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Introduction
Deny introduced in [4] the notion of functional spaces by generalizing

Dirichlet spaces. In this paper, we shall give the following necessary and

sufficient conditions for a functional space to be a real Dirichlet space.

Let <%f be a regular functional space with respect to a locally compact Haus-

dorff space X and a positive measure ξ in X. The following four conditions

are equivalent.

(1) The unit contraction operates on

(2) <%? satisfies the condensor principle.

(3) <%f satisfies the strong complete maximum principles.

(4) <%? is a real Dirichlet space.

Furthermore for an invariant functional space J2f on a locally compact abelian

group X, we shall show the following equivalence without assuming the regu-

larity.

<%f is special Dirichlet space if and only if ^ satisfies the condensor

principle.

1. Preliminaries on regular functional spaces
Let X be a locally compact Hausdorff space and ξ be a positive measure in

X which is everywhere dense in X (i.e., ζ(ω)>0 for any non-empty open set

<y in Z). According to Deny [4], we give the definition of a functional space.

DEFINITION 1. A functional space ^=^(X, ξ) with respect to X and ξ

is a Hubert space of real valued functions u(x) which is locally summable for

£, the following condition being satisfied: (i) For any compact subset K in X,

there existes a positive number A(K) such that
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( \u(x)\dζ(x)<A(K)\\u\\

for any u in Slf

Two functions which are equal locally almost everywhere for ζ represent the

same element in <%f. The norm in <%f is denotedΊ)y ||M||, the associated scalar

product by (U,Ό). Let Cκ be the space of finite continuous functions with

compact support provided with the topology of uniform convergence.

DEFINITION 2. A functional space <g?=<g?p(X,ξ) is said to be regular if

^ΠCK is dense both in <%? and in Cκ.

By the condition (i), for any bounded measurable function / with compact

support, there exists an element uf in a functional space ^ such that

(uf,u)=yudξ

for any u in <%f. Such an element uf is said to be the potential generated by

f. More generally we define potentials as follows.

DEFINITION 3.1) Let J2f be a regular functional space. The element u is

called a potential if there exists a real Radon measure μ such that

for any / in <%f Π Cκ. Such an element u is denoted by uβ. Especially if μ is

positive, uμ is said to be a pure potential.

According to Beurling and Deny [2], we define the capacity of an open set

is defined as follows:

Cap(ω)=inf{\\u\\2; uε^,u{x)>l p.p. in ώ}.

If there are no such functions, Cap (ω) = +oo.

LEMMA 1. Let J2f he a regular functional space and f be a function in <%f Π Cκ.

Then for each positive number ε,

By the definition of the capacity, this is evident.

LEMMA 2. For a relatively compact open set ω in X, put

υ Cf. [2], p. 209.
2) Sμ is the support of μ.
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Then there exists a unique element ur which minimizes

I(uμ)=\\uβ\?-2\dμ

in Eω and for which

Proof. Obviously Eω is a closed convex cone in Slf * Since ω is a relatively

compact set, there exists a function / in Slf Π Cκ such that f(x) >l in ω. Then

Hence I{uμ) is bounded from below in Eω. Therefore there exists a unique

pure potential ur such that

for any uμ in Eω. Then

^dμ^{uγ,Uμ) (1)

and

\dγ = \\ur\\\ (2)

By (1), ur{x)> 1 p.p. in ω. Hence

\\ur\\*>Cap(ω).

On the other hand it is known that there exists a sequence (ufj of pure

potentials such that ufn-^uγ strongly in SI?\ where fn is a positive bounded

measurable function with support in ω.3) For any u in <%? such that u(x) > 1

p.p. in ω,

Since the measure fn converges vaguely to γ and ω is relatively compact,

]im\fndξ=\dr.

3) Cf. [4], p. 3 and [6].
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Hence

i.e., \\u\\>\\ur\\. Consequently

LEMMA 3. Let ^ be a regular functional space on X and ω be an open set in X.

For any increasing net (ωa)ΛeI of relatively compact open sets exhausting ω,

limCap{ωa)=Cap{ω).
ael

Proof Obviously Cap(ωa) increases with a. First we suppose that

Cap{ω)< +00. Then Cap{ω<x) is bounded. Let ur<x be the pure potential

such that Cap{ωa)=\\ur*\\z. Suppose that a^β. Then

Hence {urΛ is a fundamental net in <%?\ There exists an element u in gf such

that UγΛ-±u strongly in gf. For any positive bounded measurable function/

with compact support such that Sfciωy there exists aQ in / such that

for any a>aQ. Therefore

{u

i.e., u(x) > 1 p.p. in ω. Hence

Consequently

Urn Cap {ωΛ)=Cap (ω).

In the case that Cap{ω) = +^, it is evident that

lim Cap (<yj =
ael

by the above proof.
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LEMMA 4. Let ωn be an open set in X (n = l, 2, ).

Put

ω= U ωn

Then

By Lemmas 2 and 3, we can prove in the same manner as Deny [5].4>

RPOPOSITION 1.5) Let Mf be a regular functional space on X. For any u in

<%f> there exists a function u* with the following properties.

(1.1) u{x) = u*{x) p.p. in X and u*(x) = 0 outside some σ-compact set.

(1.2) There exists a decreasing sequence (ωn) of open sets such that

limCap(ωn) = 0
n+o

and u*(x) is continuous on ^ ω Λ for each n.

(1.3) For any pure potential u in <%?, u* is μ-measurable and

(u, Uμ)~\u* dμ.

By Lemmas 1, 2, 3, and 4, we can prove in the same manner as Deny [5].

We say that u* is the refinement of u. Furthermore we have

LEMMA 5. For any u in Jgf, u* is μ-measurable for any uμ in g? such that

Sμ

+ is compact and

Proof. Sμ

+ being compact, we can take an open set ω in X such that

and

Put

; Su(zω}.

Then ^fω is a regular functional space on ω. We take another open set

4) Cf. [5], p. 136.
5) Cf. [2], p. 209.



14 MASAYUKI ITO

such that

Let (ωn) be the sequence in Proposition 1. Put

Let Cap\(ύn

r) be the capacity of ωn' relative to the functional space

Obviously

limCap'{ωn

f) = 0.
n->oo

Let Uγn be the pure potential in g?ω such that

Then

as w-> +00. Therefore w* is μ+-measurable. Similarly &* is /^"-measurable.

2 The unit contraction and Condensor principle

First we define the unit contraction on 1-dimensional Euclidean space R.

DEFINITION 5. We call the projection T of R to the closed interval [0, 1]

the unit contraction on R.

Let Sf be a regular functional space with respect to X and ξ.

DEFINITION 6. We say that the unit contraction T operates on <%f if for

any u in g?\ Tu is in £f and | | Γ « | | ^ | | M | | .

DEFINITION 7. We say that ^ satisfies the condensor principle if for

any couple of open sets ωx and ω0 with disjoint closures, ωx being relatively

compact, there exists a potential uμ such that

(C. 1) 0 < uμ{x) < 1 p.p. in X,

(C. 2) uμ(x)=l p.p. in ω1 and uμ{x) = 0 p.p. in ω0,

(C. 3) uμεEωi— EωQ, where Eωi and £α,0 are the sets which we defined in

Lemma 2.

We shall call the above potential uμ the condensor potential with respect to

ω1 a n d ωQ.
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LEMMA 6. Suppose that £f satisfies the condensor principle. For any couple of

open sets ω1 and ωQ with disjoint closures, ωx being relatively compact, put

Ax^={uε^\ u{x)>\ p.p. in ωι and u(x)^0 p.p. in. ω0}.

Then there exists a unique element in J^f whose norm is minimum inAlt0 and it is equal

to the condensor potential with respect to ωτ and ωΰ.

Proof. Obviously A1>0 is non-empty closed convex set in <%f\ Hence there

exists a unique element ultQ in Alί0 such that | | M I , O I I ^ I M I for any u in Alt0.

Let uμ be the condensor potential with respect to ω1 and ω0. Since uμ is in

Alt0, \\uμ\\>\\ultQ\\. On ther other hand there exists a sequence (uμί>n—UμQtn)

such that uμitn and uμo,n are pure potentials,

and Uμ1>n—UμQtn converges strongly to uμ in <%f as n -> +00. For any u in Alt(h

because u*(x) >: 1 p.p.p. in ωx and u*(x) < 0 p.p.p. in ω0.
6^ Hence

\\u\\.\\uμ\\>(u,uμ)>\\uμ\\\

i.e., l l^ l l^ l l^ l l . Consequently ultQ — uμ.

LEMMA 7. Let ^ be a regular functional space. Each element in Eωi—EωQ is a

potential in

Proof. For any u in Eωι—Eωo, there exists a sequence {uMn—Uun) of Eωi—EωQ

tending strongly to u in ^ . Since

and Cκ Π ̂  is dense in Cκ, (μn) and (vn) are vaguely bounded. Hence we may

assume that there exist positive measures μ and v such that μn -> μ and vn -> v

vaguely as n-^+°o. Therefore

for any / in Cκ{\<%f. Consequently

6) Cf. [6], Lemma 2. A property is said to hold p.p.p. on a subset E in X if the property
holds μ-p.p. for any pure potential uμ in E such that SμClE.
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By Lemma 7, we obtain the following lemma.

LEMMA 8. Let Jgf be a regular functional space. Let AltQ be the same as in Lemma

6. The element u' whose norm is minimum Λlt0 is contained in Eωι—EωQ.

Proof By Lemma 7, we can consider the following valuation:

for any uμι—uμo in Eωι—EωQ. Similarly as in Lemma 2, P(uμι—uμQ) is bounded

from below on Eωi—EωQ. Since Eωi—EωQ is a non-empty closed convex set in

\ there exists a unique element urι—uro in Eωι—EωQ such that

Γ(urι~uΐQ) ^ Γ(uμi-uμQ)

for any uμι—uμo in Eωι—EωQ. Similarly is as the proof of Lemma 2,

U =Uγt re-

Now we remark that the regular functional space <%f satisfies the equilibrium

principle if ^f satisfies the condensor principle. That is, for any relatively

compact open set ω, there exists a pure potential uμ such that

(E. 1) 0^uμ(x)^l p.p. in X,

(E. 2) uμ{x) = lp.p. ino>,

(E. 3) uμ is contained in Eω.

Such element uμ is called an equilibrium potential of ω.

LEMMA 9. Let ^ be the regular functional space which satisfies the condensor

principle. For any couple of open sets ωx and ω0 with disjoing closures, ωx being relatively

compact, let uμ be the condensor potential with respect to ωλ and ωQ. Then

Proof We take a relatively compact open set ω such that ω D ωx. Let uv

be the equilibrium potential of ω. Since by Lemma 5,

uu*(x)=l p p-p. in ω,

0^uv*(x)^l p.p.p. i n Z ?

we have
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(uμi Uv) = \Uv*dμ+— \Uv*dμ- ^\dμ+ — \dμ~.

On the other hand since we have

uμ*(x)7>0 p.p.p. inX,

(K/o uv) =\uμ*dv>:0.

Hence

ω being arbitrary, we obtain that the total mass of μ is non-negative.

LEMMA 10. Let <%f be the same as above. Let F1 be a compact and FQ be a closed

set suck that

Then there exists a potential uμ in g? such that

(C. 1) 0 < χ * ( x ) ^ l p.p. X,

(C'2) »A*) = 1 p p p. in Fl9 uμ*(x)=0 p.p.p. inF0ί

(C3)

(C"4)

Proof. We take two decreasing nets (ωlt<ί)asι and (ωOfβ)ββi of open sets

converging to Fu FQ such that ωltOt is relatively compact for any aεl,

and for any, a < β,

lt$, ωQt(ί c α)Oij9

Let UμΛ be the condensor potential with respect to ωltCt and <»Oιflt. Since ̂ *

is bounded in X, by Lemma 5,

for any a^β. Hence | | ^ ^ α | | > | | ^ ^ | | for any a^β, i.e., {(l^αll} is convergent.

Furthermore we have
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l l * / . e - % l l 2 = n « / . J I 2 ^

Therefore there exists an element u in gf such that uμ<χ ->• u strongly in <%f.

Obviously the sets (μϊ)asi and (μZ)Λ9l are vaguely bounded, and hence we

may assume that there exist two positive measures μ1 and μ0 such that (μ*)aei

and (μz) converge vaguely to μx and, μ0, respectively. By the definition of a

potential in

We shall show that this element u is the required element. Evidently

Sβt c Fiy Sβ0 c FQ.

Since we have

W ΐ α = 1 P'P'P- i n <»1.

w*=l />./>./>. in Fx and w* = 0 p.p.p. in JFV

It is evident that u satisfies the condition ( C . 1). Finally we prove that u

satisfies the condition (C. 4). Sμi being in a fixed compact set,

On the other hand

By Lemma 9, we obtain the inequality

We call such a potential ^ the condensor potential with respect to Fx and

Fo. Now we consider the strong complete maximum principle.

DEFINITION 7.6) We say that a regular functional space <%f satisfies the

strong complete maximum principle if the following condition is fulfiled.

For a potential ufy f being locally summable for £, and a pure potential uv in

and a non-negative constant c, suppose that

p.p.p. on K/+. Then
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uf(x) <uv(x)+c

p.p. in X.

In this definition, K/+ is a set whose complement is of /+-measure zero.

By the above lemmas, we obtain the following theorem.

THEOREM 1. If a regular funtiocnal space &?f satisfies the condensor principles,

then ^ satisfies the strong complete maximum principle.

Proof. Let Uf, uv and c be the same as in Definition 7. Suppose that there

exists a compact set Kx in &K/+ such that ξ{Kx) > 0 and

Uf(x) > Uv(x) + C

on Kx. Since

u*(x)=Uf(x) p.p. in X and u*{x)=uv(x) p.p. in X, u}{%) > u*(x)-\~c

p.p. on Kλ. Therefore there exists a compact set K2 in Kx such that ξ(K2) > 0 and

u}(x) > u*{x) + c

on K2. By Proposition 1, there exists a decreasing sequence (ωn) of open sets

such that

lim Cap(ωn)=0,

U/(x) and u*(x) are continuous on ^ωn. Since $(ωn) \ 0 as n -> + oo, there

exists a number n such that

We take a compact set iC such that

and f(ίC) > 0.

Then Uf(x) and u*(x) are continuous and wjf(α ) > u*(x) + c on iί, and hence

there exists a positive number a such that

on K. Since / is locally summable for ξ, there exists an open set G such that

Gz>K and

Πx)dξ(x)<±a-Cap(K),
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where

Cap(K)=infCap(ω),
kcω

because we have

( f+(x)dξ(x)=0andCap(K)>0.
J K

Put

By the measurablity of/, there exists an increasing sequence (Fn) of compact

sets such that Fn<zK'/+ and

for any compact set F. Let uβn be the condensor potential with respect to K

and Fn. Similarly as the proof of Lemma 10, there exists a potential uμ such

that Uμn -> uμ strongly in <%f and Sμ+(zK. By Lemmas 9 and 10,

a\dμ+=a\\uμ\\2>a*C2iip(K).

Let (GΛ)αe/be an increasing net of relatively compact open sets such thatGαZ)G

and G*/ X. Similarly as the above, we can take the condensor potential uμa

with respect to K and K'/+ U ^ G α . Since uβa, is a bounded measurable function

with compact support, #0* is/-integrable and

(Uβ*, uf-uv) = ̂ uμa(x)f+(x)dζ (x)

-(\uμu(x)f-(x)dξ{x) +\u*μa (x)d»(x

Now since (uμa)*a converges strongly to uμ in

(uμ, uf-uv) < -^-a CapiK).

This is a contradiction and the proof is completed.

3. Main theorems

First we consider the resolvent operator on a regular functional space
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or L2=L2(f).

LEMMA 11.7> Let f be in L2 or in gf. For each positive number λ, there exists a

unique .element Rλf in £? which minimizes the following quadratic form:

F(u) =\\u\\2 +\\u(x)-f{x)\2dξ{x)

in the set

Af={uεJ^; u-fεL2}.

Rλf is also the only element u in ̂ f such that u—f is in L2 and

(u-f)υ dξ=O

for any υ in L2

This is obtained by Beurling and Deny [2] for the case when &?? is a

Dirichlet space. For the case when J2f is a regular functional space, this is

proved in the same way. We call such an operator Rλ the resolvent operator.

Before we prove the main theorem, we prepare the following lemma.

LEMMA 12. Let <%f be a regular functional space on X. Suppose that J2f

satisfies the strong complete maximum principle. Then for any positive bounded function

f with compact support,

p.p. in X, where

Proof First we shall prove that

M= ess.sup f(x).
xeX

p.p. in X. By the second part of Lemma 11, Rλf is the potential generated

by f—Rχf in Jg*. Since the potential uf generated by / is in ̂ , there exists

a potential uRλf generated by Rλf in <%f. Then

Uj—λRλf=uRλf .

Hence

u}{x)-λ(RAf)*(x)=u%λf{x)

7) Cf. [2], p. 211.
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p.p.p. in X. Since

p.p. in JSf, we have

Since

/>./>./>. on ^(22^/)*+, by Theorem 1,

uf{x)>U(Rλf)*{x)

p.p. in X. Therefore Rλf>0 p.p. in X.

Next we shall show that

p.p. in X. There exists a function # in Cκ such that g(x)>f(x) p.p. in X and

g(x)^M. Since by the above arguement, Rλ is a positive operator,

Rλf(x)^Rλg(x)

p.p. in X. Similarly as above,

p.p.p. in X. Similarly as in the first part of this lemma,

p.p.p. in K«g-Jtλg)*)+. Hence

p.p.p. in K(g-(Bλg)*)+. By the strong complete maximum principle,

p.p. in X. Consequently

p.p. in X. This completes the proof.

Now we shall show the following main theorem.

THEOREM 2. Let <%f be a regular functional space with respect to X and ζ.
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Then the following four conditions are equivalent.

(1) The unit contraction operates on J2f.

(2) <%? satisfies the condensor principle.

(3) Slf satisfies the strong complete maximum principle.

(4) <§?? is a real Dirichlet space with respect to X and f.8)

Proof. First we shall prove the implication (1) O (2). For any couple of

open sets ω1 and ωQ with disjoint closures, ωx being relatively compact, let AltQ,

Eωt and Eωϋ be the same as defined before. Let ult0 be a unique element in

whose norm is minimum in ΛltQ. Since the unit contraction T operates on

9 Tulι0 is in Alt0 and

Therefore Tulf0 = ult0. By Lemma 8, ultQ belongs to Eωι—Em and hence it is

the condensor potential with respect to ωx and ω0.

The implication (2) O (3) was proved in Theorem 1.

Next we shall show the implication (3) O (4). For a positive number λ, let

Rλ be a resolvent operator. For any /, g in Cκ

Hence

(R*f, g)=(Rχg, f)

and

Hence by Lemma 12, there exists a positive symmetric measure oχ on X x X

such that

dξ{x) = \\f(x)g(y) dσλ(x, y)

for any /, g in Cκ and σλ is sub-markovian, /. e., the projection of σλ on X is

less than or equal to ξ. Let mi be the density of the projection of aχ on X.

By the second part of Lemma 11, for any /, g in C^

8) A real Dirichlet space with respect to X and ζ is a Dirichlet space with respect to X
and ξ which consists of real functions. For Dirichlet spaces, see [2], p. 209.
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(RJ, 9)=

=-γ[\a-m,)fgd$+^-\\(f(x)-f(y))(g(x)-g(y))dσλ(x,y)]

Now by the first part of Lemma 11, for any positive number λ,

\\Rχf\\<\\f\\.

And by the second part of Lemma 11,

, Rιf-f) = -\\Rιf-f\tdξ.

Therefore Rχf-+f strongly in Lz, and hence Rχf-+f weakly in g? as λ-+0.
Since

\im)\Rλf\]>\\f\\^\\Rλf\\

for any Λ>0, Rλf->f strongly in J2f as >l->0. Next we shall prove the

following assertion: for a function / in Cκ, suppose that

, y)

is bounded with respect to λ. Then / is in £? and #*(/)-> |l/| |2 as λ->0.
In fact,

Hence {Rxf) is bounded with respect to λ> and we may assume that there exists

an element u in <%? such that Rλf-*u weakly in <%f as Λ-»0. On the other

hand by the second part of Lemma 11, Rλf-+f{x) p.p. in X. Consequently

u(x)=f(x) p.p. in X,i,e., f is in £? and ^(/)-^ | | / l | 2 as Λ->0. Thus we

obtain:

For any / i n Cκϊ\£f and any normal contraction T9) on R, Tf is in

and | ]Γ/ | |^ | | / | | . Because Tf is in Cκ and

for any λ.

Furthermore for any u in ^', there exists a sequence (fn) in Cκ

converging to u. By the results that Tfn is in JT, | [Γ/ n | | ^ | | / n | | and Tfn{x)

converges to Tu(x) p.p. in X, Tu is in g? and | |Tfί| |^| |«| |. Consequently
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is a real Dirichlet space.

The implication (4) O (1) is evident. This completes the proof.

By the above main theorem, we obtain the following another characterization

of a real Dirichlet space.

T H E O R E M 3. A regular functional space ^f is a real Dirichlet space if and only

if there exists number M=^0 such that uM is in gf and \\uM\\^\\u\\ for any u in Jgf,

where

uM{x)=ini(u{x)fM)

ί/M>0,

uM{%) = sup{u{x), M)

ifM<0.

Proof Suppose that there exists a number M=^0 such that uM is in <%f and

llMjfl[:<!!«[]. It is sufficient to prove the thoerem for the case M> 0. Put

u1(x)=inf(u(x). 1)

for any u in £f. Then

u1(x) = M~1 inf (Mu(x),M),

and hence u1 is in ^ and H^H^H^H. On the other hand for a sequence (an)

of negative numbers tending to 0.,

Hence uan is in J2f and | |MΛJ| :< | |M| | . We may assume that there exists an

element u' such that Uan-+uf weakly in Sίf Since Uan{x) converges to ur(x)

p.p. in X, u+ is in g? and

Let T be the unit contraction on R. Then Tu — u^. Consequently T operates

on ^f. By Theorem 2, <%f is a real Dirichlet space.

The converse is evident. This completes the proof.

DEFINITION 8. We say that the positive contraction on R operates on a

regular functional space <%f if for any u in ^\ u+ is in <§l? and | |w+ | |<| |w[|.

9) A normal contraction !Γis a transformation of R into itself such that | Ta1—Ta2\<
\aλ—a2\ for any couple ax and a2 in R and Γ(0) = 0. Cf. [2], p. 209.
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Remark. There exists a regular functional space on which the positive contraction

operates and which is not a real Dirichlet space. We can construct such an example when

X is a finite space. {Cf. [1].)

Similarly as Theorem 2, we obtain the following theorem. First we give a

definition.

DEFINITION 9.10) We say that a regular functional space satisfies the

balayage principle if the following condition is satisfied: for any pure potential

Uμ and any open set ω in X, there exists a pure potential uμ

f such that

(B. 1) uμ{x)>uμ'{x) p.p. in X,

(B. 2) uμ(x) = Uμ>(x) p.p. in, ω,

(B. 3) Uμ>εEω.

THEOREM 4. A regular functional space <%f satisfies the balayage principle if and only

if the positive contraction operates on ^f.

We can prove in the same way as the proof of Theorem 2.

4. Special Dirichlet spaces
Let X be a locally compact abelian group and ξ be the Haar measure on

X which we denote by dx.

DEFINITION 10.11) A functional space <%f with respact to X and ζ is called

an invariant functional space if for any x in X and any u in Jlf,

UxutΞ£f> and ||E7βw|| = ||«||,

where Uxu is a function obtained from u by the translation x {i.e.,

DEFINITION II.12) An invariant functional space ^ is called a special

Dirichlet space if £f is a real Dirichlet space.

LEMMA 13. For any u in an invariant functional space <%f and any bounded

measurable function f with compact support, u*f is in ^ and

(u*f, v) = I {U-Xu, υ) fdx

for any v in Sί?

10) Cf. [2], p . 210.
1 1 ) After Deny's terminology, this is the functional space which is invariant by the trans-

tion.
12) Cf. [2], p . 215.
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For the proof, see [3] and [4].

Using Theorem 2, we obtain the following theorem.

THEOREM 5. An invariant functional space gf is a special Dirichlet space if and

only if <§?f satisfies the condensor principle.13^

Proof It is well-known that a special Dirichlet space satisfies the condensor

principle. It is sufficient to prove the "if" part. By Lemma 13 and the

condensor principle, CKΠ^ is total in Cx.
14> We shall show that Cκr\^ is

dense in £?. Put

Then by Theorem 2, <%f! is a special Dirichlet space on X. First we shall

prove that for each u in £f with compact support, u is in gf'. We take a

net (fa)*<=i of Cκ such that

/.(*):> 0, \f.{x)dx = l

and (/«)<xej converges vaguely to the unit measure ε at 0 and (S/β) converges

to {0}. Since the mapping: x->Uxu is strongly continuous for any u in

there exists aQ in / such that

\\Uxu-u\\<δ

for any x^—S/a, a>a^ for a given positive number δ. Therefore

u*fa is in Cκn<^f, and hence M is in ^ ' . Let (F )<»e/ be a net of compact

sets such that F α -> X. Put

\ f is a bounded measurable function with compact supportl.

Then E^F* is a closed subspace of S£?. For any u in <^% let ua be the

projection of u to E^Fa. Then u{x) = ua(x) p.p. in ̂  F α . Hence by the above

result, u—ua is in ^ ' . On the other hand obviously {ua) converges strongly

13) Let ω be an open set in X and the notation Eω be the same as in Lemma 2. Without
the condition of regularity, we can only consider potentials generated by bounded measurable
functions with compact support. Then Eω={ιifE. ̂ f \ S/CZω}.

14) Cf. [6].
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to 0 in Jgf, hence (u—ua) converges strongly to u. That is, u is in

Consequently J2f is a special Dirichlet space.
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