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FACTIONS AND ALGEBRAIC THREEFOLDS WITH

AMPLE TANGENT BUNDLE

TOSHIKI MABUCHP>

0. Introduction

One of the most challenging problems in complex differential geometry
is the following conjecture of Frankel [3].

(F-ri) A compact Kaehler manifold M of dimension n with positive
sectional (or more generally, positive holomorphic bisectίonaΐ) curvature
is biholomorphic to the complex protective space Pn(C).

There are also algebraic counterparts:

(G-ri) A non-singular irreducible n-dimensional protective variety
M with ample tangent bundle and the second Betti number 1 is isomorphic
to Pn(C).

(H-ri) A non-singular irreducible n-dimensional projective variety
M with ample tangent bundle is isomorphic to Pn(C).

The last (H-ri) known as Hartshorne's Conjecture obviously implies
(G-ri). The first remarkable fact is that, for each n, Conjecture (G-ri)
implies (F-ri) this is a consequence of the theorem of Bishop-Goldberg
[1] and the celebrated theorem ("Every Hodge manifold is projective
algebraic") of Kodaira [20]. (See also Goldberg-Kobayashi [9].)

We here give a historical sketch: (H-ΐ) is straightforward from the
fact that Pι(C) is the only compact Riemann surface with positive Euler
number. Conjecture (F-2) was proved by Frankel and Andreotti [3],
whereas Hartshorne [13] gave a purely algebraic proof of (H-2). Their
proofs essentially depend on the classification of the rational algebraic
surfaces.
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Some progress has been made on (H-3): Let M be a non-singular

irreducible 3-dimensional protective variety with ample tangent bundle.

Then,

(0-i): (Kobayashi-Ochiai [19]) The group Aut (M) of biregular auto-

morphisms of M satisfies:

(1) dim,, Aut (ikf) ^ 7 .

(2) M can be embedded into P1*'1^) for some N in such a way that

Aut (M) acts on M as a closed algebraic subgroup of PGLiN, C).

(2) follows from the ampleness of —KM, whereas the proof of (1) is

essentially an estimate of the Riemann-Roch formula for the tangent

bundle.

dimc Aut (M) = dimc H\M, T(M)) - χ{M, T(M))

hc\ - 2cΓc2 + c3) + JLCl.C2j[i|f] ^ 7 ,

where each ct is the i-th Chern class of the tangent bundle of M.

(0-ii): (Iitaka [14]) M is rational.

As for (F-3), Kobayashi-Ochiai [19] reduced the proof of (F-3) to

the existence of a compact Lie subgroup of Aut (M) of real dimension

^ 7 , which can be obtained if, for instance, there exists an Einstein-

Kaehler metric on M (see Ochiai [24]).

In a series of papers we shall give a slightly different approach to

(F-3), making an essential use of noncompact-group actions.

Consider the following three standard group actions on a non-singular

irreducible 3-dimensional protective variety M with ample tangent bundle.

In § 1, we shall show that the study of such standard actions will suffice

to prove Conjecture (iϊ-3).

i) (Ga)
3 c Aut (M),

where (GaY is a three-dimensional abelian unipotent group (as a complex

Lie group, C3)

ϋ) (GmY c Aut (M),

where (Gmy is a three-dimensional algebraic torus (as a complex Lie

group, (C*)3).
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iii) Aut (M) contains a semi-simple algebraic group isogenous to either
SL(3 C) or SL(2 C) X SL(2 C).

In this paper we shall study enactions on M, and prove Conjecture
(G-3) in case i): C3ciAut(M). The remaining cases will be treated in
separate papers [21,22,23]. More precisely we prove the following:

THEOREM. Let M be a S-dίmensional non-singular irreducible pro-
jectίve variety with ample tangent bundle and the second Betti number
1. // C3 acts on M holomorphically and effectively, then M is algebraically
ίsomorphic to P3(C).

The proof depends essentially on the following two facts:

THEOREM A (Fujita [5], Kobayashi-Ochiai [16]). Let M be a 3-
dimensional irreducible non-singular protective variety with ample tangent
bundle. Assume that, in H2(M) (=H\M; Z)/torsion classes), the first
Chern class cλ of the tangent bundle is written in the form:

cλ = r-g for some 2 ^ r e Z and some g e H\M) .

Then M is isomorphic to P\C), (cf. (5.4) below).

THEOREM B. Let M be a non-singular irreducible ^-dimensional pro-
jective variety with ample tangent bundle and the second Betti number
1. Assume that there exists a section

OφseH%M, T(M))

whose zero locus contains a non-empty ^-dimensional component. Then
M is isomorphic to P\C) (cf. (6.1) below).

In concluding this introduction, I wish to thank all those people who
encouraged me and gave me suggestions, and in particular Professors
S. Kobayashi, S. S. Roan and I. Satake who helped me again and again
in the preparation of this paper. I was also stimulated by the recent
work of T. Fujita, with whom I have had many valuable discussions by
correspondence. One of his results (Theorem (5.4)) is crucial in our
approach. (I understand that T. Fujita has also obtained an inequality
similar to ours in Theorem (4.1).)

NOTATIONS AND CONVENTIONS.

(0.1) All varieties are defined over the complex number field C
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(0.2) For every non-singular irreducible protective variety X,

i) Hq(X) denotes Hq(X; Z)jtorsion classes, and Hq(X) denotes

Hq(X; Z)ltorsion classes,

ii) o: H*(X) x H%(X) -* H#(X) denotes the intersection pairing

which is dual to the cup product operation,

iii) Div (X) denotes the set of all divisors on X.

iv) For any closed subvariety Y of X, [Y] denotes the homology

class carried by Y (with multiplicity 1).

v) For every F e Div (X),

(1) supp (F) denotes the support of F.

(2) [F] e H2n_2(X) (where dim X — n) denotes the algebraic cycle

carried by the divisor F.

(3) Θ(F) denotes the line bundle over X associated with the

divisor F.

(4) cx([F]) G H\X) denotes the Poincare dual of [F] in X which

is at the same time the first Chern class cx{Θ(F)) of the

line bundle Θ(F). Note that for any F and F' in Div(Z),

CiflfΊ) + ^([F']) = c,([F + F']) .

vi) Given an embedding i:X^—>PN(C), and given a divisor F e

Div (X), we denote by degP^ (F) the degree of the algebraic cycle

ί*([F]) in J H ^ O P ^ O ) , where ί* is the canonical homomorphism

i # : H^iX) — H*(PN(C)) induced from ί: X -—> PN(C).

(0.3) For any vector bundle π:E->M over a non-singular irreducible

protective variety M,

i) ft: E* —> M denotes the dual vector bundle of π: E —> M.

ii) for each p e l , F p (resp. Z?*) denotes the fibre π" 1 ^) (resp.

iii) p r : P(E*) —> ilί denotes the associated protective bundle of £7*

over M, which is, by definition, the quotient of £7* — (zero sec-

tion) by the group C* — C — 0 acting on E* — (zero section)

by complex (scalar) multiplication. πf: L(E*) -» P(£7*) denotes

the associated line bundle of the C*-bundle ft: (£7* — (zero sec-

tion)) -> P(£7*).

iv) for every peM, P(E*)P denotes the fibre pr"1 (p) of the projec-

tive bundle pr : P(£7*) -> M. Note that ^(£7*),, is canonically

identified with P(£7*).
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v) for each q e P(E*), L(E*)q denotes the fibre πf'ι{q) of π': L(£/*)

—> P(E*) over q. One can see that L(E*)q is regarded as the

complex line ίq in E*v(q) corresponding to q by the canonical

projection:

k

vi) for any D = Σiai Die Div (M) (where ^ e Z - O , and D* is a
£ = 1

fc

prime divisor on M), p r ^ φ ) denotes 2 t v p r " 1 ^ ) e Div (P(E*)),
i = l

where each pr"1 (Dt) is regarded as a prime divisor on P(E*).

Note that:

(1) for any F and F' in Div CM), pr" ι (F + F') = p r " 1 ^ ) +

pr-^FO.
(2) for any F e Div (M), cx ([pr"1 (F)]) = pr* fetfF])).

(0.4) A vector bundle π:E^M is said to be ample, if L(E*)~ι is an

ample line bundle over P(E*), (cf. Hartshorne [12]).

1. Reduction of the problem

In this section, making a detailed study of linear algebraic groups

of dimension >̂ 7, we shall show that a consideration of four standard

types of group actions on protective threefolds with ample tangent bundle

will suffice to prove Conjecture (iϊ-3).

(1.1) THEOREM. Every linear algebraic group G of dimension ;> 7

contains a closed subgroup which is isomorphic to one of the following

four algebraic groups:

i) The ^-dimensional algebraic torus (<7m)3 (=(C*)3, as a complex

Lie group).

ii) An (S-dimensional) algebraic group which is isogenous to

SL(3;C).
iii) A (6-dimensionaΐ) algebraic group which is isogenous to SL(2 C)

χSL(2;C).

iv) The ^-dimensional connected unipotent abelian group (Ga)
3 (=C 3,

as a complex Lie group).
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Proof. Without loss of generality, we may assume that G is con-
nected. Now, by Levi decomposition of connected algebraic groups, there
exists a semi-simple closed connected subgroup H of G such that:

G = if Rad (G) and H Π Rad (G) = a finite group,

where Rad (G) denotes the radical of G, that is, the maximal connected
normal closed solvable subgroup of G. Then the following three cases
are possible:

(1) rank (H) ̂  3 ,

(2) rank {H) = 2 ,

(3) rank (H) ̂  1 ,

where rank (H) is the common dimension of the maximal tori in H.

Case (1). Since rank (if) ^ 3 , H (and hence G) contains a closed
subgroup isomorphic to (Gmf.

Case (2). Since rank (H) = 2, the classification table of semisimple
algebraic groups says that H is isomorphic to one of the following four
types of algebraic groups:

(a) An algebraic group of type A2 (=an algebraic group which is
isogenous to SL(S; C)).

(b) An algebraic group of type Ax x Aλ (=an algebraic group which
is isogenous to SL(2; C) x SL(2; C)).

(c) An algebraic group of type B2.
(d) An algebraic group of type G2.

Therefore, noting the fact that:
(a) an algebraic group of type G2 always contains an algebraic group

of type AλχAlf and
(β) an algebraic group of type B2 always contains an algebraic

group of type Axχ A19 we finally obtain:
In this Case (2), G contains a closed subgroup which is isogenous

to either SL(3; C) or SL(2; C) X SL(2; C).

Case (3). If rank (if) = 0, then H = {e}, i.e., G is a connected
solvable subgroup of dimension ^ 7. If rank (if) = 1, then if is isogenous
to SL(2; C), and therefore, it follows that:

(a Borel subgroup of H) (Rad (G))
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is a connected solvable closed subgroup of G of dimension ^ 6. Thus,

we have:

In Case (3), G always contains a connected solvable closed subgroup

(which is denoted by S) of dimension ^ 6.

Now, by Chevalley decomposition, S is written as a semidirect pro-

duct of two closed subgroups:

S = T U and T ΓΊ U = {e} ,

where U is the unipotent group consisting of all unipotent elements in

S, and T is an arbitrarily chosen maximal torus in S. Since dim S ^ 6,

it follows that:

(3.1) either dim T ^ 3 ,

(3.2) or dim U ^ 4 .

In case of (3.1), T (and hence G) contains a closed subgroup isomorphic

to (<?m)3, whereas in case of (3.2), (Gaf is shown to be contained in U

(and hence in G) as a closed subgroup by the following lemma. (Thus,

the proof of Theorem (1.1) is reduced to that of Lemma 1.)

LEMMA 1. Every connected unipotent algebraic group U of dimen-

sion £> 4 contains a closed subgroup isomorphic to (Gα)
3.

Proof. Let L be the Lie algebra of U. Note that:

(1) By the unipotency of U, there is a one-to-one correspondence

between the Lie subalgebras of L and the closed ( = algebraic) subgroups

of U.

(2) Every connected unipotent abelian 3-dimensional algebraic group

is isomorphic to (<7J3.

(3) L is nilpotent and dim L ;> 4.

By (1) and (2) above, the proof is reduced to showing the existence of

a 3-dimensional abelian Lie subalgebra of L. By Lie's Theorem (cf. (3)

above), there exists a chain of ideals of L:

0 = Lo c L, c L2 c L3 c L4 c . c Ln = L ,

such that dimZ^ = i (i = 1,2, ,^) . The nilpotency of L implies

i) [L,LjQLlf i.e., [L,LJ = 0.

ii) [L/Lί9 L2jL^\ Q L2/Lly i.e., [L, L2] c Lx.
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Choose a C-basis {xlf x2, , xn} for L such that {xu x2, , xt} is a C-basis

for Lu ί = 1,2, , w. Then, by i) above,

By ii) above, for some linear combination ax3 + βx± Φ 0 of x3 and xi9

we have:

[x2, ocxz + βx4] = 0 .

Therefore the Lie subalgebra Cx1 + Cx2 + C(ax3 + βx4) of L is 3-dimen-

sional and abelian, which finishes the proof of Lemma 1, and hence that

of Theorem (1.1).

Now, combining Theorem (1.1) above and (CM) of Introduction, we

obtain the following reduction of (ίf-3) to four standard cases.

(1.2) THEOREM. Let M be a non-singular irreducible ^-dimensional

protective variety with ample tangent bundle. Then we have one of the

four following situations:

i) (Cm)3 ads on M regularly and effectively.

ii) SL(3 C) acts on M regularly and essentially effectively.

iii) SL(2 C) X SL(2 C) acts on M regularly and essentially effec-

tively.

iv) (Gay acts on M regularly and effectively.

2. Zeroes of a section to a vector bundle of rank r ^ 2 over an irreducible

non-singular projective variety

Throughout this section, let π: E —> M be a vector bundle of rank

r ^ 2 over an n-dimensional irreducible non-singular projective variety

M with ά\mH\M,E)>0.

(2.1) We have a natural isomorphism:

H\M,E) ^ H\P{E*),L{E*)~ι) .

(See, for instance, Kobayashi-Ochiai [17].) It is given by the 1-1

correspondence:

s e H°(M, E)*+s'e H\P(E*), L{E*Yι)

which is determined by the following relation:
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where, on the left-hand side, h is regarded as an element of L(E*)q,
and on the right-hand side, h is regarded as an element of E*τ(q). (pr is
the canonical projection: P(E*) -> M.)

Remark 1. In the above, L(E*)q is regarded as the complex line £q

in E*x(q) which corresponds to q by the canonical projection:

P(E*<q)) = P(E%τ(q)

Q

Remark 2. In the above, let 0 Φ s eH°(M,E). Then U = {peM;
s(p) φ 0} is an open dense subset of M. Defining a subset {C s} of E*
(resp. {C-s\n} of E*\Ό) by

{C s}^ = \J{heE*; <s(p), K) = 0}

(resp. {C swγ = \J {h e E* <β(p), K) = 0})

we obtain:

( i ) {C s}1 = {C Sπ}1 U π~ι (zero locus of s),

where ft: E* -+ M is the canonical projection.

(ii) π\{c.S]u}±: {C s,̂ }-1 —> U is a rank (r — 1) vector sub-bundle of

(iii) (zero locus of s') = PdC s^}1) U pr" 1 (zero locus of s).

where PίjC s,̂ }-1-) is the projective bundle associated with the vector
bundle {C-s^}1- over U.

(i) and (ii) are obvious. We explain (iii). Let q e P(£7*). Then
s'(q) = 0 if and only if ^ c p - s } 1 , Thus from (i) above, we obtain:
s'O?) = 0 if and only if q e P({C s v}1) U pr^φ? = 0}).

(2.2) DEFINITION OF S, S ;
 AND D5. TO each 0φseH°(M,E), we

associate SeDiv(M) and S', Ds e Div (P(E*)) by the following three
steps:

Step 1. Let s' eHXP(E*),L(E*yι) correspond to seH°(M,E) by the
isomorphism: H\P{E*),L{E*Yι) ^H\M,E) in (2.1). Since L^*)" 1 is a
line bundle, we can define S' e Div (P(E*)) by

Sr = the zeroes of s7 counted with appropriate multiplicities.
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Step 2. Let {F19F2, -,Fk} be the set of in — l)-dimensional irre-
ducible components of the zero locus of s. By (iii) of Remark 2 of (2.1),

pr"1 (zero locus of s) c zero locus of s' ,

and therefore,

pr"1 (Ft) c supp (SO for i = 1, 2, ., k .

We define S e Div (M) by

s = !>,•* '* ,

where ^ is the multiplicity of pr"1 (F*) in S;. (If the zero locus of s
contains no (n — l)-dimensional components, we simply put S = 0.)
Clearly S is either 0 or an effective divisor.

Step 3. From Step 2,

We define Ds e Div (P(E*)) by

D, = S'- pr-1 (S) .

Then Z)s is either 0 or an effective divisor which has no pr"1 (F^-terms,
(i = 1,2, , fc). In particular,

codimp^ , {supp (Ds) Π pr"1 (supp (S))} ^ 2 .

(2.2.1) DEFINITION. For each 0 Φ s e H\M9 E)9 we call
( i ) S e Div (M) ίfee divisor part of the zeroes of s.
(ii) £" e Div (P(E*)) the divisor of zeroes of s\
(iii) Ds e Div (P(E*)) the difference divisor on P(E*) associated with

s. Note that S' = pr"x(S) + D8 can be taken as the definition of Ds.

(2.3) Horizontal-vertical decomposition of S'.

(2.3.1) PROPOSITION. For each 0 Φ s e H\M, E), the difference divisor
Ds satisfies:

(i) Ds is an effective divisor consisting of only one component,
i.e., supp (Ds) is irreducible.

(ii) pr, s u p p ( 2 ) s ): supp (Ds) -> M is generically a Pr~2(C)-bundle over
M. In fact, if U = { p e l ; s(p) Φ 0}, then
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(P^lsupp (Ds))

is a Pr~XC)-bundle over U.

Remark 1. It is not hard to see that Ds is even a prime divisor.

(We do not use this fact later.)

Remark 2. This proposition shows that : S' = pr"1 (S) + Ds gives a

decomposition of S' into the "horizontal component" Ds and the "verti-

cal component" pr"1 (S).

Proof of (2.3.1). We use the same notation as in Remark 2 of (2.1).

Step 1. By (iii) of Remark 2 of (2.1),

(zero locus of s') Π pr"1 (E7) = P({C s\u}i-) .

On the other hand, pr"1 (S) Π pr"1 (ί7) = 0 and Ds = S' - vr~KS) imply

supp (D9) Π pr"1 (U) = supp (S;) Π pr"1 (C7) .

Therefore, P({C s^) = s u p p φ s ) Π pr"1 ([/) = (pr\mw{Da))'KU). This shows

(ϋ).

Step 2. Note that : M - C7 = supp (S) U F, for some F with

codim^ F ^ 2. Therefore,

supp (Ds) Π pr-1 (M - U) c {supp (Z?5) Π pr"1 (supp (S))} U pr"1 (F) ,

where 1) codimp^*) {pr"1 (F)} ^ 2, and
2) eodimp^ {supp φ β ) Π pr"1 (supp (S))} ^ 2, (cf. Step 3 of (2.2)).

Thus, c o d i m ^ , {supp (Ds) Π pr"1 (M - U)} ^ 2.

Step 3. By Steps 1 and 2, noting that P^C sl^}1) is irreducible and

1-codimensional in P(E*)9 we obtain:

supp(D s) = (closure of P^C-s^}1-) in P(E*)) = irreducible.

Since Z)s ^ 0 in Div (P(£7*)), Z)s is also an effective divisor, (cf. Step 3

of (2.2)). This finishes (i).

3. Positive polynomial Φk = Φk (u19 u2, , uk)

In this section, we make a quick review of the polynomial Φk studied

by several people. (See, for instance, Griffiths [10,11], Gieseker [8],

Kobayashi-Ochiai [17].) Also a slightly modified version of the formula
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in Gieseker [8; Lemma 1.8] will be given for our later purpose.

(3.1) DEFINITION. Let ul9u2, - --9ιιk be indeterminates, where k is an

arbitrary positive integer. Consider the polynomial:

MX) = X* - uλX^ + u2X^ + (-l)kuk ,

and split it into factors:

MX) = (X- td-{X - t2) (X - tk).

Now we define Φk = Φk(u19u2, -,uk) e Q[u19u2, ,uk] by

qi + q2+ ' + qk=k

where the summation is taken over all non-negative integers q19 q2, -,qk

such t h a t q1 + q2 + + qk = k. Also put

ΦQ = 1 e Z .

Since the right-hand side is a symmetric polynomial of t19129 , tk, the

Φ^ above is a polynomial of ^,^2, - - -,uk.

(3.2) DEFINITION. Let ^ 1 ? u 2 , -,ur+1, be a sequence of indetermi-

nates. Fix reZ+. Consider the subring Rr = Z[ul9u29 , ur] of β

= Z[ti19ti2, - -,ιιr)ιιr^ιy •]. Also put i?0 = Z. Let fr(X) be the poly-

nomial Xr - i^Z7"-1 + u2X
r~2 - . . . + (-l)rur in J?r[Z]. For each keZ+

U {0} (and reZ+), we define ΦA ; r = Φk.r(ulyu2, -^r) eRr by

Φfc;r = the coefficient of Xr~ι in the remainder of

χic+r-i w h e n divided by M

(Put ΦO;o — 1 e Z c R.) Then the following are straightforward from the

definition above:

i) X*"- 1 = ( Φ ^ X'-1) + (mod./r(X)) ,

where the dots denote a polynomial in X of deg ^ r — 2 with coefficients

in Rr = Z[Wi, w2> •> wj

ii) For any non-negative integer r, Φ0;r — l

iii) For any fc, r e Z + satisfying r ^ fc,

iv) For any k, r e Z+ satisfying k^r,
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Φk r = Φlc Jc (Ul, U2, ' ' ' ,Ur, 0, 0, , 0)
λ - r pieces

v) For any non-negative integer k,

Φk ,k eRjc^ Z[u19 u2, . , uk] c Q[^x, w2, , w j .

(3.3) LEMMA. Φfc = Φk.k for all k ^ 0.

Proof. Since φ0 = 1 = Φ0;0, we may assume fceZ+. Since

45

it suffices to show that

, uk)

holds for all complex numbers ul9u2, , wΛ. Let t19ί2, ,tkeC be the

roots of the polynomial: Xk - uιX
k'1 + u2X

k'2 - . + (-1)*^* ( = Λ(X)),

where ulf , % are arbitrarily fixed complex numbers. Then

the coefficient of ^ - 1 in

the coefficient of z~ι in the Laurent series^

of zk~1 - Π 11 — I —)) expanded for
i = l\ \Z / /

.p0 < \z\ < + o o , where p0 is large enough..

l r * i Λ Λ fttW1* -P
= — z A~1 Π ( l — ( / ) dz -*-or

_^ + (lower degree terms in z)r

Therefore, letting

for any p> p0 .

^ + oo, we obtain:

Φk(u>i> U2, , uk) = Φ j . . * ^ ! , ^2, , w*) Q.E.D.

Remark. From the above lemma and i-iv of (3.2), it follows that:
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(3.3.1) For any keZ+ U {0} and any reZ+ with r ^ k,

χt+r-1 = φk(ulfu2, • • ,uk) Xr-1 + lower degree in X

mod. < y - u,Xr-1 + + (-l)rur) .

(3.3.2) For any keZ+ and any r eZ+ with k Ξ> r,

χ*+r-i = Φ k ^ . . . ) M r ; o , ^Oί Z 1 - 1 + lower degree in X

m o d . (Xr - uxX
r-1 + ••• + ( - l ) χ . ) .

We here give Φk for the first few values of k:

(3.3.3) Φ> = Ul
φ2 = u{ — u2

φ3 — ul — 2u{u2 + uz .

(3.4) We interpret the definition above in terms of the geometry of

vector bundles. Let π:E-*M be a vector bundle of r a n k r ^ > 2 over

an ^-dimensional non-singular irreducible protective variety M. Let

g e H2(P(E*)) denote the first Chern class c^HE*)'1) of the line bundle

L(E*)~ι over P(E*). For each i = l, 2, •••, we denote by dt the i-th

Chern class CiiE) of the vector bundle E. Now we shall show the fol-

lowing integral formula (see Gieseker [8]):

(3.4.1) For any g-dimensional (irreducible) subvariety F (of multiplicity

= 1) of M and any ψ e H2q~2k(M) with 0 ^ k ^ q ^ n,

{pr* ( ψ ) . ^ ^ " 1 } ^ - 1 (F)] - {ψ Φ ^ , d2,

where pr : P(£7*) -» M is the canonical projection.

Proo/. First note that, in H2r(P(E*)),

gr - pr* (d1)-gr-1 + pr* (d2) gr-2 - . . . + ( - I ) ' pr* (dr) = 0 .

From (3.3.1) and (3.3.2), it follows that, in

, /a polynomial in g of deg ^ r — 2\
\with coefficients in pr* (H*(M)) ) 'pr* (H*(M))

Therefore, in H2«+2r-2(P{E*)),
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pr* W g**'-1 = {pr* (ψ) Φk(dud29 . ^dk)} gr~ι

/a polynomial in g of deg <̂  r — 2\
Vwith coefficients in pr* (ίZ"*(M)) / '

We integrate both sides over pr"1 (F). Since

Γ σ* = ί °
J πbre l l

f o r ί - r ~~ 2

for i = r — 1 ,

we obtain:

{pr* W-g'+'-^lpr-1 (F)] = {ψ Φk(d19 d2, •. , dΛ)}[F| . Q.E.D.

(3.5) DEFINITION. Let M be a non-singular irreducible projective variety.

A class ω e H2q(M)(0 ^ q ^ dim M) is said to be numerically positive, if

ω[F] > 0 for every g-dimensional irreducible subvariety F of M.

EXAMPLE 1 (Bloch-Gieseker [2]). Assume that π:E->M is an ample

vector bundle of r a n k r over an ^-dimensional irreducible non-singular

projective variety M, Let dt = Ci(E) and h = minimum in, r). Then,

d.eH'KM) ί = 0,1, . . ,fc

are numerically positive.

EXAMPLE 2 (Fulton [7; Proposition 2]). Under the same assumption

as in Example 1, if ω e H2q~2k(M) (0 <^k^q <Lri) is numerically positive,

then

is also numerically positive. (In particular, 0fcWi> 2̂> > d*) is numeri-

cally positive for k = 0,1, , n.)

4. Inequalities associated with a section to an ample vector bundle of rank

r ^ 2

Combining the previous two sections, we now prove the following:

(4.1) THEOREM. Let π:E-*M be an ample vector bundle of rankr ^ 2

over an irreducible non-singular n-dimensional projective variety M with

dim H°(M, E) > 0. Let dt denote the i-th Chern class of the vector bundle

E, and Φk, k = 0,1,2, denote the polynomials defined by § 3. Fix an

arbitrary irreducible subvariety F of M and an arbitrary numerically
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positive cohomology class ω e H2q~2k(M) with 1 ^ k ^q = d imF ^ n. Then,

for any non-zero section s e H\M, E) with F ξ£ (zero locus of s), the

corresponding SeΌiv(M) ( = the divisor part of the zeroes of s) satisfies

the following inequality:

{ω.φk(d19 d2, ..,dk)}[F] > {ω Φ^idi, d2, , dk_M*Ί ° IS]) ,

where [F] o [S] e H2q_2(M) denotes the intersection of the homology classes

[F]eH2q(M) and [S]eH2n_2(M).

Proof. Step 1. Recall that in (2.2) we defined S' e Div (P(E*)) and

Ds e Div (P(#*)) (associated with 0 Φ se H\M, E)) by

S' = the zeroes of s/

DS^S'- pr-1 (S) ,

where s' is the element of H\P(E*)9 L{E*)~ι) corresponding to s e H\M, E),

(cf. (2.1)). The first Chern class geH2(P(E*)) of the line bundle L(JE*)~ι

over P(E*) is given by g = ^([S7]). Therefore

flr = ^([pr-1 (S) + DJ) - ^([pr"1 (S)]) +

= pr*

On the other hand, L(E*)~m is very ample for a sufficiently large posi-

tive integer m. Therefore, P(E*) is embedded into some PN(C) so that

( 2 ) 0 = - Ci([ff]) ( m e Z + ) ,
m

where H e Div (P(£7*)) is a generic hyperplane section on P(E*).

Step 2. Now we make a computation. (For convenience, we write

Φ*(di, * '>dk) and Φft_i(<Zi, ,d*-i) simply as Φfc and 0k_x respectively.)

= {pr* (aO-flr^'-^pr-1 (F)] - (ω Φ ^ j a ^ ] o [S]) (cf. (3.4.1))

= {pr* (a>).</*+-2}(pr* Cι([S]) + ^([jDJWtpr"1 (F)] - { ω . c ^ D Φ,

(cf. (1))

= {pr* (ω) ff*
+τ-2.^([D.DJtpr-1 (F)] (Apply (3.4.1) t o ψ = a) ^([S]).)

= m-*-'+2.{pr* ( ω ) . ^ ! ? ] ) * ^ - 2 . ^ ! ) , ] ) } ^ - 1 (F)] (cf. (2))

= w-*"'+ 2 pr* (a>)([jffj o [H2] o . . . o [F fe+r_2] o [DJ o [pr"1 (F)]) ,

where HlfH2, -,Hk+r_2e Div (P(E*)) are generic hyperplane sec-

tions on
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-fc-^ ωίpr* ([HJ o [H2] o . . . o [# fc+r_2] o [Ds] o [pr"1 (F)])} .

3. Since F £ (zero locus of s), it follows that

supp φ s ) Π pr-1 (F) φ pr"1 (F) .

Hence, by the irreducibility of F, supp CD5) and pr"1 (F) intersect properly.

Let U = {p eM; s(p) Φ 0}. Since U Π F is non-empty,

(prU^-'Ct/ n F) -£> u n F

is a p-2(C)-bundle over UΠF, (cf. (ii) of (2.3.1)). Therefore, letting Y

be the closure of (pr^pp^)" 1 (Z7 Π F) in supp (Ds) Π pr"1 (F), we have

(3) p r | r : Γ - + F

is generically a Pr~2 (C)-bundle over F, so that Y is an irreducible com-

ponent of supp(Ps) Π pr"1 (F) with codim{pr_1(jP)} Y = 1. Let e e Z + be the

multiplicity of Γ in the intersection of cycles Ds and pr"1 (F) in P(E*).

Then

[DJ o [pr"1 (F)] — e [Γ] = either 0 or an effective cycle .

Thus, noting that HUH2, >,Hk+r_2 e Div (P(£7*)) in Step 2 are generic

hyperplane sections and that ω is numerically positive, we have:

ω{pr* ([iϊj o [ffjΌ . . . o [iϊfc+r_2] o [DJ o [pr-1 (F)])}

^ β ω{pr^ ([HJ o [ίf2] o . . . o [iϊ,+r_2] o [Y])} .

Sίep 4. First note that, by (3), Y is an irreducible (q + r — 2)-

dimensional subvariety of P(£/*). Since k <̂  q, there are two cases.

Case 1. k — q\ Then,

[HJ o [£ΓJ o . . . o [iϊfc+r_2] o [Γ] = (degP^ (Γ)) [a point]

= an effective cycle .

Therefore, by the numerical positivity of ω,

ω{pr* ([ffj o [HJ o . . . o [Hk+r_2] o [Y])} > 0 .

2. k < q: Then, for any < & + r — 2,

dim (H, Π H2 Π . . . Π H, n Y) ^ (q + r - 2) - j

= to - k) + (Jc + r - 2 - j) ^ 2 .
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Therefore, by the irreducibility of F, applying Bertini's theorem step

by step, we obtain:

i) First we can choose (r — 2) hyperplane sections H19 H2, ,

Hr_2 e Div (P(£7*)), such that H1 f] H2 Π Hr_2 Π Y is a g-dimensional

irreducible subvariety of P(E*). Since pr|F:Y—>F is generically a

Pr"2(C)-bundle over F, (cf. (3)),

H,n H2n ... n # r _ 2 n y - ^ > F

is a subjective regular map with generically finite fibres, because of

dim (H, Π H2 Π Π Hr_2 Π Y) = g - dim ί\

ii) By i), we can choose k additional generic hyperplane sections

#i+r- 2, H2+r_2, , Hk+r_2 e Div (P(E*)), such that

ίZΊ Π H2 Π Π Hk+r_2 Π Y = irreducible and (g — fc)-dimensional ,

dim {pr (H, Π H2 ΓΊ . . . Π # * + r _ 2 nY)} = « - ϊ .

Thus, pr^ ([iίj o [iϊ2] o . . . o [Hfc+r_2] o [Y]) is an effective cycle.

Since ω is numerically positive, we have:

[H2] o .. o [iί,+r_2] o [7])} > 0 .

Therefore, in both cases 1 and 2,

ω{pr* ([HJ o [£Γ2] o . . . o [#, + r _ 2 ] o [Y])} > 0 .

Step 5. By Steps 2,3, and 4, we obtain:

[S]) > 0 .

Q.E.D.

(4.2) COROLLARY. /^ Theorem (4.1) above, we furthermore assume that

F Π supp (S) Φ φ. Then

(d^ίF] > my-^aswF] > o.

Proof, Note that {(d^-'-c^StylF] = (d^'KlF] o [S]). Therefore it
suffices to show:

i) (d.nF] > (WKίFl o [S]),
ii) W-KLF] o [S]) > 0.

Since E is an ample vector bundle over M, d1 = cXίJ) = cx(ΛrE) is

represented by a positive definite (l,l)-form. Therefore,
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1 = numerically positive .

Now i) is straightforward from an application of Theorem (4.1) to ω

= (ddq-1 and k = 1.

ii) Note the following facts:

(1) F is irreducible,

(2) F is not contained in the zero locus of s,

(3) F Π supp (S) φ φ.

These imply that F and support (S) intersect properly, i.e.,

[F] o [S] = an effective cycle .

Thus, ii) follows from the numerical positivity of (d^)*"1. Q.E.D.

(4.2.1) Remark. When F = M, Corollary (4.2) is stated as follows: Let

π:E-*M be an ample vector bundle of rank r ^> 2 over an irreducible

non-singular ^-dimensional projective variety M. Suppose E admits a

non-zero section s e H\M, E) whose zero locus contains an (n — 1)-

dimensional component. Then the corresponding S e Div (M) (= the di-

visor part of the zeroes of s) satisfies the following inequalities:

{ddn\m > mr-'-c^SWM] > 0 , where d1 = CX{E) .

5. Theory of polarized varieties

Recently Fujita has developed a theory of polarized varieties intro-

ducing the notion of J-genus. Since some of his results have been un-

published, we briefly discuss the related part of his work and give a

proof (due to Fujita) of a theorem which we shall need later. See, for

reference, Fujita ([4][5][6]).

(5.1) DEFINITION. A polarized variety is a pair (M,L) consisting of an

irreducible complete algebraic variety M (defined over C) and an ample

line bundle L over M. For a polarized variety (M, L) of dim M = n, he

defined three invariants, which are, when M is non-singular, given by

the following formulas.

i) Δ(M, L) = n + c^LΠM] - dim H°(M9 L).

This is called the Δ-genus of (M, L).

ii) d(M,L) = c^LYlM}.

iii) g(M,L) = 1 + «Ci(Kjf) + in - D
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(— "adjunction formula"), where KM is the canonical bundle of M.

(5.2) Let \L\ denote the complete linear system of Cartier divisors as-

sociated with L, and BS\L\ denote the set of base points in M of the

linear system \L\. A basic tool of his theory is the following inequality:

dim(B β |L |)< J(M,L),

where dim (Bs \L\) < 0 means: Bs \L\ = φ. (See Fujita [4].)

(5.3) He also proved the following facts:

Let (M, L) be a polarized variety satisfying the following three conditions:

(1) M is non-singular,

(2)

(3)

Then,

i) "Bertini-type theorem": If d(M,L) ^ 2 J(M,L) - 1 and dimM

Ξ> 2, then a general member of \L\ is irreducible and non-singular. (See,

for non-singularity, Fujita [6]. Connectedness follows from Fujita [4;

Lemma 6.1].)

ii) If d(M, L) ^ 2 zJ(M, L), then Bs \L\ = φ.

iii) If d(M,L) ^ 2 J(M,L) + 1, then L is very ample.

Now we state the theorem we need.

(5.4) THEOREM. Let M be a 3-dίmensίonal irreducible non-singular pro-

tective variety with ample tangent bundle T(M). We denote by ct (ί — 1,

2, •) the i-th Chern class of the tangent bundle T(M). Assume that,

in H2(M) (= H2(M Z)/torsion classes), cx is written in the form:

cx — r*g for some 2 <. r e Z and some g e H\M) .

Then M is isomorphίc to P\C).

Remark. 1) In the above, the case r ^ 3 is due to Kobayashi-Ochiai

[16]. 2) The case r = 2 is due to Fujita. Note that the proof of 2)

(which we are going to give now) is much harder than that of 1), al-

though Fujita proved 2), stimulated by the work of Kobayashi and

Ochiai.

Proof of Theorem (5.4). Assuming 1), we shall prove 2) of Remark

above. First note that the ampleness of T(M) implies that cx is re-

presented by a positive definite (l,l)-form. Therefore, by Kobayashi
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[15], Hλ{M,Z) = 0. In particular,

H\M, (0*) ^ H\M Z) = H\M) .

By this isomorphism, we identify each line bundle on M with its first
Chern class. Let L be the line bundle corresponding to g eH2(M). Since

L = g = i-^ ,

L is ample and (M,L) is a polarized variety.

Step 1. We compute three invariants of (M,L). Note that:

J(M, L) = 3 + LZ[M] - dim H\M, L)

d(M, L) = L3[M]

flr(ilf,L) - {i(-C l + 2L)L2[M]} + 1 (See (5.1).)

Since cγ — 2 L, we immediately obtain:

flr(M, L) = 1 .

Since L is ample, we have:

d(M, L) ^ 1 .

Now we compute J(M, L). The Riemann-Roch theorem for an algebraic
threefold asserts that

, L) (= Σ (-D* dim H<(M, L))
L3 + L2C + έ L ( C ) 2 + kLC + hC

, β) (= Σ (-D* dimH«(M, 0)) = ~ d

Noting that cx = 2 L, we obtain:

(#) χ(M, L) - L3[M] + 2 χ(M, (P) .

Since L — iί^ = L + cx = 3L, Kodaira's Vanishing Theorem says that:

dim W(M, L) = 0 , i ^ 1 .

Thus,

(##) χ(M,L) = dim£P(M,L).

On the other hand, the negativity of KM = —2 L implies that



54 TOSHIKI MABUCHI

dim H*(M, &) = 0 , i ^ 1 .

Therefore, we get:

(###) χW, Θ) = l .

Thus, from (#),(##) and (###), we obtain:

dim H°(M, L) = L3[M] + 2 ,

i.e.,

, L) = 1 .

Step 2. Consider the complete linear system \L\ of Cartier divisors

associated with the line bundle L. By Step 1 and (5.2), we have:

dim(BJL|) < 1 ,

d(M,L) ^ 1 = 2-J(M,L) - 1 .

Therefore, by (5.3), a general member S of |L| is non-singular and ir-

reducible.

Step 3. Consider the embedding: SQM. Since S e | L | , we have:

Ks = (X* + L)i5 = (-Cx + L)]8 = - L I β ,

which is a negative line bundle over S. Therefore, by Kodaira's Vanish-

ing Theorem,

i) q(S) (

ii) P2(S) ( = dim iϊ°(>S, 2Z5)) = 0.

Thus, by Castelnuovo's criterion, S is a rational surface.

4. We claim that S is a relatively minimal model. For con-

tradiction, assume that there exists an exceptional curve C of the first

kind on S. (i.e., C ~ P\C), and (C, C)s = —1.) By Adjunction formula,

0 - genus of C = J{(C, O* + X5[C]} + 1 .

Therefore,

X5[C] - - 1 .

Thus,
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On the other hand, from the ampleness of T(M) and C ^ P\C)f we ob-

tain:

cJC] ^ 4 . (Hartshorne; cf. [18])

This is a contradiction.

Step 5. By Steps 3 and 4, S is a relatively minimal model of ra-

tional surfaces with negative canonical bundle. First note that all the

relatively minimal models of rational surfaces are

P\C) ,

Pι(C) X P\C) ,

Fn = Proj (0P1(O) Θ 0pi{n)) , w = 2,3,4, . . . .

Since each Fn contains a curve en satisfying

en ^ P\C) and (en, e j ^ = -n , (cf. Safarevic [25])

we have, by Adjunction formula,

0 = genus of en = i (—n + K^JeJ) + 1 .

Thus, KFn[en] = n — 2, and Fn in = 2,3, •) cannot have negative canon-

ical bundle, i.e., S = P\C) or PX(C) X

Step 6. Since S e | L | and L = ί?([S]) is ample, choosing a sufficiently

large yeZ + , we can embed M QPN(C), such that S ( = supp(^ S)) is a

hyperplane section on M in PN(C). Since M is non-singular, SQM

induces, by the Lefschetz Theorem on hyperplane sections, a surjective

mapping:

(*) H2(S Z) -> H2(Af, Z) -> 0 (exact) .

Therefore, the following three cases are possible:

i) S = P2(C), and the second Betti number b2(M) of M is 1.

ii) S = P\C) X PX(C), and b2(M) = 2.

iii) S = P\C) X PX(C), and b2(M) = 1.

i. Since H2(S;Z) ^ Z, and b2(M) — 1, it follows that (*) is an

isomorphism:
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H2(S;Z)^H2(M;Z) .

Since H2(M;Z) = H\M) (i.e. H2(M;Z) is torsion-free), the isomorphism
above induces:

H2(M;Z)^H2(S;Z) (^ Z) .

Note that, by this isomorphism, L e H\M Z) is mapped to Lιs e H2(S Z).

L lβ = - # * (cf. Step 3)

= 3 0p,(l).

Therefore, L is also written as 3 4 for some heH2(M; Z). Thus

9 = (Ks)2[S] (because S = P\O)

= L2[S] (cf. Step 3)

This is in contradiction to hz[M] e Z. Therefore, Case i) cannot happen.

Case ii. S = PKC) X PXO and b2(M) = 2 :
Since if2(S Z) ^ Z φ Z and b2(M) = 2, (*) is again an isomorphism:

Since H\M Z) is torsion-free, this induces:

H\M Z) s ίί2(S Z) (

Since —X̂  = —K{piχpi) is divisible by 2 in ίί2(S;Z), L is also divisible
by 2 in ίP(M Z). Therefore, Cχ(= 2 L) is divisible by 4 in H\M;Z).
By Remark 1) (Kobayashi-Ochiai [16]), we have:

M s P3(C) .

Case iii. S = Pι(C) x P!(C) and &2(M) = 1:
Since S = PKO X P\C), the group H2(S;Z) is generated by the homology
classes [C] and [C] carried by curves:

C = {a point} X PX(C) Q P^C) X PL(C) ,

and

X {a point} Q W ) X
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Note that (1) Lί8 [C] = -KS[C] = 2 ,

and

(2) Lιs[C] = -K8[C] = 2 .

Let [C]M and [C']M denote the homology cycles in H2{M Z) carried by

the curves C and C" respectively. Recall that (*) is a surjective map-

ping:

H2(S Z) ( = Z[C] + Zt^]) -+ H2(M Z) -• 0 (exact) .

From (1) and (2) above, we obtain:

L([C]M) = L I 5 [C] = 2 = L ί 5 [C] = L ( [ α ) .

Since 62(M) = 1, this shows that :

[C]M = [C^^ mod. (torsion classes) .

On the other hand, by the surjectivity of the above mapping,

H2(M;Z) - Z([C\M)

Therefore, noting that H2(M) ( = H2(M; Z)\torsion classes) = Z, we ob-

tain, in H2(M),

[C]M = [C']M = (a generator of H2(M)) .

Thus C&CIM) = 2 L([C]Jf) = 4 implies that cx is divisible by 4 in f?2(M).

Therefore, by Remark 1) (Kobayashi-Ochiai [16]),

M ^ P\C) .

Q.E.D.

6. Statement and proof of the key theorem

We shall give a proof of the following key fact by combining the

previous sections.

(6.1) THEOREM. Let M be a non-singular irreducible 3-dimensional

projective variety with ample tangent bundle T(M) and the second Betti

number b2{M) = 1. Assume that there exists a section:
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0 Φ seH\M, T(M))

whose zero locus on M contains a (non-empty) ^-dimensional component.

Then M is isomorphic to P3(C).

Proof. Let c1 e H2(M) denote the first Chern class of the tangent

bundle T(M). Since T(M) is ample, cλ Φ 0 in H2(M). Note that b2(M) = 1

implies

H2(M) (= H\M Z)ltorsion classes) ^ Z .

Therefore, we can choose a generator g of H2(M) such that

ϋ) cx = r-g, for some reZ+.

Now let S e Div (M) denote the divisor part of the zeroes of s, (cf.

(2.2.1)). Since ^([S]) eH2(M), there exists ί e Z such that

We apply Remark (4.2.1) to the tangent bundle Γ(M). Then

Thus,

r3 ^3[M] > r2 ί.^3[M] > 0 .

Since reZ+, we have: g3[M] > 0. Therefore,

r > t > 0 , (r,teZ) .

Thus,

r ^ 2 ,

which implies, by Theorem (5.4),

M s P3(C) Q.E.D.

7. enactions on algebraic threefolds with ample tangent bundle and the second

Betti number 1

First we get rid of "bad" actions, using the key theorem (6.1).

(7.1) PROPOSITION. Let M be a 3-dimensional connected compact complex
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manifold on which a S-dimensional connected dbelian complex Lie group

G acts holomorphically and effectively. Assume that one of the following

two conditions is satisfied:

i) There is a 2-dimensional G-orbit.

ii) There is no 3-dimensional G-orbit.

Then, there exists a non-trivial holomorphic vector field on M whose zero

locus contains a 2-dίmensional analytic subvariety of M.

Proof, i) Suppose M contains a 2-dimensional G-orbit G p, p e l .

Let (Gp)° denote the identity component of the isotropy subgroup Gp of G

at p. Note that (Gp)° is a 1-dimensional closed complex Lie subgroup of G.

Since G is abelian, (Gp)° acts trivially on G-p. Let g0 be the (1-dimensional)

Lie algebra of (Gp)° with a generator X e g0. Let Xf denote the non-zero

holomorphic vector field on M associated with X. Since (Gp)° acts trivially

on G p,

Thus, the zero locus of Xf contains a 2-dimensional G-orbit G p (and

hence contains its analytic closure in M). This finishes i).

ii) Let n denote the maximal dimension of the G-orbits in M. By

i) above, it suffices to show that n = 1 implies the existence of a non-

trivial holomorphic vector field on M whose zero locus contains a non-

empty 2-dimensional component. Let {Xl9X29X3} be a basis of the Lie

algebra q of G, and X'19X'29X'Z be the corresponding holomorphic vector

fields on M. Put U = M — (zero locus of X0 Since n = 1, there exists

a holomorphic function / on U, such that

Xί = f.X[ on U.

Note that, by the definition of £7, we can finish ii) if we show that

M — U contains a 2-dimensional component. For contradiction, we as-

sume

dim (M - U) ^ 1 .

Then, by Holomorphic Extension Theorem, / can be extended to a

holomorphic function on M. Since M is compact, / is a constant func-

tion. Thus,
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aX[ — X'2 = 0 on M for some aeC .

By the effectiveness of the G-action, this implies a<Xλ — X2 = 0, which

is a contradiction. Q.E.D.

(7.1.1) COROLLARY. Let M be a ^-dimensional irreducible non-singular

protective variety with ample tangent bundle and the second Betti number

1. Assume that a ^-dimensional connected abelian complex Lie group G

acts on M holomorphically and effectively, satisfying one of the following

two conditions:

i) There is a 2-dimensional G-orbit.

ii) There is no ^-dimensional G-orbit.

Then, M is {algebraically) isomorphic to P\C).

Proof. This is straightforward from Theorem (6.1), Proposition (7.1)

above, and GAGA.

Now we prove the main theorem:

(7.2) THEOREM. Let M be a 3-dimensional irreducible non-singular pro-

jective variety with ample tangent bundle T(M) and the second Betti

number b2(M) = 1. Assume that the complex Lie group C3 ( = C X C X C)

acts on M holomorphically and effectively. Then M is (algebraically)

isomorphic to P3(C).

Proof of Theorem (7.2). Step 1. Put G = C\ By (7.1.1), we may

assume

i) there is no 2-dimensional G-orbit, and

ii) there is a 3-dimensional G-orbit.

Let {XUX2,X3} be a basis for the Lie algebra g of G, and X'19X'2,X'9 be

the corresponding holomorphic vector fields on M. Then

(1) {peM;dim(G p) ^ 1} - {p e l ; dim (G p) ^ 2 }

= (zero locus of X[^X'2/\ Xζ) ,

(2) {p e M dim (G p) = 3} = M - (zero locus of X[f\X'2A XQ ,

where X[ Λ X'2 Λ Xi is regarded as a section to the line bundle Λ ZT(M)

over M. Put F = (zero locus of X{ A X'2 Λ X0. Then, by ii) and (2) above,

M — F is a non-empty disjoint union of the 3-dimensional G-orbits.

Since M — F is connected, it consists of a single 3-dimensional G-orbit
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G>Po, (poeM). By the effectiveness of our G-action,

Thus, by the compactness of ikf, F — M — (G p0) is non-empty. There-

fore, from the definition of F, F is purely 2-dimensional, i.e.,

,.\ J-T irι zrr „ /number of the irreducible
(#) t = U * ί > r = I 4 .4JTΓT

ί=i \components of F,
where each F< is a 2-dimensional irreducible subvariety of M.

2. Since Λf — F is non-singular, the Lef schetz duality theorem

(see, for instance, Spanier [26 p. 297]) asserts that :

H*(M, F Z)^ H6_q(M -F Z) .

Since M — F = G p0 = C3, we obtain :

H\M,F;Z) = 0 , and Hδ(M,F;Z) = 0 .

From the exact sequence:

0 = H\M9F;Z) ->H\M;Z) ->H\F;Z) ->H%M,F;Z) = 0 ,

it follows that

By Poincare duality, &2(^0 = 1 implies 64(M) = 1. On the other hand,

by (#), 64(F) = r. Hence the isomorphism implies r = 1. Thus,

F is an irreducible closed subvariety of M.

Sΐep 3. Let fc be the maximal dimension of the G-orbits in F. By

(1) of Step 1, k is either 0 or 1.

Case a. h = 0: Since fc = 0, G acts trivially on F, and hence Zί,F

= 0. Since d i m F = 2, Theorem (6.1) implies

M ^ P3(C) .

Case b. fc = 1: Consider / = X[ A X'2 A Xi e ίί°(M, Λ 3Γ(M)). Note

that the divisor Zero (/) e Div (M) defined as the zeroes of / (counted with

appropriate multiplicities) is written as:

Zero(/) = v F , veZ+ .
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Let IF denote the ideal sheaf (c: the structure sheaf & of the projective
variety M) defining the subvariety F in M. Note that:

c.iTiM)) = cλ (Λ
 3T(M)) = vc^F]) e H\M Z) .

Therefore, by Theorem (5.4), the proof is reduced to showing v ^ 2 (i.e.,
feH%M,PF(Λ3T(M))) under the assumption k = 1).

Step 4. We want to show / eH\M,PF(Λ 32W))), assuming A; = 1.
Since k = 1, without loss of generality we may assume:

X'llF Φ 0 .

Fix a point ^! 6 F with Xί^) ^ 0, and choose an affine open neighborhood
U of p1 in M, such that

Put F' = F Pi U. Since F7 is non-empty and lF, = (/*.),#, it suffices to
show:

Let p e F . Since X[{p) Φ 0 and fc = 1, it follows that:

X'2(p) - ap Xi(p) and Z (̂p) = 6p Xί(2)) ,

for some ap, bpe C. F/ being an affine algebraic subvariety of the affine
set U, there exist, for (algebraic) sections X'19 X'2,XieH°(M, T(M)), regular
functions g2, gz e C[F'] on F', such that

In other words, there exist regular functions G2, G3 e C[U] on U such
that:

and

X'ZXΌ - G^X[weH\UJA\O

Thus,

f\u — (XΊ\u) Λ (X21J7) Λ (X'siu)

e H\υ, ΓF, (Λ
 32WV)) . Q.E.D.
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(7.2.1) Remark. Theorem (7.2) is valid also for (<7m)3-actions on M;
this is an immediate consequence of Corollary (7.1.1), if we use the more
or less known fact that every non-singular ^-dimensional protective var-
iety with an effective regular (Gr

m)7l-action always admits a g-dimensional
orbit for any q with 0 <̂  q <. n. In a forthcoming paper, however, we
shall prove stronger results for n-dimensional non-singular protective
varieties with (G^-actions and ample tangent bundle without the ad-
ditional assumption on the second Betti number.

Added in proof: After the completion of this paper, (we are in-
formed that) H. Sumihiro and S. Mori has succeeded in proving the
equivalence of (G~n) and (H-ri). Therefore their results, combined with
our results (the proof of (G-3)), prove (ίf-3).
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