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INTRODUCTION. Suppose Ω is a simply connected domain which is

mapped conformally onto a disk. A much studied problem is the behavior

of the mapping function at an accessible boundary point P of Ω, in particular

the question, under what conditions the map is "conformal" at such a point

(a) in the sense that angles are preserved as P is approached from Ω ("semi-

conformality" at P) and (b) the dilatation at P is finite and positive. In his

fundamental paper [8] in 1936, A. Ostrowski established a necessary and

sufficient condition (depending on the geometry of the domain only) for the

validity of the first property which subsumes all previous results and establishes

a definitive solution of this problem. There has been extensive work on problem

(b) (see [7] and [5, Chapters IV and VI]); in particular, a number of criteria

have been obtained for the existence of the "angular derivative" of the mapping

function and of the derivative for "unrestricted approach" (see [10]). In

establishing a connection between angular and unrestricted derivatives a second

theorem in [8], Ostrowski's "Faltensatz" plays an important role. The

"Faltensatz" is a generalization of an earlier result [10] of the author for Jordan

domains, which he used to deduce the existence of the unrestricted derivative

from that of the angular derivative.

Ostrowski's proof of his two theorems are based on the systematic use of

the harmonic measure and requires a rather extensive study of its properties.

Later on another proof utilizing an entirely different method (Caratheodory's

convergence theorem on the mapping functions of domains tending to a kernel)

was given by J . Lelong Ferrand [4]; [5, Chapter IV], In the present paper

we use a method of J. Wolff [11], abstracted in our Lemma 1, to give new
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and particulary short proofs of these two theorems as well as several related

results, Theorems la, lb, 2 and 3. Subsequently we use our Theorem 2 to

obtain an asymptotic expression for the mapping function at a boundary point

(Theorem 4) and a new and quite general criterion for the existence of the

angular derivative (Theorems 5 and 6). It is convenient for our purposes to

relate all considerations to mapping of infinite strips.

1. A L e m m a of J. Wolff. Let S be a simply connected domain in the w-

plane, w=u + iv, whose boundary contains the point w=oo. Suppose that the

infinite segment L : {u^uQ,v = 0} of the real axis is contained in S.Letwoo

denote the boundary point of S at w—oo which is accessible along L as u -)• +oo.

For u^u0 let θu denote the largest open segment on the line Re (w) = u which

intersects the real axis and is contained in S, and θ{u){^ oo) its length. We

assume that for u > uQ, βu separates the point wo = uo from woo, i.e. the cross-

cut θu divides S into two subdomains such that u0 is in one and Woo is on

the boundary of (strictly) the other of these two domains.

Following Ostrowski [8, p. 450] we denote the subdomain K : {w\w e θuy

U^UQ} as the kernel of S. K depends on the choice of u0, but this is not

essential for our purposes.

Suppose the function z = Z{w) — X{w)+iY{w) maps S conformally onto the strip

2 : {z = % + iy\\y\< -£-, — °° < x <+°°> such that lim X{u) = +™. By standard

results on boundary correspondence, for all sufficiently large u, θu is mapped

onto an arc <τuc Σ which connects a (finite) point on y=-ψ to a (finite) point

on y = — -?-. We assume that uQ is taken so large that this is satisfied for

U^UQ. The cross-cut ΘUQ divides S into two subdomains; let So denote the

one which contains the part of the real axis for which u > u0.

Let a be a (finite) endpoint of a θu for u > uQ. We describe a circle Cβ of

radius p about a where p< Min (u—uQ> \a—u\) so that Cp does not intersect

βUQ and the &-axis. Cβ crosses θu at a point af. Let kp denote the largest (open)

arc of Cβ which contains a' and is contained in S; it is also contained in SQ;kβ

divides So into two domains and the one containing the segment aa' of θu will

be denoted by Dp.

LEMMA I1). For every δ, 0<δ< Min (e~32, u—uOy \a—u\) there exists a p,

χ) This lemma is implicit in J . Wolff's proof of his theorem on the preservation of angles
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δ2 < p < δ, such that the image of Dp under the mapping w -> Z{w) is a domain Δp

bounded by the image of kp and a finite segment of the line y—-ςy~ or y =—o~. The

diameter of Δp does not exceed M(log -γ-j 2 where M< 67r/~2"\

An immediate consequence is the

COROLLARY. If wu w2^Dp!> then

log 4-δ

In particular, if we let w1-^ a along Θu the second inequality implies that for w e Dp

M
•j—\Y(u>)\

For the sake of completeness we present the proof of this lemma. Let Cβ be

a circle about a of radius 0 and kp the arc of Cp as described above. The

image of kp under the mapping w -* Z{w) is an arc γp whose endpoints are two

different points of the boundary of Σ Since kp does not intersect 0U0 and L5 γp

does not meet σUQ and the image A of L. Consequently both endpoints of γp

are on y= " or on y~— -5-. The image J p of i) p is the interior of the closed

Jordan curve formed by γp and the segment of 2/=-^- or ?/ = —n~ between its

endpoints. The image β of the (accessible) boundary point a is located on

this segment.

Let β=b+i-7!*-. We consider for w e S the function

which is holomorphic and univalent, and \Ω{w)\< 1 in S. Furthermore, as

w->a along ^w? Ω(w)-±i. The image /cp of kp under the mapping w-+ω is

an arc in |o>|< 1 (except for its endpoints). By an earlier lemma of Wolff

[11, p. 46] for every δ subject to the restrictions stated above there exists

a p, δ2 < p < δ, such that for this value of p the length of κp ,

at a boundary point [11, pp. 47-49]. It can be given a more general form, for example, a
may be an arbitrary accessible (finite) boundary point and -5* may be a more general region.
We present it in a form tailored to our immediate application.
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In order to obtain an estimate for the length of γp we note that κp is the

image of γp under the mapping

»=-ζ=4 (1.2)
e +e

This function is holomorphic and univalent in 2 ; it carries z = β into ω = ί and

Δp into a domain bounded by κp and an arc of |α>|=l which contains ω-i.

Because of (1.1) this domain is contained in the disk \ω— i \<λp < -ί- (since

δ< e~32). Now the derivative of the inverse function of (1.2) is

dz _ 2

and for \ω— i\< —r~

_ _

dω
6

Consequently the length of γp does not exceed 6λp and hence the diameter of

Δp is not larger than 6λβ < M^log-y-V^ (M< 6τr/"2~) T n e proof is analogous

when β=b—i-^-.

2. Semi-Conformality at the Boundary. We apply now Lemma 1 to

give short proofs of two theorems on the distortion of the mapping w -> Z{w) as

w-ϊwoo. One of these is Ostrowski's [8, pp. 440-449] necessary and sufficient

condition for C€semi-conformality" at a boundary point, i.e. the existence of

the lim [Y(w)—v] in certain substrips of S, and the other concerns the oscillation

of X(w) on the segment Θu as u ->+oo.

We assume now that the domain S defined in section 1 has the following

additional properties:

A. For every Ψ, 0 < Ψ < -o-, there exists an RΨ such that the half-strip

SΨ\ {w = uJriv\ \v\^ W, u^ Rψ} is contained in S.

B. There exist two sequences of boundary points {wn = un-\-ivn} and
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ί = w5+iι>5} of S such that

un+1>un, wΛ->°°, un+1—un->0 and vn -> -ψ as n->*oo?

and v*-^—cf as w->oo .

Remark. A domain S which satisfies condition A and, in addition, Bf:

lim Θ{u)—π clearly satisfies condition B.

We prove first the sufficiency part of of Ostrowski's Theorem and some

corollaries. The necessity part follows at the end of this section.

THEOREM la (OSTROWSKI). Suppose S is a domain with properties A and

B. If Z{w)=X{w)+iY(w) maps S conformally onto the strip 2 such that lim X(u)
W->+co

= + oo, then uniformly in any half strip SΨ, 0<Ψ <~Ύf>

lim {Y{w)-υ) = 0 .
w-*+oo

COROLLARIES. 1. Uniformly for w e SΨ, lim Zr{w) — \ .

2. Uniformly for wx — uΛ-ivx e SΨ, w2

 = u + iv2 G SΨ ,

lim (X(w2)-X(w1)) = 0 .

3. For f>u^u,: \X(t)-X(u)\^{l + ε{u)){t-u) where lim 6(κ

Proof.2** Let ε, 0 < ε < -Q-^~64, be given, and suppose that

where 7?(ε)>^ 0+l, is contained in 5. There exists an integer N=N(ε) such

that for » ̂  N

Un+1—Un<ε, ut+i~U*< ε,vn< - | - + ε, vt > 1 ε . (2. 1)

We assume that uN>R{ε), u*N> R{ε) .

Let an be the endpoint of θUn with Im ( α J > 0 . Then clearly - ^ — ε <

Im (α n )<-^- + e. The application of Lemma 1 to αn with3) ^2 = 3ε shows the

2 ) A proof of this theorem using Wolff's method was given by C. Gattegno [6]. O u r proof,

which is included here for the sake of completeness, seems somewhat simpler a n d allows us

to obtain a n additional R e m a r k at the end of section 2.
3 ) Note that the restriction on δ in L e m m a 1 is satisfied uniformly for all an with
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existence of a p, δz < p < δ, such that for w e Dp

(2.2)

The circle Cp about an intersects the line v = -^—β (since the distance of

an from this line is less than 2ε and p^δ2 = 3ε). Hence Dβ contains a segment

sn of this line, centered at un+i( ί — εj whose length is greater than 4ε.

Because of (2.1), the segments sn,sn+1, (n^N) overlap. Consequently (2.2)

holds for all points w on v=-S— ε for all u ̂  uN. We have, therefore, for v = -*—- ε

and u^uN :

An analogous argument shows that for v — — ί + s , ui±u%:

Since Y(w)—v is a bounded harmonic function in SjL-e it follows that
2

uniformly in this half-strip

Em Wj

This inequality is a fortiori correct as w -> oo in any fixed half-strip 5^, with

0 < Ψ< -5—ε. We keep ^ fixed; since then ε may be taken arbitrarily small

it follows that

fiS \Y(w)-v\=0 ,

and this proves the theorem.

Proof of Corollaries. Let 0 < d <~2~(Jk~~ψy F o r
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\Z'(w)-l\<^- where h= Max \Y{t)-lτn(t)\
a \t—w\=d

and h -> 0 as w -> oo in Sψ .

Corollaries 2 and 3 follow from 1 by use of the inequalities

and

\X{t)-X{u)\<\ \Z'(ξ)\dξ .

Remark. If in Theorem la the assumption B is replaced by Br: lim Θ(u)=πy

then, for approach w-> oo in K: {w\w e θu, u > w0} ,

. Let ε, 0 < ε < ~ 9 be given and let R = R(ε)>uQ be chosen such

that

(a) S«__e:{w\\v\<^—e,u^R}czS;

(b) for wtΞθu, u>R: — | — ε < i;< -^Γ + β (using A and 50

(c) \Y(w)—v\< ε for w e SjL-e .
2

Thus Z(w) maps S_»L_β onto a subdomain of Σ which contains the half-strip
2

O = a5 + iy\ \y\ < -?—2ε, α ̂ /o}. All points w e /̂Γ with |v |>-5- — e and suffi-

ciently large ^ 5 say u^Ri^R, are mapped, therefore, onto points z~

exterior to this strip and in x ̂  p. Consequently for such w : -5—2ε < |

< \ Hence, for w <B K, w i t h - | — ε < t ; < ^ - + ε , ̂ ^7?!

and similarly, for—π~+ε >v> — -7l—ε7 l ε ,

-ε^Y{w)-v<3ε . (2.4)

Thus by (c), (2.3) and (2.4), for all w e K, u ̂  i?!
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\Y(w)-v\<3ε .

We turn now to the necessity of Ostrowski's condition.

THEOREM lb. Suppose w = W(z) = U(z)+iV(z),z = x + iy, is a holomorphic

univalent function in Σ : I - « -
+ 0 0

uniformly in any subs trip \y\g^Ψ, 0 < Ψ < -^- - :

F(z)-?/->0 , asa ^oo . (2.5)

TΆtfw ^ ίmfl^ S = W(2I) possesses properties A and B.

Proof The condition (2.5) implies that S possesses property A. Con-

sequently S has a boundary point w™ atw/=oo which is accessible along any

curve in \v\< Ψ< -^-. For the inverse function z = Z(w)=X(w) + iY(w) we then

have X(w)-+oo and Y{w)—v ^O as M ->OO5 uniformly in any substrip

To show that S has property B, suppose there exists a sequence {wΛ}? ^ w t °°

as rc->oo such that for fixed c > 0 and <5 >0, the rectangles Rn\{un < u < un+c,

0 < v^-%-+δ} are contained in S. Let ε > 0, ε < ~ , be given and N be so

large that for n > N

|F(ιι;)-ί;|<β for \v\< - | — ε and u > uN . (2.6)

Consider v—Y{w) on dRn. On the side

+δ}: v-Y{w)^-~

On the remainder of dRn we have z;—F(w) ̂  — e, provided u> uN, Map

i?w conformally onto If |<1 such that un+-ψc+i-^- correspond to f = 0, and let

h(ξ) = υ-Y(w), M/ei?ftU dRn. Then

By (2.6) A(0) < ε for n > AT. If γ is the length of the image of 5 on \ξ\ = 1
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Since ε may be arbitrarily small, we find δ ̂  0 contrary to our assumption.

Thus given any δ > 0 and any ε > 0, for all sufficiently large u every interval

[u, u-\-ε\ must contain a point u' such that one endpoint of duh(ur,υr) satisfies

the inequality - £ — e<t/<-^—\-δ, and, by an analogous argument, a point

(M*, V*) such that — ^ - + ε ^ z ; * ^ —-^—<5. Hence there exist sequences {un,vn)

and (ut, υ*) satisfying condition B.

3. Distortion of the Mapping on θu. We prove first a preliminary

result.

LEMMA 2. Suppose S is a domain with properties A and B. For u>uQ, v > 0 ,

let

τ+(u)= Sup \X(u + iv)-X(u)\, τ-{u)= Sup \X{u-iv)-X{u)\.

Then

/i Let ε, 0 < ε<-ί-^- 6 4, be given, let R>uQ be so chosen that (i) the

strip

\v\<~—ε, u>R}czS .
4

and (ii) vn<-7~-+ε and z;* > — -^—ε for un>R and ̂ * > i ? .

Let αrΛ be the endpoint of θUn with Im (an) > 0. Then -^—ε < Im (αJ<f Λ

< ^ - + ε . For ^ n > i ? + l , the application of Lemma 1 with <52 = 3ε shows that

for M; G (9ttw, \w—an\<3ε

\X{w)-X{a>n)\<

By Corollary 2 of Theorem la, for any w=u + iv, with | v | ^ - | — ε

\X{w)-X(u)\< ε ,

provided u is sufficiently large. Combining these two inequalities we find for

all sufficiently large n> un+iυ e θu , υ ̂  0,
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\X(un+iv)-X(un)\< e+^MA^

Hence, for all sufficiently large n,

The proof of the statement on τ-(u%) is analogous.

Now we come to the principal theorem on the oscillation of X(w) on θu.

THEOREM 2. Let S be a domain with the properties A and B. If for u > w0

τ(w)= Sup \X(w2)-X(w1)\ (fc=l,2)

then

limτ(ιO = O. (3.1)

Proof. Because of Corollary 2 of Theorem la it is sufficient to prove that

Sup \X(w)-X(u)\-*0 asM^ +oo. (3.2)

\v\>¥

We take in particular ψ=-~-. Because of Theorem la there exists an R^uQ

such that all points w=u + iv on any θu with u^tR and | t ; |^~ί- are mapped

by Z{w) onto points 2 = aj + ί y 6 2 with | y | ^ - 5 - and such that v^-*- entails

y S^-TΓ- and z;^ "^77 implies y <— ^-. Furthermore, the image of the part

of the real axis with u > R is contained in the strip \y\< -5-. Consequently,

all points z = x + iy in Σ with 2/ '>^k~{y<'—%~) a n c ^ a ^ sufficiently large a?,

say a? > p, are carried by the inverse mapping into points of S with v > 0

(z;<0). We may assume that R is so chosen that the images of all θu with

u> R lie in x > p.

Now let ε, 0 < e < 1, be given and let for n >N=N(ε)

Un+l — Un < ε , U*+1 — Ut < £

and (by Lemma 2)

τ+{un) < ε, τ-(w*) < ε .
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We may assume that R is chosen so large that un >R— 1, ut >R—l imply

n >ΛΓ. Then, for every u>R, the interval [u, u + ε] contains a point un and

Um and the interval [u — ε, u] a point uk and u*, where n,m,k, I >N.

For every w—u + iv with u>R,v >^- there exists a point w'n^θUn with

^ ^ un < u + ε and Im {w'n) > 0 such that

X{w) < X(w'n) . (3. 3)

To find such a w'n we consider on the image σUn of 0W^ in the z-plane a point

with the same ordinate as Z(w). Such a point must have a larger abscissa than

X(w) and the ordinate y = Y(w) ̂  -?-. This point in turn will correspond in the

w-plane to a w'n <= ̂ tt with Im (wή) > 0. Now, by Lemma 2,

X(wί») < X(un) + τ+(un) . (3.4)

By Corollary 3 of Theorem la, there exists a constant c > 1 such that

and thus, combining (3.3), (3.4) and (3.5) we have

X{w)—X(u) < c(un—u)+τ+(un) ^ cε + ε = (c+l)ε .

In analogous way we obtain (choosing a point uk in [u — ε, u])

X{w)—X(u) >—cε—τ+{uk) >—(c+l)e .

(Here use is made of the fact that uk > R—ε ̂  /?— 1 and hence k > iV). Thus

Sup \X(w)—X(u)\^(c+l)ε. (3.6)

Similarly we show (using the points »ϊ, M* and Ϊ -(M)) that

Sup \X(w)-X(u)\^(c+l)ε. (3.7)

v< — π

Hence (3.2) follows from (3.6) and (3.7).

4. Applications. Theorem 2 permits several applications. It yields a

very short proof of Ostrowski's "Faltensatz" [8 p. 456], [7 p. 14] and leads to

a new criterion for the differentiability of conformal maps at the boundary.

The "Faltensatz" is equivalent to the following theorem.
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THEOREM 3. Suppose S is a domain with the properties A and B. If w e S

let u* = irιf u for all u^tuQ such that θu separates w from Woo. Then

lim [X{w)
tt*-»+oo

Proof If w e θu*, then the conclusion is that of Theorem 2. We may

assume, therefore, that w $ θu*. Then θu* may or may not separate w from Woo.

We may assume that u* > M0.

If θu* does separate w from woo then

*(w) < Max X(t) < X(u*)+τ(u*)
t<Ξθu*

by the definition of τ{u). Let u < u*. Then, from the definition of u*9 θu does

not separate w from Woo. Hence

X{w) > min X(t) ^ X{u)-τ{u) .
t e 0U

Let ^ > 0. Choose κ such that 0 < ίί*—M ^ 5. Then

X(u)-X(u*)-τ{u) < X{w)-X{u*) ^ τ[u*) .

By Corollary 3 of Theorem la there exists a constant c > 1 such that

and thus

-Cδ-τ(u) < X{w)-X(u*) ^ r(«*) .

The conclusion follows now from Theorem 2 and the fact that δ may be chosen

arbitrarily small.

If θu* does not separate w from woo, then

X(w)^ Min X(ί) ^ X(w*)~τ(^*) .

On the other hand, for u > &*, #ω must separate from woo and therefore

X(w) < X(u) + τ(u) .

We complete now the proof in this case in an analogous manner.

We now turn to the second application.

THEOREM 4. If S is a strip with the properties A and B, then for w e K

4) The stipulation w*-> +oo is equivalent to the statement: w tends to the prime end
containing Woo.
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Λ (4.1)

exists and. is either finite or +00. s)

Proof. Suppose w1-u1-{-ivu w2 = u2+iv2, uQ<u1<u2, are in K. In the

proof of Ahlfors' inequality [1 p. 8] it is first shown that

^ X2 X\

where

x2= sup X(w) , Xj= inf X{w) .

Since ^ 2 ^ X(M; 2 )+^(^2) > ί»i ^ X(^i)—r(wj) we obtain

and τ(u) -> 0 as & -> 005 by Theorem 2. Thus, for w=u + iv e ϋC,

Let A;=limg'(e{;), fe=limgf(^). Keeping ^ fixed and letting w-+Woo over a

sequence in K for which g(w) -+k, we have

k^gM-φJ . (4.2)

if we now let wx -> Woo such that ^(^i) -> k, we obtain

Since also ]c< k we have /c=^; (4.2) shows that A; > —oo5 however, k_ and hence

k may be +00.

5. Asymptotic Behavior of the Mapping Function in the Kernel.
We now use Theorems 4 and la to obtain a result which yields a new criterion

5) After completion of this manuscript the author learned of a result of Dr. Barry G. Eke
of the University of London. In his doctoral thesis, which is to be published shortly, Dr. Eke
proves the existence of the limit (4.1) for more general domains than those satisfying the condi-
tions for semiconformality at infinity. In view of the application we make below (Theorem
5) involving lim (Z(w)—w), in which the semiconformality is essential, our proof of Theorem

u—»oo

4 seems of interest.
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for the differentiability of a conformal map at a boundary point.

THEOREM 5. Suppose that S is a domain with the property A and that for

Soo

ε{u)du converges*} . (5. 1)

Then for w e K, the kernel of S,

lim[X(w)-u] = λ (5.2)

exists and λ is either finite or +oo.

If w-^ Woo in any substrip Sψ, 0<Ψ< -—-, then

]im [Z(w)-w} = λ . (5.3)

Finally, if lim θ(u)=π, then for w e K
U-ΪOO

lim {Z(w)-w\ = λ . (5.4)

/1 We show first that S satisfies property B. Let O»} be a sequence

such that 5 n > £ n + 1 , δn-*0 as n->oo5 and Σ / ^ diverges. We determine a

sequence {<vh uQ<an<an+u an-+co as w->oo such that «n+i~"^»

We partition [an,an+1] by means of the points an, an+]/d~n, an+2Jd^,

, anΛ-mJYn, an+u where mn is so chosen that

Denote the subintervals of [an, an+1] by ikt7b; each has a lengthϊ^/<5n. We have,

J Poo

ε(u)du^\ ε(u)du < δn ,

and there exists a uk>n e ikιn such that ε(uktn)<i/δn. We number the {̂ fc,n} as

a single sequence ul9 u2,u2, which has the properties:

un+1>un, un-±c°, un+1-un-+0, and ε(un)-+0 as n->oo.

Let vn > 0 and v'n < 0 denote the endpoints of ̂ u . Then

6) (θ(u)—π)du converges.
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On the other hand, because of property A, vn ^ -—- —ηn, \ v'n | ̂  - | - — ηn

where η n -> 0 as n-^-oo. Hence

and therefore lim vn=-7^)- and, similarly, lim vr

n = —^-. Thus S has property B.

To complete the proof we write

where E+={t, uQ<t< u\π-θ{t) ^ 0}, £ - = { / , uo<t<u \π-θ(t) < 0>.

Since on £_: 0<θ(t)—π=ε(t), it follows from (5.1) that

S /Ί

dt exists and is finite.

As u ->oo5 \ JϊΞZiLdt either converges to a finite limit or to +°°.

Hence

(M;)+ lim ί -^±-dt-\- lim f J*=*Ldt

The second part of the theorem, (5.3), follows from (5.2) and Theorem la,

and the last part, (5.4), from (5.2) and the Remark to Theorem la at the end

of Section 2.

THEOREM 6. Suppose S is a domain as in Theorem 5. Let for u ^ uQ, β(u)

be a nonnegative continuous function such that

(i) [°° β{u)du <oo and (ii) \u+^β(t)dt^cβ2{u)

for a fixed c > 0 and all sufficiently large u.7^ If the strip {u ^ uQ, \υ\^ -~—β(u)}

is contained in S, then λ < <χ>.

7) Condition (ii) is clearly satisfied if β(u) is monotone for every c^ 1. Other examples
for which (ii) holds are functions β(u) such that for some constant k > 0 either
—k(u2—u-ύ or β(u2)— β(u^ ^k(u2—KJ), where u2>u1.
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Proof.8) First we map S by means of ω = e\w~~iJτ) onto a domain Ω in

the ω-plane, ω = ζ+iη; then Woo is transformed to the point ωQ at the origin,

and (ϋ0 is accessible in any angle A: 0< δ ̂ .arg ω^π—δ, 0<δ<^~. Let

(φ, p) denote polar coordinates in the ω-plane, and let p = e~u, βi(p) = β{-log p)

= β(u); βi(p) is continuous, and because of (ii) and (i) β1(p)-+O as p->0; let

j91(0) = 0. The arc γ\ {φ = βx(p), 0 < p < pQ = e-uo}is contained in Ω. Similarly, the

arc γ' symmetrical to γ with respect to the imaginary axis is in Ω. We

define &(-*) = &(*), 0<t^pQ.

Let C be a circle of radius a>0 about the point ai, where 2a< pQ. Let Γ

be arc of C obtained by traversing C from the point 2ai in both directions

to the first points of intersection with ϊ and Γ, respectively (at p = pu say).

Name the subarcs of ϊ and ϊr from 0 to these points of intersection again T and

V. Then the domain Ωo bounded by the closed Jordan curve ΐUΓUT' contains

ai and is contained in Ω. We may assume i o : > 0 ; otherwise Γ=C and the

conclusion of our theorem is well known. Also, we may assume βι[p)<-^-

f o r p< p x .

Let G0(ω, ai) = log——v{ω) denote the Green's function for ΩQ with pole at

ia9 where r=\ω—ia\ and v(ω) is harmonic in Ωo. Then for ω e dΩ^ we have

t;(ω)=log^-.

Now, for ύiGj', o)=|og^i(p)

where ^ = Im (ω). (Since ft(p) < -5- we have r ̂  -ψa for ω e 7-.)

Thus on γ U r7

Φ>)<-J-? b=ImM). (5.5)

Consider now the harmonic function in Im (ω) > 0

>

We have for p ̂  p1

8) The proof generalizes a method of M. Tsuji [9 p. 368].
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Since in the interval of integration \ξ—t\ = \p cos β1{p)—t\^ 3η ,

If we set p = e~u and t — e~τ a short calculation shows that the last integral is

by hypothesis (ii) k is a positive constant. Hence for <w e 7-

Kω^-ϊ-pttfίp^bη (5.6)

where 6 is a positive constant. The same estimate is obtained for w e 7-'. Hence

by (5.5) and (5.6) for ω e 7-117-'

Furthermore z;(α>) = 0 on Γ. Hence on dΩ

v(ω) ̂  -jβ-h(ω) (5. 7)

and therefore also in ββ. Now, for ω = /)75 0 < ^ < β,

and the last integral converges because of hypothesis (i). Thus by (5.7)

Next we have for 0 < η < -?-

> η r 1 2 f3α

 Λ m dί Ί _ R

We can choose a priori α so small that B > 0 .

Let G(ύ), fα) denote the Green's function of Ω with pole at at. Since Ω0<z Ω

we have G(<w, ia) ̂  G0(<y, /Λ) and therefore
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Hm GjHia) ^ ^ G.fo.ia) ^ B > 0 .

If the map Z{w) of S onto Σ is so normalized that the point in S which

corresponds to ia^Ω is mapped onto z = 0 then it is easily seen that

Hm G^> '*) = 2e~K Hence λ ^ l o g A

Remark. Theorems 5 and 6 entail a criterion for the existence of the

angular derivative of a conformal map at a boundary point. This criterion

is stronger than those obtained earlier by Ahlfors [1, p. 36], the author [10],

and by several others described in [7, pp. 22-28]. It is easily verified that

our result implies these criteria. To show that it is actually stronger one

might consider the domain S which consists of the strip \v\<-γ- slit along the

segments {u = un, |t;|^>~-—λn}> with wnt°° a n d ^ Λ + 1 — u n ^ c>0 [l,p.39]. The

criteria cited do not permit one to decide whether the convergence of 2^2 is

sufficient for the existence of a finite limit (5.3). The question was answered in

the affirmative by J . Wolff [12] with an ad hoc proof, even without assuming

the condition un+1—un^c . A simple construction yields a function β(u) as

required in Theorem 6 and permits us to infer this result from Theorem 6.

Our criterion also contains the more recent (and stronger) condition by

J . Ferrand [3], Theoreme p. 192. Other criteria by J. Dufresnoy and J .

Ferrand [2, pp. 170-174] as well as related conditions in [5, pp. 208-211]

apply to a wider class of domains but are weaker than ours in case the domain

is contained in the strip \v\<-~~.

BIBLIOGRAPHY

[ 1 ] L. Ahlfors, Untersuchungen zur Theorie der konformen Abbildung und der ganzen
Funktionen, Acta Societatis Scientiarum Fennicae, nov. serie A, vol. 1, No. 9 (1930),
1-40.

'[ 2 ] J. Dufresnoy et J. Ferrand, Extension d'une inegalite de M. Ahlfors et application au
probleme de la dέrivee angulaire, Bull, des Sciences Math., 69 (1945), 165-174.

[ 3 ] J. Ferrand, Sur Γinegalite d'Ahlfors et son application au probleme de la derivee angulaire,
Bulletin de la Societe Math de France, v. 72 (1944), 178-192.

[ 4 ] J. Lelong-Ferrand, Sur la representation conforme des bandes, Journal d'Analyse Math.
(Jerusalem) v. 2 (1952), 51-71.

[ 5 ] , Reprέsentation conforme et transformations a integrale de Dirichlet
bornέe, Gauthier-Villars, Paris, 1955.

[ 6 ] C. Gattegno, Nouvelle demonstration d'un theoreme de M. Ostrowski sur la representa-



ON THE BOUNDARY BEHAVIOR OF CONFORMAL MAPS 101

tion conforme, Bull, des Sciences Math., 62 (1938), 12-21.
[ 7 ] C. Gattegno and A. Ostrowski, Representation conforme a la frontiere: domaines

particuliers, Memorial des Sciences Math., 110 (1949). Gauthier-Villars, Paris.
[ 8 ] A. Ostrowski, Zur Randverzerrung bei konformer Abbildung, Prace Mat. Fisycz. 44

(1936), 371-471.
[ 9 ] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen Co., Ltd., Tokyo,

1959.
[10] S. Warschawski, Uber das Randverhalten der Ableitung der Abbildungsfunktion bei

konformer Abbildung, Math. Zeitschrift 35 (1932), 322-456.
[11] J. Wolff, Demonstration d'un theoreme sur la conservation des angles dans la represen-

tation conforme au voisinage d'un point frontiere, Proceedings, Kon. Akademie van
Wetenschappen, Amsterdam, 38 (1935), 46-50.

[12] , Sur la representation d'un demi-plan sur un demi-plan a une infinite
d'incisions circulates, Comptes Rendus, Acad. Sc. Paris, 200 (1935), 630-632.

University of California, San Diego, La Jolla, California, U.S.A.






