphic map of Ω into © considered additively and also the homogeneity

of degree — 1 of η. Cf. our note of the same title cited above.

We observe that thanks to the definition of F the theorem of this paper

will be established once it is shown that F attains any given value of the extended

plane at infinitely many points of (£—R which are mutually non-equivalent

relative to the modular group. The reduced result will appear as a consequence

of two lemmas to be proved below.

3. For the first lemma we shall want a part of the theorem of Denjoy and

Wolff concerning holomorphic maps of the open unit disk into itself. It may be

stated as follows:

Let f be a holomorphic map of the open unit disk into itself which possesses no fixed

point. Then there exists a unique η, \ -η \ = 1, such that

We include a brief proof for the sake of completeness. The uniqueness of η

is clear on geometric grounds. For otherwise there would exist ηu 1̂ 1 = 1,

ηx =Sf η, satisfying the same property as η. There would then exist oricycles

tangent to the unit circumference at η and ηx respectively and tangent to one

another at a point of the open unit disk. By (3. 1) this point would be a fixed

point of/. The hypothesis is contradicted. The existence of η may be concluded

with the aid of Rouche's theorem and the lemma of Schwarz-Pick. Indeed,

let 0 ^ r < 1 and introduce / r (z)=/(rz), \z\< 1. By Rouche's theorem fr has

a unique fixed point, say β(r). At the very least we have

lim \β(r)\ = l ,

for otherwise / would have a fixed point. Further, by the lemma of Schwarz-

Pick we have

1 -
f(rz)-β(r)

l-β(r)f(rz) l-β{r)z

or equivalently,

|l-/3(r)/(rz)|2 - |1

forθ^r<l, \z\< 1. Taking a sequence of r tending to 1 such that the
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corresponding sequence of β(r) possesses a limit, say η, we conclude (3. 1) from

(3.2).

4. We turn to the first of the two lemmas. Here Γ is a group of Mobius

transformations mapping the upper half-plane onto itself which is properly

discontinuous at each point of &—R but at more than two points of Rl){^} fails

to be properly discontinuous.

LEMMA A. Let f be holomorphic on the upper half-plane and not take any real

value. If f satisfies the system of equations

f[S(z)] = S[f(z)], (4.1)

Im z > 0, S e Γ , then f is the identity map.

Proof. We consider first the case where / maps the upper half-plane into

itself. Suppose that / is not the identity. If / has a fixed point, say a, then

/ has no other fixed point since / is assumed to be different from the identity.

Setting z = a in (4. 1) we conclude that S(a)=a, S^Γ. This implies that Γ is

finite and hence everywhere properly discontinuous. Contradiction. Hence /

does not have a fixed point. We may therefore apply the result of Denjoy and

Wolff cited in §3 to T-^/oT, where T is a univalent conformal map of the

open unit disk onto the upper half-plane. Using the functional equations

induced from (4.1) we conclude that all S^Γ have a common fixed point on

R U "C00]-. Indeed, if F is a holomorphic map of the open unit disk into itself

without a fixed point and A is a Mobius transformation mapping the open

unit disk onto itself and such that F[A(z)]=A[F(z)], \z\< 1, then the η of

§3 pertaining to F is a fixed point of A since A~l{rj) satisfies the same condition

a s Ύ].

It is routine to conclude that Γ is cyclic. For either the S other than the

identity are all parabolic or else are all hyperbolic and have the same fixed

points. The proof is immediate on reduction to the case where the common

fixed point is oo. Thus if S1(z)=z+a, a^R—{0}, S2(z) = pz, 0 < p< 1, we have

and we conclude that Γ is not properly discontinuous at any point since we

may replace p by pn where n is a positive integer. If now S1(z) = σ(z— a)+a,

where a is positive but different from 1, then
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and we conclude that Γ is not properly discontinuous at any point. Hence

Γ is cyclic and hence is not properly discontinuous at most at two points. The

hypothesis on Γ is violated. We conclude that under the assumption that

/ maps the upper half-plane into itself/ is the identity.

There remains to be considered the case where / does not map the upper

half plane into itself. By virtue of the fact that / does not take real values, in

this case / maps the upper half-plane into the lower half-plane. We extend

the definition of/ to (£—7? by Schwarzian reflexion. We denote the so-defined

extension of/ by f1 and define f2=
:fiofi. Now / 2 satisfies the system (4. 1),

in fact for z^&—R, S^Γ. Hence by the result of the first case we see that / 2 is

the identity map. Consequently, f1 is the restriction to its domain of an

involutary elliptic Mobius transformation g. By normalization we may take

the fixed points of g to be 0 and oo. When this reduction is made, we see

that

a=0,oo. Hence {5(0), S(o°)}={0, oo} and S°S has 0 and oo as fixed points.

Thus if S is not the identity, S is hyperbolic with fixed points 0 and oo or else

S is elliptic and S(z) is of the form c\z where c is a negative real number. If

Si and S2 are two distinct elliptic transformations of this form, S1~
1°S2 is

hyperbolic and has 0 and oo as fixed points. We are led to the conclusion that

Γ fails to be properly continuous at most at 0 and oo. The hypothesis on Γ

is contradicted. Hence the assumption that / does not map the upper half-

plane into itself is to be rejected.

The lemma is thereby established.

Remark. It is readily concluded by Schwarzian reflexion that Lemma A

remains valid when the domain of / is taken to be the lower half-plane.

5. We now proceed to the second lemma. We recall that a group Γ which

is not properly discontinuous at any point of R U {oo} is said to be of the first

kind. This is the case for the modular group. A group Γ which is not of the

first kind is said to be of the second kind. Our second lemma holds for groups of

the first kind but does not hold for all groups of the second kind having more

than two points where they fail to be properly discontinuous. [In fact, examples

may be constructed to show the failure of the lemma for groups of the latter

type with the aid of a Schottky doubling of a plane region of finite connectivity
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greater than two having regular analytic Jordan boundary and the mapping

theorem for planar surfaces.]

LEMMA B. Let f be meromorphic on the upper half-plane, attain a real value at

some point, and satisfy the system of equations (4.1) where now Γ is taken to be of

the first kind. Then f attains every point of the extended plane, in fact at infinitely

many points mutually non-equivalent relative to Γ.

Proof Use will be made of two results. The first, which is standard and

concerns the proper discontinuity at a point a of a group G of Mόbius trans-

formations, states: G is properly discontinuous at a if and only if G is normal

at a and there exists a neighborhood V of a such that T(a)(=V for only a

finite set of T in G. The second result states that if a family of Mόbius transfor-

mations is not normal at a point a, then for each neighborhood V of a there

exists a univalent sequence (fn) of members of the family such that with at

most one exception each point of the extended plane belongs to fn(V) for

infinitely many n. [The latter result may be established as follows. We take

V as an open disk, as we may, and (fn) as a univalent sequence of members of

the family no subsequence of which converges uniformly in V. We assume, as

we may, that (fn) has been so chosen that there exists a value belonging to

fn{V) for all n. We normalize so that the value in question is oo. Suppose

that a value b belongs to fn(V) for only finitely many n. We assume, as

we may, that b is omitted. The set of values omitted by every fJV, n^m, is

a compact convex set containing b. If it did not reduce to b, the family

ί/JV} would be normal. But this is impossible. It follows that all values

distinct from b lie in fn(V) for infinitely many n.]

We turn to the proof of Lemma B. Let / attain the real value a. By

virtue of the first of the cited results one of two alternatives occurs.

(1) Γ is normal at a but there exists a univalent sequence of members of

Γ, say (Tn), converging uniformly in some open disk centered at a and such

that (Tn(a)) tends to a. The limit function must be the constant taking the

value a, for otherwise Γ would not be properly discontinuous at each point of

the upper half-plane. Now if the limit function is constant, then for n large

Tn is hyperbolic and has a fixed point near a. This is not compatible with

the assumed normality of Γ at a. Hence this alternative must be rejected.

(2) Γ is not normal at a. Since Γ is of the first kind, no orbit
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{T(z):TeiΓ}

reduces to a point for otherwise Γ would be cyclic and hence not of the first

kind. This observation taken with the non-normality of Γ at a implies that

if V is a neighborhood of <z, then each point of the extended plane belongs to

T(V) for infinitely many T^Γ.

We turn to / and suppose that f(b)=a, a real, Imb>0. Let V be an open

neighborhood of b lying in the upper half-plane. Now f[T(V)]=T[f(V)] and

f(V) is a neighborhood of a. We assume, as we may, that b is not a fixed

point of any member of Γ other than the identity and take V so small that

the T(V) are mutually disjoint. It follows that no two distinct points of V

are equivalent relative to Γ. We see that each point of the extended plane

lies in f[T(V)] for infinitely many T. We now show that given w, a point of

the extended plane, there exists a univalent sequence (zn) of points in V such

that w is attained by / at some point of the orbit {T(zn): T G Γ } , W = 0, 1,

It suffices to proceed recursively. Clearly, there is a point, say zQ, in V such

that w is attained at a point of the orbit {T(z0): T<ΞΓ}. We thereupon take

VX = V—O0} and note that / takes a real value at some point of Vλ. Hence

there exists z^VΊ such that w is attained at some point of {T(zx): ΓeΓ}. The

inductive construction of (zn) is now clear. At the (w+l)st stage we have

Vn+1=V—{zQ, , zn}. At some point of this set / takes a real value.

The lemma is established.

6. The function F is now easily treated. Since F restricted to the upper

half-plane satisfies (2.2) and is not the identity [F(i) = — i], it follows from

Lemma A that F attains a real value at some point of the upper half-plane.

The desired result follows on application of Lemma B since the modular group

is indeed of the first kind.
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