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Introduction

1. Let W be a. plane domain such that &>&W. Given a point α^W and a

boundary component C of W, consider the family %αc=?ίαc(W) consisting of all

the functions / satisfying the following conditions: / is regular and univalent

in W, /(α) = 0, /'(#) = 1, and the image /(C) of C under / is the outer boundary

component of the image domain f{W). Set

M[/] = sup|/(a;)|
ZSΞW

and

= infM[/].

In the present paper we shall call rαC the mapping radius of W with respect

to a and C.

If raC is finite, it is now classical that there exists a function minimizing

M[f] within %aC and that it maps W onto a circular slit disk. If raC is

infinite, however, to the best knowledge of the authors, no one has studied this

kind of conformal mappings.

The purpose of the present paper is to show that a considerable part of the

results for finite raC is extended to the case of infinite raC

2. Standard known results for rac < °°

(I) IfraC< °o, there exists a function <p&%aC with M[φ] = raC. It is determined

uniquely.

w
ac '

This function φ will be denoted by φaC or φ

We mean by a circular slit disk with radius Q{< oo) a domain Δ such that

0 e J c { w | \w\<. Q}, and {w\ \w\=Qy is a boundary component, and further

every other boundary component is a single point or a circular arc on | w\ — const.
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(II) The image of W under φ is a circular slit disk with radius raG. The total area

( = 2 dimensional measure) of slits vanishes.

This property does not in general characterize φaC. For this reason the

following is introduced: A circular slit disk Δ with radius Q(< oo) is said to

be minimal if <PoΓ(w)=w with respect to Γ={w\ \w\ = Q}.

(III) The image ofW under φaG is a minimal circular slit disk with radius rac-

Conversely, an f^%ac such that f(W) is a minimal circular slit disk (with a certain

radius) is necessarily φaG.

Consider an exhaustion a^Wn"[W in the ordinary sense. Let Cn be the

boundary contour of Wn which separates C from a. Put rn — raCJWn)

(IV) rn increases with n andraC = Hmrn. Further φac = tim<Pn uniformly on every

compact set in W.

Proofs of the above are found in, e.g., Reich-Warschawski [7] , which con-

tains also a list of literatures.

3. LEMMA 1. A domain Δ with 0<^Δa{w\ \w\<Q}9 Q<°o, is a minimal

circular slit disk with radius Q if and only if

where Γ is the outer boundary of Δ.

It is a direct consequence of (I) and the proof may be omitted.

4. Main result. If rα C = oo, the counterpart of (I) is meaningless. Indeed,

M[/] = oo for all f^.%aG > that is, all the / are extremal functions. It is known

also that the first half of (IV) is valid for raC = oo. Our main result is that (II),

(III), and the latter half of (IV) are true for raC = °°- It may be summarized

as follows:

T H E O R E M 1. Under the assumption of raC = m, there exists a uniquely determined

function φ^%aG such that, for every exhaustion

uniformly on every compact set in W. The image φ{W) is a circular slit disk with

infinite radius, and the total area of the slits vanishes.
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The function φ will be denoted by φaC or φ^c . A circular slit disk Δ with

infinite radius will be called minimal if φoΓW = w with respect to Γ={oo}. Then

it would be clear that the counterparts of (II)-(IV) are derived from Theorem

1.

Let us sketch how the proof of Theorem 1 will be carried out. For any

exhaustion, the sequence {φn} is normal and, therefore, it contains a subsequence

which converges to a ψ^%ac uniformly on every compact set in W. We

shall show, first, that ψ{W) is a circular slit disk with infinite radius, which

satisfies a certain condition enjoyed by minimal ones with finite radii

(Theorem 2). This latter property implies that the total area of slits vanishes.

Besides, it is satisfied by at most one function in %aC (Theorem 3). Thus

the proof of Theorem 1 will be complete.

§§ 5-11 are devoted to the preparation, a part of which is contained in

[6, 11]. In §§ 16-20 is discussed the corresponding case of mappings onto

circular slit annuli.

Circular slit disk with finite radius

5. The linear operator method. We shall present several particular results for

the case of finite raC which are needed later. To this end the linear operator

method developed by Sario [9] will be used. Let us review the definition

and basic properties of the operator Lλ in Ahlfors-Sario [1].

Let W be an open Riemann surface, let V be the union of a finite number of

regularly imbedded non-compact subdomains with compact relative boundary.

For any real analytic function / on α, the relative boundary of V> consider the

problem of constructing a harmonic function u on ViJa such that u = f on α.

If V is the interior of the union of a finite number of compact bordered

surfaces, we require u to satisfy the following conditions so that it may be

determined uniquely:

u = const and \du* — 0

on every contour of (border of V)—a. The correspondence f~-*u is denoted

by Lx. Note that it is the {P)LX in Ahlfors-Sario's book with respect to the

canonical partition P (See [1, p. 160]).

If V is arbitrary we define u — Lλf by means of exhaustion aaW^W. Let Lln

be the above defined operator Lx acting from a into VΠWn> The sequence
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Llnf converges to a harmonic function uniformly on every compact set inVUa.

The limiting function is independent of the exhaustion, which will be denoted

by LJ:

LJ=\\mLlnf.
n->oo

If V is the interior of the union of a finite number of compact bordered

surfaces, this definition coincides with the previous.

We shall need the following properties:

Linearity, Lι{cιf1+c2f2)-cιL1f1+c2Lιf%

Maximum-principle, min / < Lxf ^ max / in V.

6. It is not difficult to derive the following Consistency of Lx:

(a) If F c F , then

Llv>(Llvf) = Llvf on V

for every / on a. Here subscripts V and V represent the domains where Lx

is considered.

(b) Conversely, let Vx , . . ., VkaV be mutually disjoint and such that

V— UfLiFiis relatively compact. Given / o n a, supposes is harmonic onVUα,

coincides with / on α, and satisfies

u=L1Vίu on Vi (ί = l ,. . ., k).

Then

u = L1f on V.

7. Properties of φaC in terms of Lx. Let W, a, and C be as in §1. Suppose

VcW is as in §5 and is such that

β $ V, ΫΠC=φ;

by the closure we do not mean the one in the relative topology on W.

LEMMA 2. If raC < oo, then

(1)

F . If further, C is a simple closed analytic curve isolated from dW—C, then

φ — φa.c is conversely characterized by (I) and the following: < p e g α C , regular on WuC,

and \φ\ — const on C.
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Proof. Consider an exhaustion {ά}\lac:Wn\W. Put u = \og\φaC\ and

Yc\\ Clearly

un = Llnun on VnWn,

n=l,2,.... Then

un- Llnu\ + \Llnu--L1u\ < max \un—u\ + \Llnti—

as n -> oo. Accordingly

To prove the latter half, let φ and 3̂ satisfy the conditions. Then

v=log\φ\—log\φ\ is harmonic on WUC and satisfies Livv=v on every F. By

the Consistency of Lx we have L1v=v on W, where Lλ acts from C into W.

Since z; = const on C, we obtain z;=const in W and, therefore, φ — ψ. q.e.d.

From the latter half of Lemma 2 we can easily derive the following proposi-

tion:

Suppose ά is a circular slit disk with radius Q<oo and Γ={w\ \w\=Q} is

isolated from dΔ—Γ. Then it is minimal if and only if

holds on every subdomain V such that a <ΐ V, WΠdV consists of a simple closed

analytic curve α, and V=J(Ί (Intα). Here Int a means the interior of a.

8 DEFINITION. A set E in the w-plane with 0, o o φ ^ is called a

minimal set of circular slits if, for every simple closed analytic curve a such that

0, oo $ a and EΠ (Int a) is compact, £CΠ (Int a) =V is a domain and

i1(log|ίc;|)=log|w| on F,

where Lx acts from α into V.

In view of the last paragraph of the previous section, it may be characterized

as follows: Given a set E with 0, oo $ E, let a be, as is mentioned in the

Definition, a simple closed analytic curve such that 0, oo^α and Ef) (Intα)=2?i

is compact; if E is a minimal set of circular slits, then, for every (or equivalently

some) O < oo with Exa{w\ \w\< <?}, the domain {w\ \w\<. Qy—Ex is a minimal

circular slit disk with radius Q conversely, this property is sufficient for E to

be a minimal set of circular slits.

Every component of a minimal set of circular slits is either a single point or

an arc on \w\ = const. It has vanishing area.
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9. In the last paragraph of §7, the assumption for Γ can be removed as

follows:

LEMMA 3. A domain Δ with OeJc-{>| |w |<Q}, Q<oo, is a minimal circular

slit disk with radius Q if and only if

Δc[\{w\ \w\<Q}

is a minimal set of circular slits.

Proof The necessity is a direct consequence of the first half of Lemma 2.

To prove the sufficiency, let Γ be the outer boundary of Δ. Because of

Lemma 1 and (IV) in §2, it suffices to find an exhaustion O e J n t ^ such that

where rn = roΓn{Δn).

It is clear that Γ coincides with the circle \w\ =Q. Therefore it is possible to

find a simple closed analytic curves Γn, n = l , 2 , . . . in ΔΠ{w\Q— l /n< \w\<Q}

separating Γ from 0 and such that (Int Γn) c (Int ΓΛ + 1). By the assumption,

En= (Int Γn) Π Δc has the property that

Δn=iw\ \w\<Q}-En

is a minimal circular slit disk with radius Q. As a consequence rn=ror(dn)

coincides with Q.

Exhaust Δn by 0<ΞjmtntΛ* (#*t°°) The mapping radius rm,n = roΓmtn{Δmtn)

satisfies

We may assume ΓnaΔmtn, w = l , 2 , . . . . Since Δn is a minimal circular slit

disk, the sequence <pmtnW = <Pr2'nnM converges to w uniformly on Γn as m -^oo.

Thus it is possible to find m=m(n) such that φm,n{Γn) is contained in

Q-lln<\w\<Q.

Take m = m{ή) sufficiently large so that

J n =(Int Γ n ) n J n ( n ) , Λ | w=l,2, ...

satisfy ΔnaΔn+1 and \jnZ1dn = <d. Then they are what we wish to get. In fact,

first
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holds. Second, φm(n),n(^n) has only a finite number of slits and contains

φ-m.(n)%n(Δn)C\{w\ \w\< Q~ I/ft}, which is a minimal circular slit disk with radius

Q-l/n. Hence, by (I) in §2,

As a consequence lim rn—Q.

10. Extension of One-Quarter-Theorem. The following has essentially been

obtained by Grotzsch [3]:

LEMMA 4. If rac<00, then

min

where mc[f]= niin \w\.

Proof Consider the Koebe function

\w\<r.

Put Frθ{w) = eiΘFr(e~iΘw), 0 < θ < 2 π . With respect to r=raC, the function

Fr°<Pac belongs to %aG and has mc equal to r/4. Thus inf mc{f\^raG\^.

Suppose, next, there exists an fo^%ac with mc[f0]<raC/
/ί' If fo(C) is not a

half-line on the ray arg w=const, a simple application of One-Quarter-Theorem

shows the existence of fι<^%ac with rnc[fi\ < ^α[/ol Accordingly, we may

assume from the beginning that /0(C) is a half-line on the ray arg w=Θ. With

respect to r=4:mc[fo] the function / 2 = i r^°/o belongs to %aC and has

M[f2] = r < rα(7. This contradiction denies the existence of /0, showing

Weak boundary components

11. The mapping radius raC is infinite if and only if f{C)={oo}- for every

This is equivalent to the fact that, for every univalent function F on

W, the image F(C) consists of a single point; note that the validity of this is

independent of the reference point a. In this case the boundary component C

is called vollkommenpunktformig by Grotzsch [4], and weak by Sario [10].

Sario and others have generalized the concept of weakness for boundary
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components of open Riemann surfaces. A number of properties of parabolic

Riemann surfaces are generalized for surfaces having weak boundary com-

ponents. We need the maximum-principle due to Constantinescu [2, p. 55].

In the statement of the result he assumed that the function is positive. But

it is seen easily from his proof that this assumption is unnecessary as long as the

present operator Lx concerns. We shall state it for plane domains.

LEMMA 5. Suppose raC~oo. Let V be a sub domain such that W—V is compact

and a = W ΠdV consists of a finite number of simple closed analytic curves. Let u be a

harmonic function on V\Ja. If u is bounded above in V and satisfies

in every V'aV with V'ΠC-φ, then

u ^ max u in V.

Circular slit disk with infinite radius

12. Let W, a, and C be as in §1, and consider an exhaustion a^Wn^W as

in §2. The functions φn^φ^cn (1>2,...) form a normal family, so that it

contains a subsequence {φn.} for which

holds uniformly on every compact set in W.

By exactly the same argument as in the Proof of Lemma 2, we see that

(2) Li(logM)=log|0|

is satisfied on every VaW with a$V and ΫΓiC = φ. IΐraC=™, then ψ{C)={oo}.

Thus we immediately obtain the following:

THEOREM 2. If rαί7 = rc>? every limiting function ψ maps W onto a circular slit

disk with infinite radius. dψ(W)—ioo} is a minimal set of circular slits and, therefore,

has vanishing area.

13. THEOREM 3. If r α σ

= o o

? then %aC contains at most one function satisfying

(2).

Proof. Suppose there are two, say ψ and ψλ. It suffices to show that the

function z*=log)0/^1, harmonic in W, reduces to constant.

Let us first prove that it is bounded above. For w = 1, 2,..., Δn

= ψ{W)Π{w\ \w\<ny is a minimal circular slit disk with radius n (Lemma
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3). On applying Lemma 4 for the function ψ^ψ~ι on Δn, we observe that the

image of \w\ =n, a boundary component of Δn under this, lies outside the disk

\w\^± n/4. It is not difficult to find a simple closed curve in φ(W)Π{w\n<\w\

< n+1}separating \w\=n from \w\=n+l. It may be assumed to be an analytic

curve. On denoting its counterimage under ψ by Cn, we obtain \ψ\<nΛ-\

and | 0 i l ^ w/4 on Cn, so that u ̂ l o g 4(n+l)n~1 on Cn.

Cn divides W into two subdomains. Let Wn be the one containing a. By

the assumption (2) and by the Consistency ofL l 5 we h?iweL1u = u on Wn, where

the operator acts from Cn into Wn. The maximum-principle implies u <

log 4(n+1)^"1 on Wn. On letting ^ ->• oo, we conclude that

^ ^ log 4 in l̂ F.

Now let iVbea relatively compact parametric disk about a. Apply Lemma

5 to u on W—N. The function u is dominated by max u in ΫF—iV, so is in
dN

W. We conclude u — const.

14. As a trivial consequence of Theorems 2 and 3, we obtain the following

extension of Lemma 3:

THEOREM 4. A circular slit disk Δ with infinite radius is minimal if and only if

Δc—{oo} is a minimal set of circular slits.

15. If rαC=oo and C is isolated from dW—C, then C coincides with {oo}. In

this case W=W[J{°°} is also a domain. The function on W obtained by

Theorem 1 coincides with the well-known extremal function which maps W

onto a circular slit plane.

Circular slit annulus

16. Introduction. Let W be a plane domain having more than one boun-

dary components. Assign two of them, C and C. Consider the family

dcc=?ίc'c{W) consisting of all the functions /satisfying the following conditions:

/ is regular and univalent, f(z) =¥ 0 in W, f{C) is the inner and f(C) is the

outer boundary component of f{W). It would be convenient not to give

further restrictions.

Set

= sup I/GO I, m[/] = inf |/(z)|,
26 W Z<ΞW
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and

rclc=rcrc(W)= inf

We shall call rc,c the modulus oiW with respect to C and C.

If the modulus is finite, then the function minimizing M[f]/m[f] within

gc / c is known to exist. It is determined uniquely up to a constant factor.

It maps W onto a circular slit annulus the ratio of whose outer and inner

radii is equal to rc,c Inspite of the ambiguity of the constant factor, we shall

denote this function by φCfC or φ™c. Further results analogous to (II) — (IV)

in §2 are also well known (see, e.g., Reich-Warschawski [8]).

In the following we shall prove the analogue of Theorems 2 and 3.

17. Let us begin with the following remark:

LEMMA 6. rCrc = 00 if and only ifC or C is weak.

Proof. Take a point C G ? and an exhaustion a^Wn*\W. Let Cn

f and Cn

be contours of dWn separating a from C and C, respectively; they do not

coincide if n is sufficiently large. Let wn=log|^αCB |,Mn

/ = log|^α^n |, and

vΛ=log|^C n 'C n | on Wn, where the last one is normalized so that |^c»'c»l = l o n

CJ. Compute the Dirichlet integral in two ways:

Dwn [un—un

r, vn] =}dW {un—un

f)dυt=\idw vnd(un—un')*.

Use also the relation

We obtain

log rαC

from which we get the conclusion immediately.

18. With respect to the exhaustion Wn^W consider

<Pn = <PCn'Cn> W=l,2, .. . .

If the constant factor is chosen suitably, this is a normal sequence. For example

if φn{a) = l9 n=l ,2 , . . . , at a fixed point <Z<BW, then every φn omits three values

0, 1, and oo on W—{a}. Take a subsequence which converges on every compact

set in W:
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THEOREM 5. If C is weak and C is not weak then φ{W) is a circular slit annulus

with positive inner radius and infinite outer radius. If C and C are weak, then φ(W)

is a circular slit annulus with zero inner radius and infinite outer radius. In both cases

dψ(W)—ψ(C)—ψ(C) is a minimal set of circular slits and, therefore, has vanishing area.

Proof The proof is completely analogous to that of Theorem 2 except the

following fact: In the first case φ(C) is a circle with positive radius. We

only give its proof.

Take Qo > 0 so that ψ(C) is contained in the disk \w\< QQ. Let

and let f be the modulus of I with respect to ψ(C) and \w\ =Q0. For every

ε > 0 take a simple closed analytic curve Ce in φ(W)Γϊ{w\QQ—ε<\w\<Qoy

separating φ(C) from \w\=QQ. Let

and let fε be the modulus of Ie with respect to φ{C') and Ce. Since φ(C) is

not weak, r is finite and, by the analogue of (I) in §2,

f.

Denote by Q/ and Qj the inner and outer radii, respectively, of the slit

annulus <pnj(Wnj). If j is sufficiently large, then Q/ <Q0< Qj. Since <pnj -> φ

is uniform on ψ-ι(Cε), the curve φnj(Ψ~ι(Ct)) is contained in QQ—ε< \w\< Qo

provided j is sufficiently large. It is not difficult to see

so that Q/(J=l, 2, ...) are bounded away from zero. For a suitable

subsequence of {rij}, being expressed by the same notation, the following limit

exists:

Then, by a standard argument, we see that ψ(C) lies exterior to the disk

\w\<Q'. Thus
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On letting e -> 0 we get

From this relation and the fact Δa{w\Qr < \w\< Qo} we see, by the analogue

of Lemma 1, that Jis a minimal circular slit annulus with inner and outer radii

Q' and Qo, respectively. In particular we conclude that φ(C') is the circle

| fo |=Q'>0.

19. To obtain the analogue of Theorem 3 we need lemmas corresponding

to Lemma 4. We shall use, in place of One-Quarter-Theorem, extremal

domains of Grotzsch and Teichmuller (Teichmuller [12]). Since everything

is completely analogous to Lemma 4, we shall omit the proofs of Lemmas 7 and

8 below.

For /eg c / c, put

1 wI and Mclf] = max \w\.

LEMMA 7. If rCfC < °°5 then

for every / e g c c such that f(C) coincides with the circle \w\ = 1.

LEMMA 8. If rc>0 < °°, then

for every /egcc.

For the definitions of the functions Φ and Ψ the reader is referred to [12].

We shall also need the following: They are increasing functions and satisfy

= 1 6

20. THEOREM 6. If C is weak and C is not weak, then %cιc contains at most

one 0, up to a constant factor, such that ψ(C') is a circle with positive radius and

dψ{W)—ψ(C)—ψ{C) is a minimal set of circular slits. If C and C are weak then g c, c

contains at most one ψ, up to a constant factor, such that dφ(W)—ψ(C)—ψ(C') is a

minimal set of circular slits.

Proof In the first case we normalize ψ so that the radius of ψ{C) is
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equal to one. The proof is similar to that of Theorem 3 if we substitute Lemma

4 by Lemma 7. It may be left to the reader.

To prove the second half, let ψ and ψx be functions in %c>c satisfying the

conditions. It suffices to show that u = log|φ\φx\ is constant.

Take a simple closed analytic curve CoaW separating C from C. W—Co

consists of two components; let Wo be the one between C and C09 and let WQ'

be the other. Suppose the following are satisfied on Co:

A <\ψ(z)\<B, A1<\φ1(z)\<B1.

By the analogue of Lemma 3, the domain Jn = φ(W) Π{w\B<\w\< n} with

an integer n > B is a minimal circular slit annulus. Its modulus with respect

to \w\=B and \w\=n is equal to n\B. Therefore, the modulus fn of

with respect to φ(C0) and \w\ —n satisfies

71 = B '

By Lemma8 for In, the image of \w\ =n under φ^ψ'1 lies exterior to the disk

\w\< Biψ-ι(rn). On a simple closed analytic curve CncWQ which separates C

from Co and is such that ψ(Cn) is in n<\w\< n+l,

and \φ1{z)\^ B1ψ-1(n/B)

are satisfied. Further \φ(z)\<B and \φ1(z)\^A1 hold on Co. Then the

maximum-principle for the operator Lx yields

for every z in WQ lying between Co and Cn. On letting n -> oo5 we obtain

in T70. Thus u is bounded above in WQ and, by Lemma 5, u ^ maxCo ^ in ΫF0

On the domain Wo', we consider JΛ

/ = 01(W
r) Π{w;| 1 / ^ < | M ; | < A J and the

curve Cn

f such that φx(Cn

f) is in l / ( n + l ) < | w | < l/«. We see similarly, on

applying Lemma 8, that
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at z in WQ' lying between Co and Cn'. Thus

in WQ' and, by Lemma 5, u < maxCou in Wύ'.

Consequently u ^ maxCoM in W, showing that u = const.
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