CONDENSOR PRINCIPLE AND THE UNIT CONTRACTION

MASAYUKI ITÔ

To Professor Kiyoshi Noshiro on the occasion of his 60th birthday.

Introduction

Deny introduced in [4] the notion of functional spaces by generalizing Dirichlet spaces. In this paper, we shall give the following necessary and sufficient conditions for a functional space to be a real Dirichlet space.

Let \mathscr{X} be a regular functional space with respect to a locally compact Hausdorff space X and a positive measure ξ in X. The following four conditions are equivalent.

- (1) The unit contraction operates on \mathcal{X} .
- (2) \mathscr{X} satisfies the condensor principle.
- (3) \mathscr{X} satisfies the strong complete maximum principles.
- (4) \mathscr{H} is a real Dirichlet space.

Furthermore for an invariant functional space \mathscr{X} on a locally compact abelian group X, we shall show the following equivalence without assuming the regularity.

 $\mathscr X$ is special Dirichlet space if and only if $\mathscr X$ satisfies the condensor principle.

1. Preliminaries on regular functional spaces

Let X be a locally compact Hausdorff space and ξ be a positive measure in X which is everywhere dense in X (i.e., $\xi(\omega) > 0$ for any non-empty open set ω in X). According to Deny [4], we give the definition of a functional space.

DEFINITION 1. A functional space $\mathscr{X} = \mathscr{X}(X, \xi)$ with respect to X and ξ is a Hilbert space of real valued functions u(x) which is locally summable for ξ , the following condition being satisfied: (i) For any compact subset K in X, there exists a positive number A(K) such that

Received May 6, 1966.

masayuki itô

$$\int_{K} |u(x)| d\xi(x) \leq A(K) ||u||$$

for any u in \mathcal{X} .

Two functions which are equal locally almost everywhere for ξ represent the same element in \mathscr{X} . The norm in \mathscr{X} is denoted by ||u||, the associated scalar product by (u, v). Let C_K be the space of finite continuous functions with compact support provided with the topology of uniform convergence.

DEFINITION 2. A functional space $\mathscr{X} = \mathscr{X}(X, \xi)$ is said to be regular if $\mathscr{X} \cap C_{\kappa}$ is dense both in \mathscr{X} and in C_{κ} .

By the condition (i), for any bounded measurable function f with compact support, there exists an element u_f in a functional space \mathscr{X} such that

$$(u_f, u) = \int f u \, d\xi$$

for any u in \mathscr{X} . Such an element u_f is said to be the potential generated by f. More generally we define potentials as follows.

DEFINITION 3.¹⁾ Let \mathscr{X} be a regular functional space. The element u is called a potential if there exists a real Radon measure μ such that

$$(u, f) = \int f d\mu$$

for any f in $\mathscr{X} \cap C_{\kappa}$. Such an element u is denoted by u_{μ} . Especially if μ is positive, u_{μ} is said to be a pure potential.

According to Beurling and Deny [2], we define the capacity of an open set is defined as follows:

$$Cap(\omega) = inf\{||u||^2; u \in \mathscr{H}, u(x) \ge 1 p.p. in \omega\}.$$

If there are no such functions, $Cap(\omega) = +\infty$.

LEMMA 1. Let \mathscr{X} be a regular functional space and f be a function in $\mathscr{X} \cap C_{\kappa}$. Then for each positive number ε ,

$$Cap(\{x \in X; f(x) > \varepsilon\}) \leq \frac{||f||^2}{\varepsilon^2}.$$

By the definition of the capacity, this is evident.

LEMMA 2. For a relatively compact open set ω in X, put $E_{\omega} = \{\overline{u_{\mu} \varepsilon \mathscr{H}}; S_{\mu} \subseteq \omega, \mu \ge 0\}.^{2}$

¹⁾ Cf. [2], p. 209.

²⁾ S_{μ} is the support of μ .

Then there exists a unique element u_{τ} which minimizes

$$I(u_{\mu}) = ||u_{\mu}||^{2} - 2 \int d\mu$$

in E_{ω} and for which

$$Cap(\omega) = ||u_{\tau}||^{2} = \int d\tau.$$

Proof. Obviously E_{ω} is a closed convex cone in \mathscr{X} . Since ω is a relatively compact set, there exists a function f in $\mathscr{X} \cap C_{\kappa}$ such that $f(x) \ge 1$ in ω . Then

$$I(u_{\mu}) \ge ||u_{\mu}||^{2} - 2 \int f d\mu = ||u_{\mu} - f||^{2} - ||f||^{2}.$$

Hence $I(u_{\mu})$ is bounded from below in E_{ω} . Therefore there exists a unique pure potential u_{τ} such that

 $I(u_r) \leq I(u_\mu)$

for any u_{μ} in E_{ω} . Then

$$\int d\mu \leq (u_{\gamma}, u_{\mu}) \tag{1}$$

and

$$\int d\gamma = ||u_{\gamma}||^2. \tag{2}$$

By (1), $u_r(x) \ge 1$ p.p. in ω . Hence

$$|u_{\tau}||^2 \ge Cap(\omega).$$

On the other hand it is known that there exists a sequence (u_{f_n}) of pure potentials such that $u_{f_n} \to u_{\tau}$ strongly in \mathscr{X} , where f_n is a positive bounded measurable function with support in ω .³⁾ For any u in \mathscr{X} such that $u(x) \ge 1$ p.p. in ω ,

$$(u_{f_n}, u) = \int f_n u \, d\xi \leq \int f_n \, d\xi.$$

Since the measure f_n converges vaguely to γ and ω is relatively compact,

$$\lim_{n\to\infty}\int f_n\,d\xi=\int d\gamma.$$

³⁾ Cf. [4], p. 3 and [6].

Hence

$$(u_{\tau}, u) \geq \int d\gamma = ||u_{\tau}||^2,$$

i.e., $||u|| \ge ||u_{\tau}||$. Consequently

$$Cap(\omega) = ||u_{\gamma}||^{2} = \int d\gamma.$$

LEMMA 3. Let \mathscr{X} be a regular functional space on X and ω be an open set in X. For any increasing net $(\omega_{\alpha})_{\alpha \in I}$ of relatively compact open sets exhausting ω ,

$$\lim_{\alpha \in I} Cap(\omega_{\alpha}) = Cap(\omega).$$

Proof. Obviously $Cap(\omega_{\alpha})$ increases with α . First we suppose that $Cap(\omega) < +\infty$. Then $Cap(\omega_{\alpha})$ is bounded. Let $u_{\tau_{\alpha}}$ be the pure potential such that $Cap(\omega_{\alpha}) = ||u_{\tau_{\alpha}}||^2$. Suppose that $\alpha \leq \beta$. Then

$$||u_{\tau_{\alpha}} - u_{\tau_{\alpha}}||^{2} = ||u_{\tau_{\alpha}}||^{2} - 2(u_{\tau_{\alpha}}, u_{\tau_{\beta}}) + ||u_{\tau_{\beta}}||^{2}$$

$$\leq ||u_{\tau_{\beta}}||^{2} - ||u_{\tau_{\alpha}}||^{2}.$$

Hence $(u_{r_{\beta}})$ is a fundamental net in \mathscr{X} . There exists an element u in \mathscr{X} such that $u_{r_{\alpha}} \rightarrow u$ strongly in \mathscr{X} . For any positive bounded measurable function f with compact support such that $S_f \subset \omega$, there exists α_0 in I such that

$$(u_f, u_{r_a}) = \int u_{r_a} f d\xi \ge \int f d\xi$$

for any $\alpha \ge \alpha_0$. Therefore

$$(u_f, u) \geq \int f d\xi,$$

i.e., $u(x) \ge 1$ p.p. in ω . Hence

$$Cap(\omega) \leq ||u||^2$$
.

Consequently

$$\lim_{\alpha \in I} Cap(\omega_{\alpha}) = Cap(\omega).$$

In the case that $Cap(\omega) = +\infty$, it is evident that

$$\lim_{\alpha \in I} Cap(\omega_{\alpha}) = +\infty$$

by the above proof.

LEMMA 4. Let ω_n be an open set in X $(n=1, 2, \dots)$. Put

$$\omega = \bigcup_{n=1}^{N} \omega_n$$

Then

$$Cap(\omega) \leq \sum_{n=1}^{\infty} Cap(\omega_n).$$

By Lemmas 2 and 3, we can prove in the same manner as Deny [5].⁴⁾

RPOPOSITION 1.5) Let \mathscr{X} be a regular functional space on X. For any u in \mathscr{X} , there exists a function u^* with the following properties.

(1.1) $u(x) = u^*(x)$ p.p. in X and $u^*(x) = 0$ outside some σ -compact set.

(1.2) There exists a decreasing sequence (ω_n) of open sets such that

$$\lim_{n\to\infty} Cap(\omega_n) = 0$$

and $u^*(x)$ is continuous on $\mathcal{C}\omega_n$ for each n.

(1.3) For any pure potential u in \mathcal{X} , u^* is μ -measurable and

$$(u, u_{\mu}) = \int u^* d\mu.$$

By Lemmas 1, 2, 3, and 4, we can prove in the same manner as Deny [5]. We say that u^* is the refinement of u. Furthermore we have

LEMMA 5. For any u in \mathscr{X} , u^* is μ -measurable for any u_{μ} in \mathscr{X} such that S_{μ^+} is compact and

$$S_{\mu}^{+} \cap S_{\mu}^{-} = \phi.$$

Proof. S_{μ^+} being compact, we can take an open set ω in X such that $\omega \supset S_{\mu^+}$ and

$$S_{\mu} \cap \overline{\omega} = \phi$$

Put

$$\mathscr{X}_{\omega} = \{ \overline{u \in C_K \cap \mathscr{X}; S_u \subset \omega} \}.$$

Then \mathscr{X}_{ω} is a regular functional space on ω . We take another open set $\omega^{(1)}$

⁴⁾ Cf. [5], p. 136.

⁵⁾ Cf. [2], p. 209.

such that

$$S_{\mu}^{+} \subset \omega^{(1)} \subset \overline{\omega}^{(1)} \subset \omega.$$

Let (ω_n) be the sequence in Proposition 1. Put

$$\omega_n' = \omega^{(1)} \cap \omega_n.$$

Let $Cap'(\omega_n')$ be the capacity of ω_n' relative to the functional space \mathscr{H}_{ω} . Obviously

$$\lim_{n\to\infty} Cap'(\omega_n') = 0$$

Let u'_{τ_n} be the pure potential in \mathscr{X}_{ω} such that

$$Cap'(\omega_n') = ||u'_{\tau_n}||^2.$$

Then

$$\int_{\omega_{n'}} d\mu^{+} \leq (u_{\mu}, u_{\tau_{n}}') \leq ||u_{\mu}|| ||u_{\tau_{n}}'|| \to 0$$

as $n \to +\infty$. Therefore u^* is μ^+ -measurable. Similarly u^* is μ^- -measurable.

2. The unit contraction and Condensor principle

First we define the unit contraction on 1-dimensional Euclidean space R.

DEFINITION 5. We call the projection T of R to the closed interval [0, 1] the unit contraction on R.

Let \mathscr{X} be a regular functional space with respect to X and ξ .

DEFINITION 6. We say that the unit contraction T operates on \mathscr{X} if for any u in \mathscr{X} , Tu is in \mathscr{X} and $||Tu|| \leq ||u||$.

DEFINITION 7. We say that \mathscr{H} satisfies the condensor principle if for any couple of open sets ω_1 and ω_0 with disjoint closures, ω_1 being relatively compact, there exists a potential u_{μ} such that

(C. 1) $0 \le u_{\mu}(x) \le 1 p.p.$ in X,

(C. 2) $u_{\mu}(x) = 1 p.p.$ in ω_1 and $u_{\mu}(x) = 0 p.p.$ in ω_0 ,

(C. 3) $u_{\mu} \varepsilon \overline{E_{\omega_1} - E_{\omega_0}}$, where E_{ω_1} and E_{ω_0} are the sets which we defined in Lemma 2.

We shall call the above potential u_{μ} the condensor potential with respect to ω_1 and ω_0 .

LEMMA 6. Suppose that \mathscr{X} satisfies the condensor principle. For any couple of open sets ω_1 and ω_0 with disjoint closures, ω_1 being relatively compact, put

$$A_{1,0} = \{ u \in \mathcal{H}; u(x) \geq 1 \text{ p.p. in } \omega_1 \text{ and } u(x) \leq 0 \text{ p.p. in. } \omega_0 \}.$$

Then there exists a unique element in \mathscr{X} whose norm is minimum in $A_{1,0}$ and it is equal to the condensor potential with respect to ω_1 and ω_0 .

Proof. Obviously $A_{1,0}$ is non-empty closed convex set in \mathscr{X} . Hence there exists a unique element $u_{1,0}$ in $A_{1,0}$ such that $||u_{1,0}|| \leq ||u||$ for any u in $A_{1,0}$. Let u_{μ} be the condensor potential with respect to ω_1 and ω_0 . Since u_{μ} is in $A_{1,0}$, $||u_{\mu}|| \geq ||u_{1,0}||$. On ther other hand there exists a sequence $(u_{\mu_{1,n}} - u_{\mu_{0,n}})$ such that $u_{\mu_{1,n}}$ and $u_{\mu_{0,n}}$ are pure potentials,

$$S_{\mu_1, n} \subset \omega_1, S_{\mu_0, n} \subset \omega_0$$

and $u_{\mu_{1,n}} - u_{\mu_{0,n}}$ converges strongly to u_{μ} in \mathscr{X} as $n \to +\infty$. For any u in $A_{1,0}$,

$$(u, u_{\mu_{1,n}} - u_{\mu_{0,n}}) = \int u^* d\mu_{1,n} - \int u^* d\mu_{0,n} \ge (u_{\mu}, u_{\mu_{1,n}} - u_{\mu_{0,n}})$$

because $u^*(x) \ge 1$ p.p.p. in ω_1 and $u^*(x) \le 0$ p.p.p. in ω_0 .⁶⁾ Hence

$$||u|| \cdot ||u_{\mu}|| \ge (u, u_{\mu}) \ge ||u_{\mu}||^{2},$$

i.e., $||u|| \ge ||u_{\mu}||$. Consequently $u_{1,0} = u_{\mu}$.

LEMMA 7. Let \mathscr{X} be a regular functional space. Each element in $\overline{E_{\omega_1} - E_{\omega_0}}$ is a potential in \mathscr{X} .

Proof. For any u in $\overline{E_{\omega_1}-E_{\omega_0}}$, there exists a sequence $(u_{\mu_n}-u_{\nu_n})$ of $E_{\omega_1}-E_{\omega_0}$ tending strongly to u in \mathscr{X} . Since

$$\widetilde{\omega}_0 \cap \widetilde{\omega}_1 = \phi$$

and $C_K \cap \mathscr{X}$ is dense in C_K , (μ_n) and (ν_n) are vaguely bounded. Hence we may assume that there exist positive measures μ and ν such that $\mu_n \to \mu$ and $\nu_n \to \nu$ vaguely as $n \to +\infty$. Therefore

$$(u, f) = \int f d(\mu - \nu)$$

for any f in $C_K \cap \mathscr{X}$. Consequently

$$u = u_{\mu - \nu}$$
.

⁶⁾ Cf. [6], Lemma 2. A property is said to hold p.p.p. on a subset E in X if the property holds $\mu-p.p$. for any pure potential u_{μ} in E such that $S_{\mu} \subset E$.

By Lemma 7, we obtain the following lemma.

LEMMA 8. Let \mathscr{X} be a regular functional space. Let $A_{1,0}$ be the same as in Lemma

6. The element u' whose norm is minimum $A_{1,0}$ is contained in $\overline{E_{\omega_1} - E_{\omega_0}}$. Proof. By Lemma 7, we can consider the following valuation:

$$I'(u_{\mu_1}-u_{\mu_0})=||u_{\mu_1}-u_{\mu_0}||^2-2\int d\mu_1$$

for any $u_{\mu_1}-u_{\mu_0}$ in $\overline{E_{\omega_1}-E_{\omega_0}}$. Similarly as in Lemma 2, $I'(u_{\mu_1}-u_{\mu_0})$ is bounded from below on $\overline{E_{\omega_1}-E_{\omega_0}}$. Since $\overline{E_{\omega_1}-E_{\omega_0}}$ is a non-empty closed convex set in \mathscr{X} , there exists a unique element $u_{\tau_1}-u_{\tau_0}$ in $\overline{E_{\omega_1}-E_{\omega_0}}$ such that

$$I'(u_{r_1}-u_{r_0}) \leq I'(u_{\mu_1}-u_{\mu_0})$$

for any $u_{\mu_1}-u_{\mu_0}$ in $\overline{E_{\omega_1}-E_{\omega_0}}$. Similarly is as the proof of Lemma 2,

$$u'=u_{\tau_1}-\tau_0.$$

Now we remark that the regular functional space \mathscr{X} satisfies the equilibrium principle if \mathscr{X} satisfies the condensor principle. That is, for any relatively compact open set ω , there exists a pure potential u_{μ} such that

(E. 1) $0 \le u_{\mu}(x) \le 1$ p.p. in X,

(E. 2)
$$u_{\mu}(x) = 1 p.p.$$
 in ω

(E. 3) u_{μ} is contained in E_{ω} .

Such element u_{μ} is called an equilibrium potential of ω .

LEMMA 9. Let \mathscr{X} be the regular functional space which satisfies the condensor principle. For any couple of open sets ω_1 and ω_0 with disjoing closures, ω_1 being relatively compact, let u_{μ} be the condensor potential with respect to ω_1 and ω_0 . Then

$$\int d\mu \ge 0.$$

Proof. We take a relatively compact open set ω such that $\omega \supset \overline{\omega_1}$. Let u_{ν} be the equilibrium potential of ω . Since by Lemma 5,

$$u_{\nu}^{*}(x) = 1$$
 p.p.p. in ω ,
 $0 \le u_{\nu}^{*}(x) \le 1$ p.p.p. in X,

we have

$$(u_{\mu}, u_{\nu}) = \int u_{\nu} d\mu^{+} - \int u_{\nu} d\mu^{-} \leq \int d\mu^{+} - \int d\mu^{-}.$$

On the other hand since we have

$$u_{\mu}^{*}(x) \geq 0 \quad p.p.p. \quad \text{in } X_{\mu}^{*}(x) = \int u_{\mu}^{*} dv \geq 0.$$

Hence

$$\int d\mu^+ \geq \int_{\omega} d\mu^-.$$

 ω being arbitrary, we obtain that the total mass of μ is non-negative.

LEMMA 10. Let \mathscr{X} be the same as above. Let F_1 be a compact and F_0 be a closed set such that

$$F_1 \cap F_0 = \phi$$
.

Then there exists a potential u_{μ} in \mathscr{X} such that

- (C'. 1) $0 \leq u_{\mu}^{*}(x) \leq 1 \quad p.p. \quad X,$
- (C' 2) $u_{\mu}^{*}(x) = 1$ p.p.p. in $F_{1}, u_{\mu}^{*}(x) = 0$ p.p.p. in F_{0} ,
- $(C' 3) S_{\mu} + \subset F_1, S_{\mu} \subset F_0,$
- $(C' 4) \qquad \qquad \int d\mu \ge 0.$

Proof. We take two decreasing nets $(\omega_{1,\alpha})_{\alpha \in I}$ and $(\omega_{0,\alpha})_{\alpha \in I}$ of open sets converging to F_1 , F_0 such that $\omega_{1,\alpha}$ is relatively compact for any $\alpha \in I$,

$$\omega_{1,\alpha} \supset F_1, \ \omega_{0,\alpha} \supset F_0$$

and for any, $\alpha < \beta$,

$$\overline{\omega_{1,\alpha}} \subset \omega_{1,\beta}, \ \overline{\omega_{0,\alpha}} \subset \omega_{0,\beta}.$$

Let $u_{\mu_{\alpha}}$ be the condensor potential with respect to $\omega_{1,\alpha}$ and $\omega_{0,\alpha}$. Since $u_{\mu_{\alpha}}^{*}(x)$ is bounded in X, by Lemma 5,

$$(u_{\mu_{\alpha}}, u_{\mu_{\beta}}) = \int u_{\mu_{\alpha}}^* d\mu_{\beta}^+ - \int u_{\mu_{\beta}}^* d\mu_{\beta}^- = ||u_{\mu_{\beta}}||^2$$

for any $\alpha \leq \beta$. Hence $||u_{\mu_{\alpha}}|| \geq ||u_{\mu_{\beta}}||$ for any $\alpha \leq \beta$, i.e., $\{||u_{\mu_{\alpha}}||\}$ is convergent.

Furthermore we have

```
masayuki itô
```

$$||u_{\mu_{\alpha}} - u_{\mu_{\beta}}||^{2} = ||u_{\mu_{\alpha}}||^{2} - 2(u_{\mu_{\alpha}}, u_{\mu_{\beta}}) + ||u_{\mu_{\beta}}||^{2} = ||u_{\mu_{\alpha}}||^{2} - ||u_{\mu_{\beta}}||^{2}.$$

Therefore there exists an element u in \mathscr{X} such that $u_{\mu_{\alpha}} \to u$ strongly in \mathscr{X} . Obviously the sets $(\mu_{\alpha}^{+})_{\alpha \in I}$ and $(\mu_{\alpha}^{-})_{\alpha \in I}$ are vaguely bounded, and hence we may assume that there exist two positive measures μ_{1} and μ_{0} such that $(\mu_{\alpha}^{-})_{\alpha \in I}$ and (μ_{α}^{-}) converge vaguely to μ_{1} and, μ_{0} , respectively. By the definition of a potential in \mathscr{X} ,

$$u = u_{\mu_1 - \mu_0}.$$

We shall show that this element u is the required element. Evidently

$$S_{\mu_1} \subset F_1, S_{\mu_0} \subset F_0$$
.

Since we have

$$u_{\mu_{\alpha}}^{*}=1 p.p.p.$$
 in $\omega_{1,\alpha}$ and $u_{\mu_{\alpha}}^{*}=0 p.p.p.$ in $\omega_{0,\alpha}$,
 $u^{*}=1 p.p.p.$ in F_{1} and $u^{*}=0 p.p.p.$ in F_{0} .

It is evident that u satisfies the condition (C'. 1). Finally we prove that u satisfies the condition (C'. 4). $S_{\mu_x^+}$ being in a fixed compact set,

$$\lim_{a \in I} \int d\mu_a^+ = \int d\mu_1.$$

On the other hand

$$\lim_{a \in I} \int d\mu_{\bar{a}} \ge \int d\mu_{0}.$$

By Lemma 9, we obtain the inequality

$$\int d\mu_1 \geq \int d\mu_0.$$

We call such a potential u_{μ} the condensor potential with respect to F_1 and F_0 . Now we consider the strong complete maximum principle.

DEFINITION 7.6) We say that a regular functional space \mathscr{X} satisfies the strong complete maximum principle if the following condition is fulfiled. For a potential u_f , f being locally summable for ξ , and a pure potential u_{ν} in \mathscr{X} and a non-negative constant c, suppose that

$$u_f^*(x) \leq u_{\nu}^*(x) + c$$

p.p.p. on K_{f^+} . Then

 $u_f(x) \leq u_v(x) + c$

p.p. in X.

In this definition, K_{f^+} is a set whose complement is of f^+ -measure zero. By the above lemmas, we obtain the following theorem.

THEOREM 1. If a regular funtional space \mathscr{X} satisfies the condensor principles, then \mathscr{X} satisfies the strong complete maximum principle.

Proof. Let u_f , u_v and c be the same as in Definition 7. Suppose that there exists a compact set K_1 in $\mathscr{C}K_{f^+}$ such that $\xi(K_1) > 0$ and

$$u_f(x) > u_v(x) + c$$

on K_1 . Since

$$u_{f}^{*}(x) = u_{f}(x) p.p. \text{ in } X \text{ and } u_{\nu}^{*}(x) = u_{\nu}(x) p.p. \text{ in } X, u_{f}^{*}(x) > u_{\nu}^{*}(x) + c$$

p.p. on K_1 . Therefore there exists a compact set K_2 in K_1 such that $\xi(K_2) > 0$ and

$$u_{f}^{*}(x) > u_{\nu}^{*}(x) + c$$

on K_2 . By Proposition 1, there exists a decreasing sequence (ω_n) of open sets such that

$$\lim_{n\to\infty} Cap(\omega_n) = 0,$$

 $u_{f}^{*}(x)$ and $u_{\nu}^{*}(x)$ are continuous on $\mathscr{C}\omega_{n}$. Since $\xi(\omega_{n}) \searrow 0$ as $n \to +\infty$, there exists a number *n* such that

$$\xi(K_2 \cap \mathscr{C} \omega_n) > 0.$$

We take a compact set K such that

$$K \subset K_2 \cap \mathscr{C} \omega_n$$
 and $\xi(K) > 0$.

Then $u_f^*(x)$ and $u_{\nu}^*(x)$ are continuous and $u_f^*(x) > u_{\nu}^*(x) + c$ on K, and hence there exists a positive number a such that

$$u_f^*(x) - u_\nu^*(x) - c > a$$

on K. Since f is locally summable for ξ , there exists an open set G such that $G \supset K$ and

$$\int_{G} f^{+}(x)d\xi(x) < \frac{1}{2}a \cdot Cap(K),$$

MASAYUKI ITÔ

where

$$Cap(K) = \inf_{k \subset \omega} Cap(\omega),$$

because we have

$$\int_{K} f^{+}(x)d\xi(x) = 0 \text{ and } Cap(K) > 0.$$

Put

$$K'_{f^+} = K_{f^+} \cap \mathscr{C}G.$$

By the measurablity of f, there exists an increasing sequence (F_n) of compact sets such that $F_n \subset K'_{f^+}$ and

$$\lim_{n\to\infty}\xi(F_n\cap F)=\xi(K'_{f^*}\cap F)$$

for any compact set F. Let u_{μ_n} be the condensor potential with respect to K and F_n . Similarly as the proof of Lemma 10, there exists a potential u_{μ} such that $u_{\mu_n} \rightarrow u_{\mu}$ strongly in \mathscr{X} and $S_{\mu+} \subset K$. By Lemmas 9 and 10,

$$(u_{\mu}, u_{\nu}) = \int (u_{f}^{*}(x) - u_{\nu}^{*}(x)) d\mu \ge (a+c) \int d\mu^{+} - c \int d\mu^{-} \ge a \int d\mu^{+} = a ||u_{\mu}||^{2} \ge a \cdot \operatorname{Cap}(K).$$

Let $(G_{\alpha})_{\alpha \in I}$ be an increasing net of relatively compact open sets such that $G_{\alpha} \supset G$ and $G_{\alpha} \nearrow X$. Similarly as the above, we can take the condensor potential $u_{\mu_{\alpha}}$ with respect to K and $K'_{f^+} \cup \mathscr{C}G_{\alpha}$. Since $u_{\mu_{\alpha}}$ is a bounded measurable function with compact support, $u_{\mu_{\alpha}}$ is *f*-integrable and

$$(u_{\mu_{\alpha}}, u_{f} - u_{\nu}) = \int u_{\mu_{\alpha}}(x) f^{+}(x) d\xi(x)$$
$$-\left(\int u_{\mu_{\alpha}}(x) f^{-}(x) d\xi(x) + \int u_{\mu_{\alpha}}^{*}(x) d\nu(x)\right)$$
$$\leq \int_{G} u_{\mu_{\alpha}}(x) f^{+}(x) d\xi(x) \leq \int_{G} f^{+}(x) d\xi(x) \leq \frac{1}{2} a \cdot Cap(K)$$

Now since $(u_{\mu_{\alpha}})_{\alpha \in I}$ converges strongly to u_{μ} in \mathcal{H} ,

$$(u_{\mu}, u_{f} - u_{\nu}) \leq \frac{1}{2} a \cdot Cap(K).$$

This is a contradiction and the proof is completed.

3. Main theorems

First we consider the resolvent operator on a regular functional space \mathscr{X}

or $L^2 = L^2(\xi)$.

LEMMA 11.7) Let f be in L^2 or in \mathcal{X} . For each positive number λ , there exists a unique element $R_{\lambda}f$ in \mathcal{X} which minimizes the following quadratic form:

$$F(u) = ||u||^{2} + \int |u(x) - f(x)|^{2} d\xi(x)$$

in the set

$$A_f = \{ u \in \mathscr{U}; u - f \in L^2 \}.$$

 $R_{\lambda}f$ is also the only element u in \mathscr{X} such that u-f is in L^2 and

$$\lambda(u,v) + \int (u-f)v \, d\xi = 0$$

for any v in $L^2 \cap \mathscr{X}$.

This is obtained by Beurling and Deny [2] for the case when \mathscr{X} is a Dirichlet space. For the case when \mathscr{X} is a regular functional space, this is proved in the same way. We call such an operator R_{λ} the resolvent operator. Before we prove the main theorem, we prepare the following lemma.

LEMMA 12. Let \mathscr{X} be a regular functional space on X. Suppose that \mathscr{X} satisfies the strong complete maximum principle. Then for any positive bounded function f with compact support,

$$0 \le R_{\lambda} f(x) \le M$$

p.p. in X, where

$$M = \underset{x \in X}{ess.sup} f(x).$$

Proof. First we shall prove that

$$R_{\lambda}f(x) \geq 0$$

p.p. in X. By the second part of Lemma 11, $R_{\lambda}f$ is the potential generated by $f-R_{\lambda}f$ in \mathscr{X} . Since the potential u_f generated by f is in \mathscr{X} , there exists a potential $u_{R_{\lambda}f}$ generated by $R_{\lambda}f$ in \mathscr{X} . Then

$$u_f - \lambda R_\lambda f = u_{R\lambda f}$$

Hence

$$u_f^*(x) - \lambda(R_\lambda f)^*(x) = u_{R_\lambda f}^*(x)$$

⁷) Cf. [2], p. 211.

p.p.p. in X. Since

 $R_{\lambda}f(x) = (R_{\lambda}f)^{*}(x)$

p.p. in X, we have

 $u_{R_{\lambda f}} = u_{(R_{\lambda}f)*}$

Since

$$u_{f}^{*}(x) \geq u^{*}_{(R,f)^{+}}(x)$$

p.p.p. on $K_{(R_1f)*+}$, by Theorem 1,

$$u_f(x) \ge u_{(R_\lambda f)} * (x)$$

p.p. in X. Therefore $R_{\lambda}f \ge 0$ *p.p.* in X. Next we shall show that

$$R_{\lambda}f(x) \leq M$$

p.p. in X. There exists a function g in C_K such that $g(x) \ge f(x)$ *p.p.* in X and $g(x) \le M$. Since by the above argument, R_{λ} is a positive operator,

$$R_{\lambda}f(x) \leq R_{\lambda}g(x)$$

p.p. in X. Similarly as above,

$$(R_{\lambda}g)^{*}(x) = u_{g-(R_{\lambda}g)^{+}}^{*}(x)$$

p.p.p. in X. Similarly as in the first part of this lemma,

 $M \ge g(x) \ge (R_{\lambda}g)^*(x)$

p.p.p. in $K_{((g-R_{\lambda}g)^*)^+}$. Hence

$$M \ge u_{(g-(R_{\lambda}g)*)}(x)$$

p.p.p. in $K_{(q-(R_{\lambda}q)^*)^+}$. By the strong complete maximum principle,

$$M \ge u_{g-(R_{\lambda}g)} * (x)$$

p.p. in X. Consequently

$$R_{\lambda}f \leq R_{\lambda}g \leq M$$

p.p. in X. This completes the proof.

Now we shall show the following main theorem.

THEOREM 2. Let \mathscr{X} be a regular functional space with respect to X and ξ .

Then the following four conditions are equivalent.

- (1) The unit contraction operates on \mathscr{X} .
- (2) \mathscr{X} satisfies the condensor principle.
- (3) \mathscr{X} satisfies the strong complete maximum principle.
- (4) \mathscr{X} is a real Dirichlet space with respect to X and $\xi^{(8)}$

Proof. First we shall prove the implication $(1) \Rightarrow (2)$. For any couple of open sets ω_1 and ω_0 with disjoint closures, ω_1 being relatively compact, let $A_{1,0}$, E_{ω_1} and E_{ω_0} be the same as defined before. Let $u_{1,0}$ be a unique element in \mathscr{X} whose norm is minimum in $A_{1,0}$. Since the unit contraction T operates on \mathscr{X} , $Tu_{1,0}$ is in $A_{1,0}$ and

$$||Tu_{1,0}|| \leq ||u_{1,0}||.$$

Therefore $Tu_{1,0} = u_{1,0}$. By Lemma 8, $u_{1,0}$ belongs to $\overline{E_{\omega 1} - E_{\omega 0}}$ and hence it is the condensor potential with respect to ω_1 and ω_0 .

The implication $(2) \Rightarrow (3)$ was proved in Theorem 1.

Next we shall show the implication (3) rightarrow (4). For a positive number λ , let R_{λ} be a resolvent operator. For any f, g in $C_{\kappa} \cap \mathscr{X}$,

$$(R_{\lambda}f, R_{\lambda}g) = \frac{1}{\lambda} \int (f - R_{\lambda}f) R_{\lambda}g \, d\xi = \frac{1}{\lambda} \int (g - R_{\lambda}g) R_{\lambda}f \, d\xi,$$

Hence

$$(R_{\lambda}f, g) = (R_{\lambda}g, f)$$

and

$$\int R_{\lambda} f g \, d\xi = \int R_{\lambda} g f \, d\xi.$$

Hence by Lemma 12, there exists a positive symmetric measure σ_{λ} on $X \times X$ such that

$$\int R_{\lambda} f(x) g(x) \, d\xi(x) = \iint f(x) g(y) \, d\sigma_{\lambda}(x, y)$$

for any f, g in C_{κ} and σ_{λ} is sub-markovian, *i. e.*, the projection of σ_{λ} on X is less than or equal to ξ . Let m_{λ} be the density of the projection of σ_{λ} on X. By the second part of Lemma 11, for any f, g in $C_{\kappa} \cap \mathscr{X}$,

⁸⁾ A real Dirichlet space with respect to X and ξ is a Dirichlet space with respect to X and ξ which consists of real functions. For Dirichlet spaces, see [2], p. 209.

MASAYUKI ITÔ

$$(R_{\lambda}f, g) = \frac{1}{\lambda} \int (f - R_{\lambda}f)g d\xi$$

= $\frac{1}{\lambda} \left\{ \int (1 - m_{\lambda})fg d\xi + \frac{1}{2} \int \int (f(x) - f(y)) (g(x) - g(y)) d\sigma_{\lambda}(x, y) \right\}$

Now by the first part of Lemma 11, for any positive number λ ,

$$||R_{\lambda}f|| \leq ||f||.$$

And by the second part of Lemma 11,

$$(R_{\lambda}f, R_{\lambda}f-f) = -\int |R_{\lambda}f-f|^2 d\xi.$$

Therefore $R_{\lambda}f \to f$ strongly in L^2 , and hence $R_{\lambda}f \to f$ weakly in \mathscr{X} as $\lambda \to 0$. Since

$$\lim_{\lambda\to 0} ||R_{\lambda}f|| \ge ||f|| \ge ||R_{\lambda}f||$$

for any $\lambda > 0$, $R_{\lambda}f \to f$ strongly in \mathscr{X} as $\lambda \to 0$. Next we shall prove the following assertion: for a function f in C_{κ} , suppose that

$$H_{\lambda}(f) = \frac{1}{\lambda} \left\{ \int (1-m_{\lambda}) |f|^2 d\xi + \frac{1}{2} \int \int |f(x)-f(y)|^2 d\sigma_{\lambda}(x, y) \right\}$$

is bounded with respect to λ . Then f is in \mathscr{X} and $H_{\lambda}(f) \to ||f||^2$ as $\lambda \to 0$. In fact,

$$H_{\lambda}(f) = \frac{1}{\lambda} \int (1 - R_{\lambda}f) f d\xi \ge \frac{1}{\lambda} \int (f - R_{\lambda}f) R_{\lambda}f d\xi = ||R_{\lambda}f||^{2}.$$

Hence $(R_{\lambda}f)$ is bounded with respect to λ , and we may assume that there exists an element u in \mathscr{X} such that $R_{\lambda}f \to u$ weakly in \mathscr{X} as $\lambda \to 0$. On the other hand by the second part of Lemma 11, $R_{\lambda}f \to f(x)$ *p.p.* in X. Consequently u(x)=f(x) *p.p.* in X, *i*, *e.*, *f* is in \mathscr{X} and $H_{\lambda}(f) \to ||f||^2$ as $\lambda \to 0$. Thus we obtain:

For any f in $C_{\kappa} \cap \mathscr{X}$ and any normal contraction T^{9} on R, Tf is in \mathscr{X} and $||Tf|| \leq ||f||$. Because Tf is in C_{κ} and

$$H_{\lambda}(Tf) \leq H_{\lambda}(f)$$

for any λ .

Furthermore for any u in \mathscr{X} , there exists a sequence (f_n) in $\mathcal{C}_K \cap \mathscr{X}$ converging to u. By the results that Tf_n is in \mathscr{X} , $||Tf_n|| \leq ||f_n||$ and $Tf_n(x)$ converges to Tu(x) p.p. in X, Tu is in \mathscr{X} and $||Tu|| \leq ||u||$. Consequently \mathscr{X}

is a real Dirichlet space.

The implication $(4) \Rightarrow (1)$ is evident. This completes the proof.

By the above main theorem, we obtain the following another characterization of a real Dirichlet space.

THEOREM 3. A regular functional space \mathscr{X} is a real Dirichlet space if and only if there exists number $M \neq 0$ such that u_M is in \mathscr{X} and $||u_M|| \leq ||u||$ for any u in \mathscr{X} , where

$$u_M(x) = \inf(u(x), M)$$

if M > 0,

$$u_{M}(x) = \sup (u(x), M)$$

if M < 0.

Proof. Suppose that there exists a number $M \neq 0$ such that u_M is in \mathscr{X} and $||u_M|| \leq ||u||$. It is sufficient to prove the theorem for the case M > 0. Put

$$u_1(x) = \inf \left(u(x), 1 \right)$$

for any u in \mathcal{X} . Then

$$u_1(x) = M^{-1} \inf(Mu(x), M),$$

and hence u_1 is in \mathscr{X} and $||u_1|| \le ||u||$. On the other hand for a sequence (a_n) of negative numbers tending to 0.,

$$u_{a_n}(x) = \sup (u(x), a_n) = \frac{a_n}{M} \operatorname{-inf}\left(\frac{M}{a_n}u(x), M\right).$$

Hence u_{a_n} is in \mathscr{X} and $||u_{a_n}|| \leq ||u||$. We may assume that there exists an element u' such that $u_{a_n} \rightarrow u'$ weakly in \mathscr{X} . Since $u_{a_n}(x)$ converges to u'(x) p.p. in X, u^+ is in \mathscr{X} and

$$||u|| \geq \lim_{n \to \infty} ||ua_n|| \geq ||u^+||$$

Let T be the unit contraction on R. Then $Tu = u_1^+$. Consequently T operates on \mathscr{X} . By Theorem 2, \mathscr{X} is a real Dirichlet space.

The converse is evident. This completes the proof.

DEFINITION 8. We say that the positive contraction on R operates on a regular functional space \mathscr{X} if for any u in \mathscr{X} , u^+ is in \mathscr{X} and $||u^+|| \le ||u||$.

⁹⁾ A normal contraction T is a transformation of R into itself such that $|Ta_1-Ta_2| \le |a_1-a_2|$ for any couple a_1 and a_2 in R and T(0)=0. Cf. [2], p. 209.

MASAYUKI ITÔ

Remark. There exists a regular functional space on which the positive contraction operates and which is not a real Dirichlet space. We can construct such an example when X is a finite space. (Cf. [1].)

Similarly as Theorem 2, we obtain the following theorem. First we give a definition.

DEFINITION 9.¹⁰) We say that a regular functional space satisfies the balayage principle if the following condition is satisfied: for any pure potential u_{μ} and any open set ω in X, there exists a pure potential $u_{\mu'}$ such that

- (B. 1) $u_{\mu}(x) \ge u_{\mu'}(x) p.p.$ in X,
- (B. 2) $u_{\mu}(x) = u_{\mu'}(x) p.p.$ in, ω ,
- (B. 3) $u_{\mu'} \varepsilon E_{\omega}$.

THEOREM 4. A regular functional space \mathscr{X} satisfies the balayage principle if and only if the positive contraction operates on \mathscr{X} .

We can prove in the same way as the proof of Theorem 2.

4. Special Dirichlet spaces

Let X be a locally compact abelian group and ξ be the Haar measure on X which we denote by dx.

DEFINITION 10.¹¹) A functional space \mathscr{X} with respect to X and ξ is called an invariant functional space if for any x in X and any u in \mathscr{X} ,

$$U_x u \in \mathscr{X}$$
 and $||U_x u|| = ||u||$,

where $U_x u$ is a function obtained from u by the translation x (*i.e.*, $U_x u(y) = u(y-x)$).

DEFINITION 11.¹²) An invariant functional space \mathscr{X} is called a special Dirichlet space if \mathscr{X} is a real Dirichlet space.

LEMMA 13. For any u in an invariant functional space \mathscr{X} and any bounded measurable function f with compact support, u*f is in \mathscr{X} and

$$(u*f,v) = \int (U_{-x}u,v) f dx$$

for any v in \mathscr{X} .

¹⁰⁾ Cf. [2], p. 210.

 $^{^{11)}}$ After Deny's terminology, this is the functional space which is invariant by the transtion.

¹²⁾ Cf. [2], p. 215.

For the proof, see [3] and [4].

Using Theorem 2, we obtain the following theorem.

THEOREM 5. An invariant functional space \mathscr{X} is a special Dirichlet space if and only if \mathscr{X} satisfies the condensor principle.¹³)

Proof. It is well-known that a special Dirichlet space satisfies the condensor principle. It is sufficient to prove the "if" part. By Lemma 13 and the condensor principle, $C_K \cap \mathscr{X}$ is total in C_K .¹⁴ We shall show that $C_K \cap \mathscr{X}$ is dense in \mathscr{X} . Put

$$\mathscr{X}' = \overline{C_K \cap \mathscr{X}},$$

Then by Theorem 2, \mathscr{X}' is a special Dirichlet space on X. First we shall prove that for each u in \mathscr{X} with compact support, u is in \mathscr{X}' . We take a net $(f_{\alpha})_{\alpha \in I}$ of C_K such that

$$f_{\alpha}(x) \ge 0, \ \int f_{\alpha}(x) \, dx = 1$$

and $(f_{\alpha})_{\alpha \in I}$ converges vaguely to the unit measure ε at 0 and $(S_{f_{\alpha}})$ converges to {0}. Since the mapping: $x \to U_x u$ is strongly continuous for any u in \mathscr{X} , there exists α_0 in I such that

$$||U_x u - u|| < \delta$$

for any $x \in -S_{f_{\alpha}}$, $\alpha \ge \alpha_0$, for a given positive number δ . Therefore

$$||u*f_{a}-u||^{2} = ||u*f_{a}||^{2} - 2(u*f_{a}, u) + ||u||^{2} < 4||u||\delta + \delta^{2}.$$

 $u*f_{\alpha}$ is in $C_K \cap \mathscr{X}$, and hence u is in \mathscr{X}' . Let $(F_{\alpha})_{\alpha \in J}$ be a net of compact sets such that $F_{\alpha} \to X$. Put

$$E_{\mathscr{C}F_{\alpha}} = \begin{bmatrix} u_f \in \mathscr{X}; f \text{ is a bounded measurable function with compact support} \\ S_f \subset \mathscr{C}F_{\alpha} \end{bmatrix}.$$

Then $E_{\mathscr{C}F_{\alpha}}$ is a closed subspace of \mathscr{X} . For any u in \mathscr{X} , let u_{α} be the projection of u to $E_{\mathscr{C}F_{\alpha}}$. Then $u(x) = u_{\alpha}(x) p.p.$ in $\mathscr{C}F_{\alpha}$. Hence by the above result, $u-u_{\alpha}$ is in \mathscr{X}' . On the other hand obviously (u_{α}) converges strongly

¹³⁾ Let ω be an open set in X and the notation E_{ω} be the same as in Lemma 2. Without the condition of regularity, we can only consider potentials generated by bounded measurable functions with compact support. Then $E_{\omega} = \{\overline{u_f \in \mathscr{H}}; S_f \subset \omega\}$.

¹⁴) Cf. [6].

masayuki itô

to 0 in \mathscr{X} , hence $(u-u_{\alpha})$ converges strongly to u. That is, u is in \mathscr{X}' . Consequently \mathscr{X} is a special Dirichlet space.

References

- [1] A. Beurling & J. Deny: Espaces de Dirichlet, Le case élémentaire, Acta Math., 99 (1958), 103-124.
- [2] ------: Dirichlet spaces, Proc. Nat. Acad. Sc. U.S.A., 45 (1959), 208-215.
- [3] J. Deny: Sur les espaces de Dirichlet, Sémin. théorie du potentiel, Paris, 1957.
- [4] ————: Principe complet de mixamum et Contractions, Ann. Inst. Fourier, 15 (1965), 259–272.
- [5] -----: Les potentiel d'énergie finie. Acta Math., 82 (1950) 107-182.
- [6] M. Itô: Characterizations of supports of balayaged measures, Nagoya Math. J., 28 (1966), 203-230.
- [7] G. Lion: Principle complet du maximum et semi-groupes sous-markoviens, Sémin. théorie du potentiel, Paris, 1964.

Mathematical Institute Nagoya University