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ALGEBRAS AND DIFFERENTIAL EQUATIONS

HELMUT ROHRL*

0. Introduction

One purpose of this paper is a purely algebraic study of (systems
of) ordinary differential equations of the type

ftl, ,fcm=l

where the coefficients are taken from a fixed associative, commutative,
unital ring R, such as the field R of real or C of complex numbers or a
commutative, unital Banach algebra. The right hand sides of D are con-
sidered to be elements in the polynomial ring R[X19 , Xn] of associat-
ing but non-commuting variables X19 - -,Xn. An algebraic study calls
for maps between such differential equations and, in fact, morphisms are
defined between differential equations having the same arity m but not
necessarily the same dimension n. These morphisms are rectangular
matrices with entries in R which satisfy certain relations. This leads to
a category ΛDiffm whose objects are precisely the differential equations of
arity m and in which the composition of the morphisms is the usual
matrix multiplication.

Given a ring R, as before, and an integer m > 1, one can define
the category BAlgm of E-algebras of arity m. Its objects are unital R-
modules A equipped with a m-ary, β-multilinear multiplication—i.e., a
iϋ-module homomorphism μ: (x) gA -> A— and whose morphisms are R-
module homomorphisms commuting with the multiplications, the compo-
sition of morphisms being the set-theoretical one. These i?-algebras will,
in general, not satisfy any given non-trivial relational or existential re-
quirement; in particular, neither associativity nor commutativity nor
unitality is assumed.
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The main theorem of section 1 states that the category ijDiffm is
equivalent to the full subcategory of ^Alg^ whose objects are finitely
generated and free as iϋ-modules. Hence we may view algebras as gen-
eralizations of differential equations. So we come to the second purpose
of this paper, namely to develop certain constructions for and to prove
theorems concerning general B-algebras, which are inspired by the study
of the previously described differential equations. The equivalence ΛDiffm

—> RAlgm constructed in section 1 is denoted by Am, and Amφ) is called
the #-algebra associated with D. The idea of associating a iϋ-algebra
with a system D of differential equations seems to have reared its head
the first time in [9]. It was subsequently used in [2], [4], [7], [8], [11]
however, only the last paper mentions functoriality. Section 1 concludes
with the interpretation, in this setting, of some results of [12] and [13],
and with an elaboration of previously [9] touched constructions.

Section 2 addresses itself to the functor "set of solutions". It can
be easily seen that there is a functor S: ijDiffw —>Sets which assigns to
each differential equation D its set S(D) of solutions; in our context,
solution means a w-tuple of formal power series with coefficients in R
which formally satisfy D. For the purpose of analysis this is enough as
a classical result says that, for R a Banach algebra, the notions of for-
mal solution, convergent solution, and differentiable solution of D are
coextensive. We proceed to define, for any B-algebra A, an associated
differential operator dA: A[[t]] -> A[[t]] which is functorial in A. Denot-
ing ker3 4 by S(A), it turns out that S: ^Diffm -> Sets and SoAm:BOif£m

—> Sets are canonically isomorphic. Next, we show that S: R Algm —> Sets
has a left adjoint L by constructing the value of L on the one-point set
{φ}. The J2Algm-automorphism group of L({φ}) turns out to be the group
of units of R, provided that the field Q of rational numbers is contained
in R.

In section 3 we take up the issue of polynomial first (and higher)
integrals. The assignment of the polynomial ring R[Xly , Xn] to a dif-
ferential equation D of arity m and dimension n can be made into a
functor P from ijDiffTO to the category of polynomial rings and R-
homomorphisms. For each differential equation D there is a linear, first-
order partial differential operator δD: R[Xλ, , Xn] —> R[Xly , Xn], which
gives rise to an endomorphism δ of P. The kernel of δD is, by defini-
tion, the ring IQ(D) of polynomial first integrals of D. Because the right
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hand sides of D are homogeneous polynomials of the same degree m,
the homogeneous components of a first integral which is a convergent
power series are elements of I0(D); in other words they can be con-
structed from I0(D). The knowledge of first integrals is important since
they allow the reduction of the dimension of D in integrating D. In
order to obtain a generalization of these concepts to Λ-algebras, we use
the multiplication μ of a given B-algebra A to equip, functorially,

# ©
2>=0

with a graded R-module endomorphism dμ^ (see (3.10)) of degree 1 — m.
Then we form

Γ*(A, S) = 0 Horn, (Γ,(A), S)

and use d^ to form a graded .β-module endomorphism δ*%s of Γ*(A,S).
If S is a iϋ-algebra, then Γ*(A,S) has a canonical J?-algebra structure
and 5*5 becomes a i?-derivation. <5* is an endomorphism of the bifunctor
T*(—,—). The main result of this section is the existence of an iso-
morphism of functors P -* T*(—,R)o Am which commutes with δ:P-^P
and 3¥,ΛoAm: Γ*(-,i2)oAm->Γ*(-,β)oAm. Hence, if we put I0(A,S)
= ker 3*s, we know that I0(D) and IQ(Am(D)9R) are functorially isomorphic.
Also, higher integrals are defined: Iq(A,S) = ker (3*5)

g+1. From an
analyst's view point it is less satisfactory to deal with the non-commu-
tative polynomial ring R[X19 •• ,XJ instead of the commutative poly-
nomial ring R[X19 -,Xn]c. In order to accomodate the commutative
case, we construct a graded ideal C*(A9S) of T*(A9S) which is stable
under δ*8. Hence δ*s induces on Γ*(A,S)C = T*(A,S)/C*(A,S) another
derivation δ*tSe which is used to define Iq(A,S)e = ker(3*5β)

β+1. The afore
mentioned isomorphism of functors P->T*(— ,R)oAm induces an iso-
morphism of functors Pc —> Γ*(—,R)eo Am which again commutes with
δc:Pc->Pc and δ*fBe: Γ*(—,22)coAm-+ Γ*(—,22)coAm where ^c is induced
by δ. Thus, also in the commutative case the first and higher integrals
of our differential equations are just a special instance of first and higher
integrals of algebras. Section 3 closes with a remark on the parameter
dependence of /J(A,S) - 7β(A,S) Π T*(A,S) resp. 7f(A,S)e = 7β(A,S)c

Π TP(A,S)C. Here we fix a ^-dimensional F-vector space V and a F-
algebra S which is finite dimensional as a F-vector space. The totality
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of F-algebras of arity m on V is identified, via the structure coefficients,
with a suitable Euclidean space Sm(V) over F. In the Zariski-topology
of Sm(V), dimF I%(A,S) and dimF/£(A,S)c turn out to be upper semi-
continuous.

Section 4 collects some properties of Iq(A,S) and Iq(A,S)c. It is
shown that Iq(A,S) and Iq(A,S)c are non-trivial provided A is nilpotent
and S Φ 0. Next, some change-of-ring theorems are established for both
Iq(A,S) as well as Iq(A,S)c. They imply that for any F-algebra AfF
being a field, and for any finite field extension F' of F,Iq(A,S) and
Iq(F'<g>FA,F'®FS) (resp. Iq(A,S)e and /β(F' φ ^ F ' <g) FS)C) determine
each other completely. The significance of this lies in the fact (see [12])
that every finite-dimensional F-algebra of arity m > 2 acquires, through
a finite field extension F' of F either an idempotent or a nilpotent ele-
ment, and that for F-algebras which possess an idempotent element there
is a way to compute Iq(A,S) resp. Iq(A,S)c. In particular it is shown
that Iq(A,S) is trivial for those finite-dimensional F-algebras A,F being
a field of characteristic zero, which possess an idempotent element whose
left-translation map has no eigenvalue equal to 0, —1, —2, •••. These
statements finally imply that Iq(A,S) is Zariski-generically trivial, i.e.,
that Iq(A,S) is trivial on a non-empty intersection of countably many
Zariski-open sets of Sm(V). Similar results hold for Iq(A,S)c.

Section 5 takes off from the following question. Given two differ-
ential equations Dλ resp. D2 of arity m and dimension nx resp. n2, over
a Banach algebra R find all germs of analytic maps Φ: Rni -» Rn* which
satisfy Φ(0) = 0 and map every solution of Dι which is sufficiently close
to 0 into a solution of D2. Evidently, this leads to a new category,

RίDiff'm9 whose objects are the differential equations of arity m over R
and whose morphisms are precisely these germs. R3)iffm contains uDiffm

as a subcategory. A germ Φ of an analytic map belongs to R3)iffm(P19 D2)
precisely when it satisfies a certain system of non-linear partial differ-
ential equations. The formal power series which solve this system form
a set RΦiffyι(DlyD2) which serves as the morphism set of yet another
category, R3)iffm-R3)iffm contains R3)iff'm as a proper subcategory. As in
section 3 we proceed to cast R3)iffm into an algebraic setting. For this
purpose one defines, for two J2-algebras A and B of arity m, formal power
series on A with values in B whose constant term vanishes. They form
a β-algebra P(A, B) of arity m whose multiplication is denoted by μAtB.
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δ*Λ induces a β-module endomorphism δA/B in P(A,B). The substitute
for the previously mentioned system of partial differential equations is
8A/B% — PA,B(®

 mX) = 0; thus we are interested in the subset Bs/lgm(A,B)
of P(A,B) consisting of the "solutions" of this equation. One then shows
that there is a category Rstflgm whose objects are the β-algebras of arity
m and whose morphism sets are precisely the sets just described. RA\gm

is a subcategory of R^ίgmy and a formal power series belonging to R^lgm

has as its linear term a morphism of RA\gm. The main theorem of this
section states that B@ίffm is equivalent to the full subcategory of R<stfίgm

whose objects are finitely generated and free as β-modules. The section
closes with a brief remark concerning the commutative situation.

In section 6 we discuss the symmetry group RG(A) of an β-algebra
A, that is the group of ^j/Z^-automorphisms of A. It is shown to be
a split extension of ^AutCA), the group of ^Alg^-automorphisms of A,
by another group RU(A). For this group we obtain a countable tower
of subgroups

BU(A) = BU(A)™ > RU(A)™ > >BU(A)M > •

each of which is normal in its predecessor and whose intersection is the
unit element. The successive quotients BU(A)iv~ιllBU(A)ίpl are isomorphic
to an additive subgroup of TP(A,A) = Hom^ (® RA, A) which is contained
in

Q? = {/: / ° d,.,+»-i = μ * d/.p+m-i} C T>(A, A) .

If the field of rational numbers is contained in R—as shall be assumed
for the remainder of the introduction—then this subgroup actually coin-
cides with Qj. This is done by constructing, for every / eQj an ele-
ment λ(f) e RU(A)ίp-i:ϊ which is mapped onto /. Forming λ(J) from / is,
in a formal sense, an exponentiation. It is shown that every element
of BU(A) can be written uniquely as a locally finite product λ(f2)λ(f3)> ,
with fp e Qj. Since μeQ™ holds, RU(A) is not trivial for any non-trivial
72-algebra A. Furthermore we prove that for R a Banach algebra, λ(f) is
always a convergent power series. Moreover, for a differential equation
D, RG(Am(D)) is isomorphic to the ^^/^-automorphism group of D if
and only if there exists an integer p0 such that Qv

μ = 0 for p > p0 if
R — R or C, this implies that RG(Am(D)) is a simply connected, nilpotent
Lie group which is a Stein manifold. For non-trivial i?-algebras A, R
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again being a commutative, unital Banach algebra, the "one parameter"
subgroup λ(rμ),reR, of BU(A) is shown to have geometric meaning: if
A — A m φ) then λ(rμD) moves each point aeAm(D) that is sufficiently
close to 0 along the trajectory of D through α. At the end of the sec-
tion there is again a discussion of the commutative situation.

The commutative analog of BG'(Am(D)), for R a Banach algebra,
makes its first appearance in [4]. The treatment in [4] is, in contrast
to ours, strictly Banach-analytic. As can be expected, there is a certain
overlap between this paper and [4]. For instance: λ{rμ) (in [4] p**) is
recognized as trajectory; the relation feQp

ct=ϊμeQ% is obtained (al-
though our Qp

μc is replaced in [4] by a different object) the epimorphism

RU{AJ]D)y-^lRU(Am(D))M -> Q% is established in case D is "nicht
entartet", i.e. Q% = = Q%~λ = Q™+1 = = 0. Here, the subscript
"c" indicates the commutative version of the entity without this sub-
script.

Section 7 establishes some properties of RG(A). First, it is shown
that there are non-trivial i?-algebras of arity m which are finitely gen-
erated and free as β-modules, such that Qp Φ 0 for all p. Next we
show that for a β-algebra of arity m > 2 which has no Z-torsion and
possesses a unit element,

BU(A) = BU(A)™ = . . . =

and

ι^ = . = 0

hold and that there is a canonical injective β-module homomorphism

RU(A) —> A. The commutative analogue to this result can be found in
[4]. Next, some change-of-ring theorems are established for Qj. They
imply that for any F-algebra A, F being a field, and for any finite field
extension Ff of F, Qp

μ and Qf-®^ determine each other completely. The
significance of this lies in the fact (see [12]) that every finite-dimensional
F-algebra of arity m > 2 acquires, through a finite field extension F' of
F either an idempotent or a nilpotent element, and that for F-algebras
which possess an idempotent element there is a way to compute Qp

μ. In
particular it is shown that for those finite-dimensional F-algebras A of
arity m, F being a field of characteristic zero, which possess an idem-
potent element satisfying certain conditions,
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FU(A) = FU(A)m = - = FU(Aym~* s F
+v = . . . = 0

hold. These statements finally imply that Zariski-generically FU(A) has

the structure just described. Again, a brief discussion of the commuta-

tive situation closes this section.

In [4], RU(Am(D))c is determined in case D is "nicht entartet". It

is shown to be isomorphic to a certain vector space and, in case m = 2,

a canonical injective vector space homomorphism RU(A2(D))C -» A2(D) is

obtained, provided that A2(D) has a unit element. These results of [4]

are special instances of some of our results.

1. The category of differential equations of arity m

In the sequel, R denotes an associative, commutative, unital ring;

all ^-modules are taken to be unital, and subrings inherit the unit ele-

ment.

This paper deals, in part, with differential equations D of the form

(1.1) Xi = ± a?>"'**Xkl - Xkm, i = 1, , n .

The right side of (1.1) is regarded as an element in the polynomial ring

R[Xlf ,Xn] of associating but non-commuting variables Xt. m = avD

is called the arity of D, n — dim D is called the dimension of D. It is

sometimes convenient to denote the right side of (1.1) by Di(X19 ,J5Γn).

Given two differential equations D' and D" over R, with ar Df — ar D',

we define a morphism / : Όf —> Ό" to be a matrix over R

where n' = dim Όf and n" — dim D", such that

(1.2) Σ / z^xί, ., x'n) =

An easy verification leads to

(1.3) PROPOSITION. The differential equations over R of arity m and

their morphisrns, with composition the matrix multiplication, form a

category

Let A be a unital jR-module. By a β-algebra structure of arity m
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on A is meant a i?-module homomorphism μ:(x)gA-+A, and (A,μ) is

called a i?-algebra of arity m. By an i?-algebra morphism / : (A\ μ')

—» (A'\ μ;/) is meant a R-module homomorphism / : Ar —> A" such that

commutes. Evidently, the i?-algebras of arity m and their morphisms,

with composition the set theoretical composition, form a category

(1.4) THEOREM. There is a full faithful functor A m : Rΐ)ifίm —> BAlgm

which is an equivalence between ^Diff̂ , and the full subcategory of .βAlgm

that is defined by those algebras whose underlying R-module is finitely

generated and free.

Proof. Let D be given by (1.1). Take for the underlying JS-module

of Am(D) the jR-module Rn and define μD by

μD((r], •• ,<)(x) ••• ® (rf, •••,?•?))
( L 5 )

 = ( y α — r l ...^ ... y α * , . ^ ...rA

Put furthermore, for any morphism / in ΛDiffm, Am(f) — f. An easy

computation shows that (1.2) is equivalent with the relations

n'

(1.6) Σ / / ^ " 1 ' ' " ' ^ — Σ a"ίu'"'ίmf\l - - - fϊ™ , for all j , klf , km .

It is equally easy to see that (1.6) are precisely the conditions for a R-

homomorphism / : R71' —»1271" to be a β-algebra morphism from Am(Df)

to Am(D//). Hence Am is a full faithful functor. In order to obtain the

second part of (1.4), let A be any Jξ-algebra whose underlying jβ-module

is finitely generated and free. Choose for A a basis e\ , en and let

(1.7) μ(ekl (x) (x) e*m) = Σ α ? 1 ' " " ' ^ .

Let Dm(A) be the differential equation (1.1) with the coefficients alu'">kvι

taken from (1.7). Given a morphism /:A/—>A// of i?-algebras, express

/ as a matrix with respect to the chosen bases, and denote this matrix

by Dm(f). Obviously, Dm is a functor to j2Diffm from the full subcate-
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gory of RAlgm that is defined by those algebras whose underlying R-
module is finitely generated and free. It is straightforward to check
that AmDm ^ id and DmAm ^ id hold. Hence Dm is an equivalence of
categories.

Call the diίFerential equation (1.1) symmetric if for any permutation
π of {1, , m} and all choices of indices i, klf , km,

holds. Call the β-algebra (A,μ) commutative if for any permutation π

of {1, , m) and all choices of α1, , α Λ e A

μ(a, ® (x) am) = μ(aπl ® (x) aπm)

holds. Then we obtain from (1.1) and (1.5)

(1.8) ADDENDUM TO (1.4). D is symmetric if and only if Am(D) is com-
mutative.

(1.9) COROLLARY. D̂iff™ has finite products. If R is a principal ideal
domain, then RΌif£m is finitely complete. If R is a field then ϋ;Diffm has
coequalizers.

Proof. Clearly, RA\gm is an algebraic category (see [10], p. 145
a.s.o.). Hence RA\gm is both complete and cocomplete ([10], p. 129, 140).
Since products in RA\gm are cartesian products ([10], p. 129), the first
claim follows from (1.4). Since equalizers in RA\gm are injections ([10],
p. 130), the second claim follows. Since coequalizers in RA\gm are
surjections ([10], p. 142), the last claim is verified.

It should be noted that D̂iff™ does not have finite coproducts (even
for R a field), and hence fails to be finitely cocomplete.

(1.10) COROLLARY. Let D be a differential equation of arity m and
dimension n. By putting X — 2?=i -X̂ *, the differential equation reads
in AJP)

X = μ(X (x) . . . (x) X) .

Hence, there is a bijection between constant solutions {i.e. critical points)
of D and nilpotent elements of Am{D) and, in case Q c R, a bijection
between ray solutions of D and idempotent elements of Am(DyK

X) An element of the ϋ?-algebra A is called idempotent resp. nilpotent if μ(a (g) ® a)
equals a resp. 0.
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The second part of (1.10) can be found, in case R = R or C, in [9],
p. 187, for m = 2, and in [2], p. 1165, for m and % arbitrary.

In 7jDiffm we have two distinguished differential equations of dimen-
sion one:

and

Evidently, Am(Nm) is the null algebra of dimension one, i.e. its multi-
plication v satisfies v — 0. In Am(Em), however, the multiplication ε is
given by e(rι (x) (g) rm) = r1 rm. With these notations, a previous
result of the authors ([12], (1.1)) can be restated, in a weakened form,
as follows:

(1.11) PROPOSITION. Let F be an algebraically closed field of character-
istic zero. Then, for any differential equation D, FΌifίm(EmIINm,D)
contains at least two elements.

There is another statement in [13], namely (4) Corollary, which bears
restating for differential equation.

(1.12) PROPOSITION. Let F be an algebraically closed field of character-
istic zero, and let m and n be natural numbers. Identify the differential
equations (1.1) of arity m and dimension n, with coefficients in F, via
these coefficients with the points of S = Fnm+1. Then there is an affine
subvariety A of S, with A Φ S, which is defined over the prime field K
of F, such that all differential equations corresponding to points of S — A
have precisely n™ — 1 ray solutions and fail to have constant solutions
Φ0.

It might be appropriate to restate some well known notions for
classical algebras (i.e. m = 2) for algebras of arity m (see also [9]).

1. A subalgebra (i.e. a subobject) of A e ϋ;Algm is a i?-submodule Ar

of A such that μ{A' ®R (g)R Af) c Af holds, μ being the multiplication
in A and Ar ®R - (g)Λ A' standing for the canonical image of (x) ̂ Af in
(x)gA. Suppose now that R is a field and that A equals Am(D). In this
case, choose a vector space basis 61, , bn of Am(D) such that 61, , bk

forms a basis of Ar. An easy computation shows that D is isomorphic
to a differential equation
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such that every monomial occur ing in D\, i = k + 1, ,w, contains at

least one of the variables X£+i, , Xή It is equally easy to see that

the converse is also true.

2. An ideal (i.e. a kernel) of A e ϋ Algm is a #-submodule / of A

such that

<g)Λ / ® Λ ΘR A) c /, . , μ(A ®B A ® Λ . ® Λ 7) c /

hold, the notation being analogous to the one used in 1. Again assume

that R is a field and that A equals Am(D). Choose a basis just as be-

fore. Again it turns out that D is isomorphic to a differential equation

(1.13) Xί = ί?ί(Zί, . . , Z 0 i = l, ••-,*,

where each D'iy ί = k + 1, ,n contains only the variables X'k+U ,X'n
(see [9], p. 188). And, again, the converse is true. A differential equa-

tion of the form (1.13) is classically called reducible. Hence, irreduci-

bility of D is equivalent to simplicity of Am(D). At this point, we should

remark that /, with the multiplication induced from A, is an i?-algebra

of arity m. The associated differential equation reads, in the notation

of (1.13)

(1.14) # = A m •• ,X'*,0, •••,<>) i = l , - . . , fc .

3. Given the ideal I in A e ΛAlgm, the quotient module A — A/1

carries a unique β-algebra structure μ of arity m, μ being the multipli-

cation in A, such that the quotient map q: A -> A becomes a β-algebra

homomorphism. If we put ourselves into the situation of 2 then the dif-

ferential equation associated with (A,ρ) becomes

X'ϊ - D'ίiX'U ,Xίf) i - k + 1, ,n ,

where—by definition—

4. Finally, it should be noted that the product of the two differential

equations Όf and Dn', both of arity m, is the differential equation
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— V

Hence, D = Ώ'ΠD" precisely when D is completely reducible in the clas-
sical sense ([9], p. 188, Theorem 5).

5. Let (A',//) and (Ah',//') be β-algebras of arity m. Then we
define (A',μ')®R(A",μ") to be (A; ®B A", μ) where

If A' = Am(Z?0 and A7/ = Am(D") then A' Θ^ A" is finitely generated and
free, and hence there is a differential equation D' ®Λ D" with (A7 ®Λ A/r, μ)
= Aw(ΰ ; ®Λ JD;/). If A7 has basis 6'1, , bfn' and A7/ has basis b"\ ,
δ//7i", with

and

then with respect to the canonical basis bn ® bhj of A' ®R A", Όf ®n Ώ"
has the form

nf n"

,LO) JLij — 2_j 2_ί ™i ("j Λjtii! * * * Λ W m .

Conversely, each differential equation that is isomorphic to one of the
form (1.15) has its associated algebra isomorphic to a tensor product.

2. The solution functor

Let D be the differential equation (1.1). By a formal solution of
(1.1) is meant a w-tuple of formal power series X = (Xlf -,Xn) eR[[t]]n

with coefficients in R which formally solves (1.1). The set of formal
solutions of D is denoted by S(D). S(D) is not empty as there is always
the trivial solution 0. If R is a valued ring (with values taken in R)
then every formal solution is convergent (in the sense of Cauchy's
Criterion). If R is a Banach algebra then every convergent solution is
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differentiable and vice versa.

(2.1) Remark. Let Q denote the field of rational number. If Q c R
holds, then for every a0 e Rn there exists one (and only one) solution &ao

of D whose constant term equals aQ. This is obvious by the classical
recursion formula for the coefficients of a formal solution. Hence, in
this case, S(D) is rather large.

(2.2) PROPOSITION. There is a functor S: ijDiffm -> Sets that assigns to
each differential equation its set of solutions. S preserves finite products.

Proof. For a morphism f:D'-+ D", let S(f): S(D0 -> S(D") be given

by

(2.3) s{f)&' = (Σ nχ» , Σ fi

It follows by easy computation from (1.2) that S(f)3£' is indeed a solu-
tion of Ώ". Hence S is a functor. The fact that S preserves finite
products is readily verified.

Given a j?-algebra (A,μ) of arity m, we can equip the β-module A[[t]]
of formal power series with coefficients in A with the structure of a R-
algebra of arity m as follows. For

Σ
.7=0

we put

(2.4) μUfWi^ (x) ® & J = Σ

Clearly, (A[[t]],μ[[t]])=: (A,μ)[[f\] is a i2-algebra of arity m. In addi-

tion, A[[t]] possesses a canonical derivation — which is given by
dt

dt

If f\A'~* A" is a morphism of β-algebras then we define /[[ί]]: A'[[ί]]

-> A"[[t\] by
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It is easy to check that /[[£]] is an j?-algebra morphism from (A',//)

to (A",μ")[[t]]. Hence we have obtained an endofunctor [[£]] of BA\gm.

A simple argument shows

(2.5) LEMMA. — is an endomorphism of the functor [[t]].
dt

(2.6) DEFINITION. For any β-algebra (A,μ) of arity m, define dA: A[[t]]

->A[[t]] by

^ § > <g> x ) .

dA is called the differential operator associated with (A,μ). kerd^ — (^(O)

is denoted by S(A) and is called the set of solutions of the differential

equation dA{9£) — 0 associated with (A,μ).

Evidently, OeS(A) whence S(A) is not empty. (2.1) remains still in

force.

An easy computation shows that, with 9C — (%Ί(t), ,^*n(ί)),

^ (

at

holds.

(2.7) COROLLARY, d is an endomorphism of the functor [[£]]. S is a

functor from ^Alg™ to Sets.

Proof. The first claim follows from (2.5). The second assertion is

a consequence of the first claim and the fact that for any morphism /

of β-algebras, /(0) = 0 holds.

(2.8) PROPOSITION. The functors S and SoAm from ijDiffm to Sets are

canonically isomorphίc.

Proof. Let D be a differential equation of arity m and dimension

n. A solution is an element X = (Xl9 -- ,%n)e R[[t]]n = Rn[[t]]. But Rn

is the module underlying Am(D). If X = Σ7=o ajtJ e Rn[[t]] and if
a3 — Σlk=ιrjkek> with ek the unit vectors in Rn then, by various defini-

tions,

μ[[t]](x ® (8) ar) = Σ f Σ M^»
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έ ( Σ Σ
j=0 V yy * *

n oo / n \
— V V I V V r . . . r nkι,~',lcm\f3pi
— Z-l Z J \ 2-J Z J r,7ifci 7jmkm

aί fl β

i = l j=0 V 1 + + im = y fci, ,&m = l /

Σ αϊ'

where ^ f e = 2 j = 0 r^Λί^. Hence it follows that X is a solution of JD if and

only if dAmim{β) = 0 i.e. S(D) = S(A m φ)). It is obvious that this identity

map is natural in D.

(2.9) THEOREM. The functor S: BAlgw —• Sets feαs α Zβ/ί adjoint, and

hence it preserves limits and monomorphisms (= injections).

Proof. Since jBAlgm is cocomplete ([10], p. 140) it suffices to show

that for the one-point set {Φ}, the functor Sets ({Φ}, S-): ^Alg^^Sets is

representable, as

Sets (X,S-) = Sets ({} {Φ},S~) s Π Sets ({Φ},S~)

where all isomorphisms are natural; i.e. the left adjoint of S will be

Z-> \}XL({Φ}). In order to construct L({Φ}), let( ί\μ F ) be the free object

in RA]gm which is generated by the set N = {0,1,2, •}; its existence

is well known ([10], p. 134). The canonical image of jeN in F shall be

denoted by zd. Let / be the ideal in F that is generated by the set

(2.10) jzj - Σ μpteji ® * ® zJm) / - 1,2, . . .

and denote the quotient algebra (F,μF)/I by (L({Φ}),p). If z + I e L({Φ})

is denoted by z, then—we claim—

holds:

— ZJ Jzjι — ZJ Jzjι — V

—— \ * f \ ' Γιί'79 (^\ (\?\ 79

dt
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In other words, we have found a solution of the differential equation

associated with L({Φ}). Now, let # e Sets ({Φ},SA). Then & = Σxl^^tK

There is a unique β-algebra homomorphism fx: F —> A which sends each

Zj to the corresponding aά. Since f is a solution of the diίϊerential

equation associated with A, we have

(2.11) jaj - Σ μfah ® ® ajm) - 0 j = 1,2, •
l

Since all expressions (2.10) are in I,fx induces a i?-algebra homomorphism

£x: L({Φ})-> A. Evidently £x[[f\]& = #\ and distinct solutions # give

rise to distinct β-algebra homomorphisms ^. Conversely, if £: L({Φ})

-> A is a β-algebra homomorphism then S[[t]W is a solution of the

differential equation associated with A. Thus

(L({Φ}), A) a ^ -> ̂ [[ί]]^ e Sets ({Φ}, SA)

is a bijection. Evidently, it is natural in A. The preservation properties

of S are now standard ([10], p. 110), but can easily be checked independ-

ently.

(2.12) PROPOSITION. AS a R-module, L({Φ}) is countably but not finitely

generated. Moreover, the zt are linearly independent', in particular,

& φ 0.

Proof. Obviously, L — L({Φ}) is countably generated as a i?-module.

If L were finitely generated then so would be every homomorphic image

of L, and for such a homomorphism £:L-*A, the coefficients of £[[f]]&

would be in £(L). So we have to find an β-algebra A for which there

is a solution whose coefficients generate a submodule of A which is not

finitely generated. Take for the β-module underlying A the 0 ~ = o # , and

denote the unit vectors by e\ i — 0,1, . Define μ: (g)g A —> A by

, . ^ ^ . Λ [dm + De ί m + 1 for ix = . . . = iTO-1 - 0
μ(e^ (g) (x) eι») = {

[0 otherwise .

Then an easy verification shows that 2 j = 0 ejtj is indeed a solution of

the differential equation associated with A which has the desired property.

The linear independence of the zt is clear as the homomorphism to go

with the given solution takes zt to e\

(2.13) PROPOSITION. Suppose that R is an integral domain with QaR.
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Then BA\gm — Aut (L({Φ})) is isomorphic with the group of units of R.

Proof. If Q c R holds then L = L({Φ}) is just the free β-algebra

over the one-point set, as can be seen from (2.1) or directly. If the

free generator of L is denoted by z, then each algebra endomorphism £

of L is determined by £(z). £{z) is of the form rz + p(z), where reR

and p{z) is a polynomial in the non-associating variable z over R which

has neither a constant nor a linear term hence, if p(z) Φ 0, deg p > 2.

Suppose now that £ has a left-inverse £'. Then

z = £'{£{z)) = r£\z)

= rf(z)

If d is the precise degree of £'(z), then the degree of p(£'(z)) is 2eZ. Hence

we have a contradiction. Therefore £{z) = rz, and ̂  is an automorphism

precisely when r is a unit.

It should be noted that the automorphism £ which takes z to rz maps

the solution & to the solution Σ ; = o riιm'1)+%P.

We conclude this section with a statement concerning nilpotent alge-

bras.

(2.14) DEFINITION. Let (A,μ) be a β-algebra of arity m. Then (A,μ)

is said to be nilpotent of exponent < e + 1 if all e-times iterated com-

positions (x)^m~1)+1 A —»A that can be built from μ are zero. An element

a e A is called nilpotent of exponent < e + 1 if the subalgebra of A that

is generated by a is nilpotent of exponent < e + 1. A is said to be a

nil algebra if every element a of A is nilpotent.

(2.15) PROPOSITION. Suppose that the R-algebra A has no Z-torsion and

that a0 e A is nilpotent. If 2£ — a0 + is a solution of the differential

equation associated with A then J e i f f l . In particular, if A is a nil

algebra without Z-torsion then S(A) c A[ί],

Proof. Let #" = 2]7=0 α ^ An easy induction argument, applied to

(2.12), shows that for every j = 0,1, >,j\ aό is in the subalgebra gen-

erated by a0. If α0 is nilpotent of exponent < e then j ! a3 = 0 for j > e.

Since A has no Z-torsion, 2£ is a polynomial of degree < e.

(2.16) DEFINITION. Let (A,//) be a β-algebra of arity m. Then (A,//)

is said to be associative if all twice iterated compositions (x)5^"1 A ~> A
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that can be built from μ are equal to each other2). Similarly, one de-
fines the notion of a power associative algebra.

(2.17) PROPOSITION. Suppose that the R-algebra A is power associative
and has no Z-torsion. If SC = a0 + e A[t] is a solution of the dif-
ferential equation associated with A then a0 is nilpotent. In particular,
if A is power associative, and Q c R holds, then S(A) c A[t] implies that
A is a nil algebra.

Proof. By (2.11), ae — 0 means that for an appropriate element
0 Φ ne e Z, ne times the β-times iterated product of aQ with itself vanishes.
But this implies that a0 is nilpotent as there is no Z-torsion in A. Fur-
thermore, Z-divisibility of A implies, due to (2.11), that for every aQeA
there exists a solution X whose constant term is α0.

3. First and higher integrals

Let D be a differential equation (1.1) of arity m and dimension n.
We associate with it the linear partial differential operator

δD: R[Xι, - , Xn] —• R[Xχ, , Xn]

that is given, on the monomials, by

(3.1) δD(Xkl ' Xkp) = 2] Xki * * Xkt-i'Dkt(Xl9 ' ' ' >Xn)'Xki + 1 ' ' Xj
ΐ l p

An easy argument shows

(3.2) LEMMA. δD is a graded R-derivation of degree m — 1. In partic-
ular, I(D) = ker δD is a graded subalgebra of R[Xlf , Xn] which con-
tains R.

(3.3) DEFINITION. The elements of Iqφ) = ker (δD)q+\ q = 0,1, , are
called the (q + l)st (polynomial) integrals of D.

Obviously, 70(D) = I(D). Evidently one has

(3.4) COROLLARY. ( i ) I0(D) c 1X(D) c . . . c Iqφ) c . . ,

(ii) Iqφ) is a graded Iφ)-module,
i(ii) IJφ) = UΓ=o ί"βΦ) is β filtered graded Iφymodule.

There is a contravariant functor P from D̂iff™ to the category of
2) A formally more satisfying description of these iterated compositions can be

found in [5], p. 1-3.
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polynomial rings over R in associating but non-commuting variables which

assigns to each differential equation D of dimension n the ring P(D) =

R[XU -- ,Xn], and to each morphism f:D'-+D" the homomorphism

/ * : R[X", , X"<>] —> βffi, , -3Γ̂ ] which is the substitution homomorphism

induced by

One verifies easily

(3.5) LEMMA, d is an endomorphism of the functor P.

From (3.5) one obtains, denoting by BA the category of graded as-

sociative, unital β-algebras of arity 2,

(3.6) THEOREM. There is a contravariant functor I: ϋ Diffm —>Λ A which

assigns to each differential equation D its algebra of first integrals and to

each morphism f of differential equations the algebra homomorphism / #

induced by / . There are also contravariant functors Iq: ^Diff™—»gr Mod,

# = 1 , . . . , to the category of graded modules, and Iω: ^Diff m —»fil gr Mod

to the category of filtered, graded modules which assigns to each differ-

ential equation D the I(D)-module Iq(D), q = 1, , ω, and to each morphism

f the (relative) module homomorphism f* induced by f.

(3.7) LEMMA. Let SC = &(t) be a solution of D. Then for any T

6 R[Xi, * * , Xn\y

4-τmt)) = (βDT)(ar(f» .
at

Proof. Easy verification.

Denote by C the ideal in R[Xlf , Xn] which is generated by the

polynomials XiXj — XjXiy i, j — 1, , n. The quotient ring R[Xl9 , XJC

= R[Xl9 - ,Xn]/C is the polynomial ring in associating and commuting

variables X19 , Xn.

(3.8) PROPOSITION. // T is an element of (δ%+1)~ι(C) then for every so-

( ή \β+ 1

— ) T(&(t)) = 0. Conversely, if Q c R holds then
dt /

the polynomial T is in (δ^yKO if for every solution £{$) of D,

( A \β+l

— ) Γ(«"(ί)) = 0 holds,
dt I



78 HELMUT ROHRL

Proof. The first part of (3.8) is obvious from (3.7) and the fact

that components of &(t) lie in a commutative ring. Conversely, (2.1)

shows that for every aeRn there is a solution 9£a{ΐ) whose constant

term equals α. By (3.7),

0 = ULy+lT(3-a(t)) - (3£+1D(3Γβ(t)) = (δq

D

+1T)(a) + higher terms .

Hence (δq

D

+1T)(a) == 0 for all aeRn. Since Q is contained in R, this im-

plies that the image in R[Xlf -,Xn]e of 3q

D

+1T vanishes—which proves

our assertion.

It should be noted that δD(C) c C holds. Hence δD induces a deriva-

tion, denoted by δDc, in R[X19 , Xn]c In this latter case, there is an

analog to (3.8) in which then (δq

D

+1)-KC) is replaced by Iq(D)c = ker (δDc)
q+1.

At this point we ought to remark that the notion of first integrals

for a system of ordinary (as well as partial) differential equations is old

and well known ([6], p. 54) in the case R — R or C. In essence, the

knowledge of a first integral of D permits the reduction of dimD by 1.

The reverse relationship is also classical. There one associates with a

quasi-linear partial differential equation δf = 0 the system of character-

istic differential equations ([3], p. 29) in such a manner that for the partial

differential equation δDf = 0, given by (3.1), the associated characteristic

equation is precisely JD, as given by (1.1). And again, knowledge of the

solutions of the characteristic equation leads to solutions of δf = 0.

We shall now extend the functors Iq to all of ΛAlgTO. For that

purpose, let (A,μ) be a β-algebra of arity m. Put

(3.9) T*(A) = 0 TP(A) ,

with TQ(A) = R, T,(A) = A, TJA) = <g>£ A.

Obviously, T*(A) is a graded B-module and is functorial in A. Next,

we define a graded i?-module endomorphism dμ^: T*(A) -> T*(A) of degree

1 - m by dμtP: TP(A) -> Tp_m+1(A) as follows:

(3.10) dμtP = 0 for p < m

p-m+l
d

μ,p= Σ (g)ί~1id^(x)//(x)(x)2)-m-ί+1id4 for p > m .
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In particular,

dμ,m = μ

Evidently, d* is an endomorphism of the functor T*. Hence we have
obtained a functor (Γ*, d*) from ijAlgm to the category whose objects are
pairs consisting of graded β-modules M and endomorphisms d of M of
degree 1 — m, and whose morphisms are graded 12-module homomorphisms
of degree zero which commute with the endomorphisms of the objects
involved.

Let S be an associative, not necessarily commutative i?-algebra of
arity 2 and put

Γ*(A, S) = © Horn,, (ΓP(A), S)
(3.11)

Clearly, this establishes a bifunctor, in A and S, with values in that
category which differs from the previous one by having endomorphisms
of degree m — 1.

Finally, for /, e Γ"(A, S), ί = 1,2, define Λ/2 e Γ*+* (A, fif) by

(3.12)

where σ: S ®BS -> S is the multiplication in S.

(3.13) THEOREM. T7iίfe ίfee multiplication defined by (3.12), Γ*(A,S) δβ-

comes a graded, associative, unital R-algebra (of arity 2) which is com-
mutative whenever S is. δ*yS is a R-derivation of T*(A,S). Moreover,
the algebra structure of Γ*(A,S) is functorial in A and S, and δ* is an
endomorphism of the bifunctor T*.

Proof. The only assertion that needs verification is that δ*tS is a
B-derivation. Let /« e ΓP«(A, S), i = 1,2. Then

-* id
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= σ o (/, ® f2) o {dμm+m^ ® ®»* idA)

+ σo(f1 ®/2) o «g)Pi id^ ® dμιPΛ+m_0

- (j o (GΛ o d , f P l + ^ ® /2) + a o (Λ ® (/2

(3.14) THEOREM. There is an isomorphism of functors P —> T*(—, β) o Am

which commutes with the endomorphίsms δ:P->P and <5ΐ>jK o Am : Γ*(—, R)

Proof. Let ΰ be a differential equation of dimension n. Then

= i2[-XΊ, •• -9Xn]. We define now a J?-module homomorphism aD:P(D)

—> r*(Am(i)),J?) as follows. Denote the unit vectors in A m φ ) by e\ ,

βn. Then the canonical basis of TP(A) is β 7'1 ® ® e 7 ,̂ j \ , ,/ p = 1,

• , n. Put

where δkj is the standard Kronecker symbol. Clearly, aD is an isomor-

phism of graded i?-algebras. Hence, the fact that a is a morphism of

functors needs only to be verified in degree one—which is trivial. The

remaining commutativity statement is easily checked in degree one:

From here, an easy induction argument on the degree of monomials

shows that

aDδD(Xjl - Xjp) = δμDtBaD(Xh Xjp)

holds, which in turn implies the asserted commutativity.

(3.15) DEFINITION. Let A be a ^-algebra of arity m. Then the ele-

ments of Iq(A,S) = ker(δls)
q+\ q = 0,1, •••, are called the (q + ΐ)st

integrals of A with values in S. IQ(A,S) is also denoted by /(A,S), and

UqlqίA'S) i s abbreviated by /ω(A,S).

(3.16) COROLLARY. Mutatis mutandis, the statements of (3.4) and (3.6)

remain valid.

In order to obtain an analog to (3.8), we form the β-module W*

— ®£=o (Tp(A)[[t]]), the direct sum of the formal power series modules
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Tp(A)[[t]]. The operator — , defined in the obvious manner, is a graded
dt

β-endomorphism of W*(A) of degree 0. The tensor product ®: TPl(A)
X TP2(A) —> TPl+P2(A) induces a tensor product, ®, on the level of formal
power series thus making W*(A) into a graded, associative, unital R-
algebra.

We note that for

Xtf) = Σ at? e A[[f\] = Γ^iDttt]] , i = 1, , p ,
.7 = 0

we obtain

«"i(t) ® ® arp(ί) = Σ f Σ βux ® ® α

An easy verification shows

4r
(3.17)

= Σ

Next, every / 6 T*CA,S) is extended to an element / of Horn^ (Tp(A)[[t]]f

S[[t]]) by the formula

In particular,

(3.18) /(#!(*) ® . . . ® #,(«)) = Σ ( Σ
o \ y y

holds. Here we obtain

(3.19) LEMMA. Let A be a R-algebra of arity m and let &(t) be a so-

lution of the differential equation associated with A. Then for any

feT*(A,S)

dt

Proof. Denote δffi-1 by δ. Then
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/( = (due to (3.18))

Σ
j

Σ

= Σ
jli tjp + m-l

at
= (due to (3.17))

at / a t

Denote by CP(A,S) the β-submodule of TP(A,S) consisting of those

elements which vanish on all elements of TP(A) of the form

(3.20) Σ aji® ••• ® »y, J α,,,^, •••, eA,fc = 0,l, •••

and put C*(A,iS) = ®;=2C
P(A,S).

In order to make the next statement more readable we denote for

/ e Tp(A,S),f(®p 9£(t)) by /(«•(«)). This notation then gives meaning to

where heT*(A,S) is not necessarily a homogeneous element.

(3.21) PROPOSITION. // / is an element of ((3*5)
g+1)~1C*(A,S) then for

any solution 3£(t) of the differential equation associated with A,

(jL\9+lf(gr(t)) = 0. Conversely, if Q c R holds then f belongs to
\dt /

((^?,s)ρ+1)"1C*(A,S) if for every solution S£(t) of the differential equation

( d \q+1 *
1 f(&(t)) = 0 holds,

dt /

Proof. The first part of the assertion follows from (3.19) and the

definition of C*(A,S). Conversely, the analog to (2.1) shows that for

every a e A there exists a solution 3£a(t) whose constant term equals α.
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By (3.19),

0 =

= (P*8y
+1f(β) + higher terms .

Hence (δ*iS)
q+1f(a) = 0 for all aeA. For the homogeneous component

((δ%s)
q+1f)p of degree p this means

(3.22) ( W + 1 / ) p ( ® p Oα) = 0 , for all a0 e A .

i.e. it vanishes on the elements (3.20) corresponding to k = 0. By sub-
stituting in (3.22) α0 + ^ for aQ, with sufficiently many Λ e Q, one sees
that ((δ*tS)

Q+1f)p vanishes on the elements (3.20) corresponding to k = 1.
Similarly, the substitution of a0 + λax + + λkak shows that ((δ* s)

β+1/)p

vanishes on all elements (3.20), whence ((δ*tS)
q+1f)p lies in CP(A,S).

(3.23) LEMMA. C*(A,S) = ®%a0C
p(A,S) is a graded ideal of Γ*(A,S)

satisfying δ*sC*(A,S) c C*(A,S).

Proo/. Let / e ΓP(A, S) and g e C«(A, S). Then

fδ( Σ ^ Θ Θ α

= Σ / ( α Λ ® ®α^flr( Σ ^, + 1 ® ® α ί ί + g) = 0 .
ji, ' ,jp \jP+i+~ =Jc-ji yp

Similarly one shows that C*(A,S) is a right ideal. Finally,

d ' *(,1+..Σ,_>®

= Σ ΣαΛ<

Clearly, this last sum is generated by the elements (3.20).
(3.23) implies that δ%s induces a derivation, denoted by δfiSc, on

(3.24) THEOREM. The isomorphism a of functors given in the proof
of (3.14) maps the ideal CaP(D) onto the ideal C*(Am(D), R) and hence
gives rise to a commutative diagram
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ΏX1Γ Ύ Λ = <v φ kί A (TX\

pry V I ~ v ΠP^ ί A (TX\ T>\

Proof. A simple computation shows that aD maps the generators
XiXj — XjXi into C*(Amφ),jR). Hence we get induced maps and the
commutative diagram.

In order to show that the horizontal maps are isomorphisms, we
begin with a number theoretic fact whose proof will be given below.
Let nx > 0, , nq > 0 be integers. Then (see LEMMA below) there are
mutually distinct integers zx > 0, , zq > 0 such that for any integers
K > 0, , nq > 0, nxzx + + nqzq = n[zx + + nqzq implies nx = n'ly
. . . , nq = n'q. Put k = nxzx + + w ^ and p = nx + + wβ, and take
the element (3.20) corresponding to k and p, with aZl, , α2ί mutually
distinct, and all the other αy = 0. If we now rename aZi by ai9 then
this element will be Σ % ® ® fyp where 0\, , jp) runs through all
permutations of the set

Now suppose that

is mapped by α into C^ίA^.φ),.??). Then its image under a has to vanish
on the elements that we just constructed. So, if we choose for the ad

mutually distinct unit vectors etJ, we obtain

where (j19 , yp) runs through all permutations of the set

This, however, implies that the subsum of / corresponding to this sum-
mation lies in C Since every term of / belongs to precisely one such
subsum, our assertion is proved.

LEMMA. Let nx > 0, , nq > 0 be integers. Then there are mutually
distinct integers zx > 0, , zq > 0 such that for any integers n[ > 0, ,
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K > o,
nxzx + + nqzq = n[zx + + n'qzq

implies n[ = nl9 , nq = n α .

Proo/. Put M = Σiί=ι nt and choose & > (2q + 1)M. Put

St = fc^"1 + ^fcQ-2 + + V M > i = 1, , g ,

with dji the Kronecker symbols. Then the equation in the LEMMA reads

Hence

0 < n\ < k1'

Therefore,

and

*«»« + + Σ «,-i
i l

+ k«-2M + . + M) < M + kr\q - < M + 1

-nd

- n't)

< (2q

<2M + l<(2q

Therefore, the uniqueness of the fc-adic expansion of integers implies

Σ (n't - nt) = 0
i = l

έ ί^w - «,) = o y = l, , g - 1 .
ί = l

Since the determinant of the coefficient matrix equals 1, our assertion

is verified.

Analysts may prefer working with T*(A, S)c rather than with Γ*(A, S).

Therefore it is advisable to have

(3.25) DEFINITION. Let A be a #-algebra of arity m. Then the ele-

ments of Iq(A,S)c = k e r ( T * ( A , S ) c - ^ ^ Γ * ( A , > S ) c ) , q = 0, 1, . . . are

called the (q + Dst commutative integrals of A with values in S. /O(A,S)C
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is also denoted by I(A,S)e, and \JqIq(A,S)c is abbreviated by IJA,S)C.
Again (3.4) and (3.6) remain valid.

In (3.11) and the subsequent discussion, S may be replaced by any
m-ary i?-algebra S. Then T*(A,S) becomes a graded m-ary i?-algebra
by generalizing definition (3.12) in the obvious manner. With respect to
this structure, δ*^ is a i?-derivation in the sense that

m

δ*rs(Ά • • • fj = Σ/i /i-i ^ ( Λ ) /i+. A

holds. C*(A,,S) can be formed as before, and turns out to be a graded
ideal of T*(A, S) (in the sense of section 1) that is stable under d* .̂
Hence Γ*(A,S)C and δ*sc become available. Clearly, the β-module struc-
ture of Iq(A,S) and Iq(A,S)c depends only on A and the β-module struc-
ture of S.

We close this section with a brief remark pertaining to the param-
eter dependence of Iq(A,S) resp. Iq(A,S)c. Let F be a field and let V
be a F-vector space of finite dimension n. If we fix a jP-basis of V,
then a F-algebra structure A of arity m with underlying vector space V
is determined by its structure coefficients which are viewed as elements
of Fnm+1. Thus, we have identified the set of all such F-algebra struc-
tures with Fnm+ι. For any such F-algebra A, put

7f(A,S) - Iq(A,S) Π T?(A,S) resp. 7f(A,S)c - 7,(A,S)β ΓΊ T^(A,S)C .

If dinvS is finite then both

dimF I*(A,S) and dim^ 7J(A,S)C

are finite and may be viewed as numerical functions on Fnm+1. With
this understanding we obtain

(3.26) PROPOSITION. For fixed p, q, and S (with dim^ S < co) both

dimF Ip

q(A, S) and dimF Ip

q(A, S)c

are upper semicontίnuous on Fnm+1 with respect to the Zarίskί-topology.

Proof. Let bu ,bn be the chosen F-basis of A and let s19 , sN

be a F-basis of S. Denote by filt...iiptk the element of TP(A,S) which is
given by
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These elements form a canonical F-basis of TP(A,S). Hence, any

feTp(A,S) can be written as

J ==
2-J

From this and (3.10) it follows easily that δ**™'1/ has as its coefficients

with respect to the canonical basis linear combinations of the #<lf...f<pifc

whose coefficients are F-linear combinations of the structure coefficients

of A. Hence / belongs to I*(A,S) precisely when the xilr..tiptk are a

solution of a certain linear homogeneous system whose coefficients are

polynomials in the structure coefficients of A. The co-rank of this linear

homogeneous system is upper semicontinuous on Fnm+1 with respect to

the Zariski-topology. Hence our assertion concerning dhnF I%(A,S) is

proved. A similar argument shows the validity of the second claim.

4. Properties of the functor /^

We shall call Iq(A,S) resp. Iq(A,S)c trivial if I*(A,S) = 0 resp.

I*(A,S)c = 0 for all p > 0. This is equivalent with Iq(A,S) = S resp.

Iq(A,S)e = S.

(4.1) PROPOSITION. If A is nilpotent of exponent e + 1 and T*(A,S) Φ 0

resp. T*(A,S)C Φ 0 then every Iq(A,S) and Iq(A,S)c is non-trivial.

Proof. Denote d , i P . ί M o . • odμtP: ®p A -> (g)p-(«+«(»-« A by dp,q.

Then the image of dp>q will be contained in the submodule of the codomain

which is generated by tensor products having as factors n0 zero-fold

products of A (i.e. elements of A), nλ one-fold products of A (i.e. elements

of μ((x)m A)), -- ,nq+1(q + l)-fold products of A. For these integers nλ

the following relations are easily established, for q > 0 and m > 2:

p - (q + l)(m - 1) = Σn, > 1 ,
i = l

q + l

q + 1 = 2] w>i > nt>0 and nt Φ 0 for some i > 1 .
t = 0

It is then easy to verify that dp>q = 0 whenever

1 + to + D(w - 1) < p < (q + De-1 + (q + l)(m - 1)

holds. Thus Iq(A, S) and Iq(A, S)c are non-trivial for q > e — 1, and

therefore for all values of q.
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(4.2) PROPOSITION. // A —* A" is a surjectίve morphism of R-algebras
then the induced maps Iq(A",S) -»Iq(A,S) and Iq(A",S)c-> Iq(A,S)c are
injections. In particular, for any R-algebra A there are canonical in-
jections

and

Iq(A/μ((g)%A),S)c-*Iq(A,S)c.

Proof. The last assertions follow from the first ones and the fact
that μ((x)-βA) is an ideal of A. Now, if φ:A-^A" is a surjection so is
the induced map Tp(φ): TP(A)-> TP(A"). Hence Γ*(0: T*(A", S) -> Γ*(A, S)
is an injection, as is Iq(A",S) -> Iq(A,S). Finally, let / " e Iq(A", S)c be
in the kernel of Iq(A",S)e-»Iq(A,S)e. Lift/ 7 back to Tq(A",S) as /",
and denote the image of / " in Tq(A,S) by f. Then / is in C*(A,S).
One concludes easily from (3.20) that this implies f" e C*(A", S), and
thus J" vanishes.

(4.3) LEMMA. // S is an integral domain then so are T*(A,S) and, if

S has no Z-torsion, Γ*(A,S)C.

Proof. This is obvious for T*(A,S), due to (3.12). As for the
commutative case, let ft e Γ*«(A, S), i = 1,2, such that fj2 e C*(A, S) holds.
This implies that

/i((x)Pl ^)/2(®Pa α) = 0 , for all a e A .

Putting

α) = 0} and T2 = {a: f2(®p* a) = 0} ,

we obtain A = Γx U T2. The i?-submodules of A that are either con-
tained in Tλ or contained in T2 are ordered by inclusion. A simple ap-
plication of Zorn's lemma shows that there is a maximal such sub-
module, say N. We claim that N = A. Otherwise, assume that N dT1

holds and choose α0 g 2V. For 0 Φ noeN there are infinitely many pairs
(ki, £t) of integers with mutually distinct ratios such that either k^ +
ΰin0 β T19 for all i, or fc^o + ̂ i%o e Γ2, for all i, holds. In the first case
we have

o =Λ((8)^ (Mo + Λinύ) - Σ

y=o

where 2 J stands for a certain sum of tensor products involving a0 and



ALGEBRAS AND DIFFERENTIAL EQUATIONS 89

n0. Since S has no Z-torsion this implies that, for every / , / I ( Σ J ) = 0.
Consequently, the i?-submodule of A generated by aQ and n0 lies in 2\.
Hence we have the alternative that the jβ-submodule of A generated by
α0 and n0 is contained either in T1 or in Γ2 Now, if for every noeN
the B-submodule generated by a0 and n0 were contained in T1 then we
would have a contradiction to the assumed maximality of N. Hence
there is an element 0 Φ roao + n0, with r0 e R and n0 e N, which is not in
Tλ and hence not in N. Therefore, for any neN, the JR-submodule
generated by n and roαo + w0 is contained in T2 hence, again, we have a
contradiction. Thus N = A = 2\. The argument following formula (3.21)
then shows that fx belongs to C*(A,S).

(4.4) THEOREM. Let S be an integral domain containing Q. Then
IO(A,S)C is integrally closed in T*(A,S)e.

Proof. Let /eΓ*(A, S)c be integral over I0(A, S)e and let
P eIQ(A,S)c[X] be a monic polynomial of least degree such that P(f) = 0.
Then

0 = δ*SβP(f) -

P'(f) does not vanish as P' is not the zero polynomial and has lesser
degree than P. Since T*(A,S)C is an integral domain, due to (4.3), this
means that δ*%Se(f) = 0, i.e., feI0(A,S)e.

(4.5) COROLLARY. Let R be an integral domain containing Q and let A
be a R-algebra which is free and of finite dimension n as a R-module.
Then the transcendence degree of I0(AfR)e over R is <n. If the trans-
cendence degree equals n then IQ(A,R)C = T*(A,R)C. If, in addition, R
is factorial and if the transcendence degree equals 1, then IO(A,R)C is iso-
morphίc to the polynomial ring R[X],

Proof. By (3.24), T*(A, R)c is isomorphic with R[X19 , Xn]c. Hence
the first assertion is obvious, and the second one follows from (4.4).
Now assume that the transcendence degree of IO(A,R)C equals 1. Let
p > 0 be minimal with respect to /£(A, R)c ψ 0 and choose 0 Φ t e Iξ(A, R)c.
Evidently, ί is a transcendence basis of IQ(A,R)C over R. Let 0 Φ
ue I$(A,R)C. Then there is a polynomial

P(X, Y) = Σ ^ χ ί γ 3 : w + fo = N ) e RίX>γ^

with P(t,u) = 0. Due to (4.3) we may assume that r0 Φ 0 and rN/p Φ 0
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hold. This, however, implies that every prime divisor of t also divides

u, and vice versa. Thus an easy argument, involving the degrees of t

and u, and the assumption that t is of minimal degree, shows that u is

a power of t. Since /0(A,i?)c is graded, this finishes the proof.

Now we shall discuss some change-of-ring theorems.

(4.6) LEMMA. Let R —> jβ' be a unital ring homomorphism and let A

be a R-algebra of arity m. Then the canonical m-ary structure R'®Rμ

on R; ®R A furnishes a commutative diagram

T*{R' ®R A) ^> R' ®R Γ #

dR>®Rμ,*\ \Rr

T*(#' ®R A) - ^ > R> ®R T*

where the horizontal arrows are isomorphisms of degree zero. The dia-

gram is functorial in A.

Proof. The canonical structure, R' ®R μ, is given by

R' ®B μ(ίή ® ad ® <8> « Θ aj) = r[ r'm ® μ(a, ® <g> αm)

μ being the multiplication on A. The horizontal isomorphism Rf ®R T*(A)

-> T*(R' ®R A) is given by (see [1], p. 489)

rf ® (a, ® (x) ap) H-> r7((l <g) ĉ ) <g) <g) (1 <g) ap)) .

These definitions insure functoriality. The commutativity of the diagram

follows by easy verification.

(4.7) LEMMA. Let S' be a R'-algebra of arity 2, and let R —> R; be a

unital ring homomorphism. Then the isomorphism in (4.6) induces iso-

morphisms of graded algebras

T*{R> ® RA, SO ~^> T*(A, ΛS0

and

T*(R' ® RA9 S% - ί » Γ*(A, ΛS0β ,

where BS' is the canonical R-algebra structure of arity 2 on S'. They

are functorial in A and S' and render the following diagrams commu-

tative
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T *CRf R\ A ^f\ ~ ^ T*( A ΦΛ\ί\> \£y R*~* 9 O ) T JL V-ίJLy R& )

5*x Ί |«* s-
Rίt' Y ^ Y

Γ*(B' ® RA, S") - ^ > T*(A, RS')

resp,

T*(~Rf (Y) A 9/Ni ~ s T*(A Φ\
± \Lv yy R L*-i & Jc * •*• v " - > J R * ^ / c

I I

T*(#' ® ΛA, SOc ~^> T*(A, RS')C

Proof. The first isomorphism sends / ' e TP(R' ® BA,S') into the

element f eTp(A,RSf) that is given by

An easy verification shows the required commutativity. From (4.8) it
follows immediately that the first isomorphism maps C*(R' ® RA,S')
onto C*(A,ΛS0. Hence the remainder of (4.7) is established.

Again, let R^Rf be a unital ring homomorphism. Then there are,
for any i?-algebra of arity 2, canonical i?-module homomorphisms

Γ*(A, S) > Γ*(A, *(#' ® RS)) - ϊ > T*(^ (x) ΛA, B' (x) ΛS)

2 V-ίi) AJ^C ^ J- v- î j i2v-^ ^ R&))c ^ -L \^ ^y R**-9 •" ^ i2*^/c

which are functorial in A and S. Here, the two last isomorphisms are
the ones described in (4.7). The first homomorphism in the top line of
(4.9) is the composition with the map S a s ^ l g s e R(R'® RS) since it
maps C*(A,S) into C*(A,Λ(β'(g)ΛjS)), it induces the first homomorphism
of the bottom line of (4.9). With these homomorphisms we obtain

(4.10) PROPOSITION. Let R —> Rf be an injective, unital ring homomor-
phism, let A be a R-algebra of arity m, and let S be a R-algebra of
arity two which is flat as a R-module. Then there are isomorphisms
of R-algebras, resp. R-modules both of which are functorial in A and S,

Iq(A> S) = Iq{R' ® RA, Rf (8) RS) Π im (T*(A, S) - Γ*(β' <g> RA, R> ® RS))

and

Iq(A, S)c s Iq(R' ® RA, R> ® RS)C Π im (Γ*(A, S)c -> Γ * ( ^ ® RA, R' ® RS)C) .
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Proof. Since S is a flat β-module, the top homomorphism (4.9) is

injective, and the first set of isomorphisms follows from (4.7) by easy

diagrammatics. The second set of isomorphisms is established similarly

as one verifies easily that T*(A, S) -> T*(A, R(R' ® RS)) maps C*(A, S) onto

C*(A, R(R' ® RS)) Π im (Γ*(A, S)).

(4.11) PROPOSITION. Let R-*Rf be a united ring homomorphism and let

A be a R-algebra of arίty m. Suppose that either R' or A is a finitely

generated protective R-module. Then there are isomorphisms of R-

algebras resp. R-modules, both of which are functorίal in A and S,

R' ® RIq(A, S) s Iq(R' ® ΛA, R' ® ΛS)

β' ® BIq(A, S)c s ^(/e7 ® *A, B' (8) ̂ S), .

Proof. There is a canonical i^-module homomorphism

ω: J27 (g) ΛΓ*(A, S) -> Γ * ^ ' <g> ΛA, β 7 ® ΛS)

which is given by

ω(r' (x) /)((rx ® ̂ ) ® . - ® (rp ® α,)) = rVx . . . rp ® /(α t ® . . . ® ap) .

It follows from [1], p. 489 and 282, that under the above assumptions

ω is an isomorphism. An easy verification shows that the following

diagram commutes

R' ® ΛΓ*(A, S) ~ % Γ * ^ ® ΛA,

) - % Γ*(β' ® ΛA, β7 ® RS) .

Thus we have the first batch of isomorphisms. Since ω maps
R'®SC*(A,S) onto C ^ ^ A , ^ ® / ) - a s is checked easily—the second
batch of isomorphisms is established similarly.

(4.12) COROLLARY. Let R —»β/ be a unital injective ring homomorphism,

let A be a R-algebra of arίty m, and let S be a R-algebra of arity 2

which is flat as a R-module. Suppose that either Rr or A is a finitely

generated projective R-module. Then

(i) Iq(A,S) (resp. Iq(A,S)e) is trivial if and only if

Iq(R' ® RA, β ' ® BS) (resp. Iq(Rf ® BA, R' ® ΛS)β) is

(ii) Iq(A,S) = T*(A,S)(resp. /,(A,S)C = Γ*(A,S)C) </ and o ^ j if
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Iq{R'®RA, R'®RS) = T*{R'®RA, R'®RS) (resp. Iq{R' ® RAy

R' ® RS)C = T*(R' ® BA, R' ® ΛS)e).

Proo/. (4.10) and (4.11).

(4.13) THEOREM. Let F be a field of characteristic zero and let A be
a F-algebra of arity m with dimFA < oo. Suppose that A possesses a
non-trivial idempotent e such that the F-endomorphίsm τ of A, which is
given by

τ(a) = μ{e ® ® e ® a) ,

satisfies

det (£ΛdA + τ) Φ 0 /or ^ = 0,1, .

Then Iq(A,S) is trivial.

Proof. We shall prove that dμtP,p > m, is a surjection; this implies
that δ*,s is injective, and hence that Iq(A,S) is trivial. In order to obtain
the required surjectivity we show, by induction on g, that (χ)p-?-™+1 e
® Tq(A) is in the image of dμ>p. This is clear for q = 0 as

d M ( Θ p e) = (p - m + 1) (x)*—*1 β ,

and p — m + 1 Φ 0 since F has characteristic zero. Next, one verifies
easily that for p — q > m — 1

dμ,p{®v~Cίe®aι® . ®aq)

(4.14) = (p - q - m + 1) (χ)*-<z-m+i e ® ttl ® ® αβ

+ ® P - « " W + 1 e ® τiad ® α2 ® . . . ® aq + (g)P-Q-m+2 e®b ,

with b e Tq_1(A) holds. It is well known that there is a F-basis

bitj , ί = 1, ,7^ ; y = 1, . , ί

of A such that

ίίδt^) = &<+lfi , i = 1, , Uj - 1

with suitable scalars rifjeF. If we apply (4.14) to aι = bί>j then the
induction hypothesis leads to

(p — q — m + l)(S)ϊ)~q~m+1 e ® bίtj ® a2

+ ®p-<i-m+ι

 e ® τ(jbij) ® a2 ®
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The element occurring in (4.15) can be written in the form

φp-β-m+i e (g) ((p _ q _ m + D i d ^ + τ)φi9j) ® oj ® ® αβ .

Since, by assumption, (p — g — m + 1) id^ + τ is invertible and since the
elements bifj form a F-basis of A, we finally obtain

(4.16) COROLLARY. Let F be a field of characteristic zero, and let S be
a F-algebra of arίty 2 with dimF S < oo. Then Iq(A,S) is Zariski-gen-
erically trivial.

Proof. The proof of (3.26) shows that Iq(A,S) is trivial on a count-
able intersection of Zariski-open sets. This intersection is not empty
as the hypotheses of (4.13) are satisfied for any .R-algebra which possesses
a unit element.

It follows easily from the first part of the proof of (4.13)—up to and
including (4.14)—that the following assertion is valid.

(4.17) PROPOSITION. Suppose that QaR holds. Then for any R-algebra
A of arity m which possesses a unit element^, Iq(A,S) is trivial.

We turn now to the commutative analog of (4.13). Here we have

(4.18) THEOREM. Let F be a field of characteristic zero and let A be
a F-algebra of arity m with dim^A <oo. Suppose that A possesses an
idempotent element e such that the F-endomorphism T of A, which is
given by

T(a) = Σ μi®*'1 e®a® (g)™"* e) ,
ί = l

satisfies the following conditions

d e t ( S ®*~ l i d ^ ® T Θ ® f c " idA + (p-k-m + l)®« idA^j ψ 0(4.19)
m + 1 < p, l < f c < p — ra + 1 .

Then Iq(A,S)c is trivial. The stated conditions are satisfied if no finite
sum of eigenvalues of T is a negative integer or zero. In fact, (4.19)

3) The element u of the β-algebra A of airty m is called a unit element of A if,
for all a e A and i = 1, ,m,

μi& 1 tt(g)α® (x)w-* u) = a
holds.
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need only be satisfied for all sufficiently large values of p.

Proof. We shall prove that dμ>p, p > m + 1, maps the F-vector sub-

space CP(A) of TP(A) that is generated by the elements (3.20) onto

Cp_m+1(A). Then

δ*t8feC*(A,S)

implies that

0 = δlsf(Cp(A)) = f(dμ>pCp(A)) = /(Cp.m + 1(A))

holds, and hence the canonical image of / in T*(A,S)C vanishes; thus

δ*tSc is injective and our assertion follows. The fact that dμtP maps CP(A)

onto Cp_m+1(A) is established by an induction argument similar to the

one used in the proof of (4.13). In order to set up the induction we

return to the proof of (3.24). There, certain elements Σ aji ® * * ® fy,

of CP(A) were constructed. We denote this element by cp(a2 ® ® aq)

if, in that notation, nx — p — q + 1, n2 = = nq = 1 and aλ = e hold.

(x)23 e is denoted by cp(φ), and corresponds to q = 1. First we observe

that

dμ>Pcp(φ) = (p - m + ϊ)cp_m+ι(φ)

holds, which provides the starting point for the induction argument.

Next, an easy computation shows that

dμ,pcp(β2 ® ® aq) - Σ cp_m+1(α2 ® . ® α^i ® Γα^ ® α ί + 1 ® ® αβ)

- (V - g - m + 2)cp_m+ι(a2 ® . ® αβ)

is a linear combination of terms of the form cp_m+ιφ2® (8> &r) with

r < q. Hence, by induction hypothesis, this expression is in dμtPCp(A).

Since

Σ Cp-m+ι(β2 ® ® ̂ - i ® Γeit ® α i + 1 ® ® aq)

+ (p - q - m + 2)cp_m+ι(a2 ® ® aq)

+ (P - q - m + 2) (x)*-1 idΛ(θ2 ® ® aq)\ ,

the conditions (4.19) show that cp_m + 1(b2® ® bq) lies in dμ>pCp(A), for

any choice of 62, , &<,. This finishes the induction proof as the elements

cp-m+i(b2 ® ® bq), q = 2, . , p - m + 1, generate CP_TO+1CA). The last
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assertion follows by computing the eigenvalues of the F-endomorphisms

(4.19).

(4.20) COROLLARY. Let F be a field of characteristic zero, and let S be

a F-algebra of arity 2 with άimF S < oo. Then Iq(A,S)c is Zariski-gen-

erically trivial.

Proof. Same as for (4.16).

We close this section with a claim whose proof is obtained by going

through the proof of (4.18).

(4.21) PROPOSITION. Suppose that QaR holds. Then for any R-algebra

A of arity m which possesses a unit element, Iq(A,S)c is trivial.

5. The categories R@iffm and Rstlgm

Let D' and D" be differential equation of arity m over a commuta-

tive unital Banach algebra R, and denote by v! resp. n" their dimen-

sion. Recall that any formal solution is then a convergent solution in

the sense that the power series converges for sufficiently small values of

the variable. We are interested in the germs of analytic maps F: Rn'

—> Rn" which have constant term zero and map every solution of Df with

sufficiently small constant term into a solution of Ώ". If the components

of F are denoted by F19 -,Fn,, then, with X\t) = (X{(t), ,JSΓ (̂ί)) a

solution of Όf for which FoX\t) exists,

-IL-Fjίxiit), - ,xut)) = Σd-y,(x\t)) Dί(x\t))=D*;(F(X'(t))),
dt 1=1 ϋX[

j = l, ,n" .

By (2.1), this is equivalent with

(5 D Σ ~JW) • W) = D'f(F(X')) , j = 1, • , n" .
ι = l ϋXi

If / is a morphism from Ό' to Dn', then the convergent power series

satisfies (5.1) as (1.2) shows. Conversely, every F which satisfies (5.1)

and consists of the linear term only, arises from such a morphism / .

An easy verification leads to
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(5.2) PROPOSITION. Let R be a commutative unital Banach algebra.

Then the differential equations over R of arity m and the germs of

analytic maps which have constant term zero and satisfy (5.1), with

composition of such maps the set-theoretical one, form a category R@iff'm
which contains jβDiffm as a subcategory. The functor S: ijDiffm —> Sets

extends canonically to R@iff'm.

As in the case of first and higher integrals we wish to find a purely

algebraic setting for R@iff'm. Again, it will be done in a non-commuta-

tive setting. Since we will have to deal now with several i?-algebras of

arity m at the same time we shall denote now the multiplication in A by

μA9 the one in B by μB, etc.

Given A,B e ϋ>Algm we put

(5.3) P(A, B) = Π Horn, (ΓP(A), B) .

The pth component of the element λeP(A,B) shall be denoted by λv.

P(A,B) is made into a iϋ-algebra of arity m by putting

(5.4) iμAMι ® ® *J)P = Σ μBo (H1 ® ® 4Γ) .

If / : Ar -» A and g: B —> Br are morphisms of β-algebras, we put

An easy verification shows

(5.5) LEMMA. P is a bifunctor from RAlg0^ x ^Alg™ to RAlgm

P{A,B) should be interpreted as the algebra of formal power series

on A with values in B whose constant term is zero. We can apply the

constructions of section 3 to the algebra P(A,B); the graded endomor-

phism dμΛiB^ of T*(P(A,B)) shall be denoted by dUιB)t*.

Next we define a map

o : P(A, B) x P(J5, C) -> P(A, C)

by defining λoκ = O(Λ;, X) through

(5.6) (jtojc)* = 2] Σ λqo(^® . . . ®κh) .

This latter sum is clearly finite as j t > 1 forces q < p.



98 HELMUT ROHRL

(5.7) PROPOSITION. The R-algebras of arίty m together with P(A,B)

as the morphίsms from A to B, with the composition defined by (5.6),

form a category Rsέ'm with internal hom-functor which contains RAlgm

as a sub category.

Proof. It is easy to see that the identity morphism id^: A —> A is

given by ( id j p = 0, for p > 1, while (idj 1 is the identity map A —> A.

As for associativity of the composition, this can be verified by a straight-

forward, but somewhat messy computation. The imbedding of RAlgm

into E^m is achieved by assigning to / e BAlgm(A,B) the element

feRs/n(A,B) that is given by f* = 0, for p > 1, and f1 = / .

Next we define a i?-module homomorphism

δΛ/s:P(A,B)-+P(A,B)

by

(5.8) (M5^'^^0^*-!

Here one verifies

(5.9) LEMMA.

Finally we need the β-module homomorphism

V:®%P(A,B)->P(A,®%B)

t h a t is given by

(5.10) η{λx ® <g> ̂ Q)2' = Σ U1 ®
yi+ +y5=P

Evidently

and

hold.
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(5.11) DEFINITION. Let A,B be β-algebras of arity m and put

Bs/lgn(A,B) = {λ:δA/Bλ = μA,B{®m *)} c P(A,B) .

(5.12) PROPOSITION. For any R-algebras A,B of arity m

(i) ΛAlgm(A,B) c Bs/lgm(A,B) (in the sense of (5.7))

(ii) ί/ λ e Λ ^ T O (A, J5) ίftew Λ1 e ijAlg,̂  (A, B).

Proof, (i) / G ijAlgTO is equivalent with f o μA = μB°0mf» Due to

(5.4), (5.8), (5.10)

Thus

(ii) Due to (5.4), (5.8), (5.10)

(5.13) LEMMA. Lei K e R^m(A, B) and λ e B^m(B, C). Then for q < p,

Proof.

+ 1 o ίq 2 + 1 (X)'"1 i d 5

(5.14) THEOREM. The R-algebras of arity m with the morphisms from

A to B precisely the elements of Bjtflgm(A,B) form a subcategory Bstflgm

of R^m.

Proof. It is very easy to see that the identity morphism id^ belongs

to B<tflgm(A,A). Take κeBj/lgm(A,B) and λeBs/lgm(B,C). Then
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Σ
+

Σ

q

Σ

Σ
Q

Σ

Σ
o (,

Σ

®

ίi+

® VA/B*)

(^J

βi+

Ϊ1 +

(λ"

Σ

Σ

® ••• ®.

Σ β r - ί 4 ι +

•o (***«(?

o)y(®«-m+1/c)P

?W t-^ί' \ ' (it

o « « ® . . . ® .

v~i (jlQί (

/C*ei <g) . . . (X) Λ*<

δ . ) ) ® •••)
l(λ o /c)^1 ® •

m" 1 ® *" ® •

... + ...) =

ίV 1 *"- 1 ®^ 1

P = (due to

3,c(®m W)q ° V

λ^oV(,0"κy

8 ) . . . ® i - )

0
o ( ^ ® . .(5

® (ί o κy«)

-. (due to (5.11))

®...®ic/. + ..

(5.13))

D A ; * 3 1 ) )

which finishes the proof.
We now return to (5.1). The germs of analytic maps considered

there shall be regarded as elements F in the formal power series module
Rn"[[Xί, , X'n,]] of associating but non-commuting variables. However,
(5.1) remains meaningful for formal power series F with F° = 0. If we
use the formal power series F with F° = 0 which satisfy (5.1) rather than
the germs of analytic maps with F° = 0 which satisfy (5.1) then we obtain,
similar to (5.2), but now for any base ring R, a category

(5.15) THEOREM. There is α full faithful functor stm: R@iffm-*R^lgm

which is an equivalence between R2iffm and the full subcategory of

Rjtflgm that is defined by those algebras whose underlying R-module is
finitely generated and free.

Proof. We put sfn(D) = Am(D) and define s/m(F) by the following
formula

= Σ
i l
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where the e"* are the unit vectors in Am{D"), aD, is as in (3.14), and

the Ff are the components of F*. Clearly, <β?m(F) is in P(Am(D'), AJD")).

Evidently, s/m maps identities to identities. Suppose we are given F: Df

->D and G:D-+D". Let

G«(X) =
t l Xkq .

Then

and thus

Σ Σ
kι, -,kq=l ii+ +

t = l

q<,p fci

On the other

= Σ y ι

= Σ

= Σ

hand

7))p =

ι +Σ/ f

Σ

Σ

Σ Λ

n"

-,§
n"

αB(Gf)β"

Z)

W

Z J C

'^(gαa-Cί'ίOe*

n

kι, — ,k,-ί D' **'

-*f«i>'(ίtί;) «

This makes s/m at least a functor into Rsίm. Next, for F\Όf

put δ = ^czn/ ^cz)") to obtain by (3.14)

= Σ
l

= Σ
i l

which by (3.1) is the linear combination of the efH with coefficients the

left sides of (5.10 for p — m + 1. Finally, put μ =

^/7 = μD,, to obtain

11 = Σ Pί' °
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= Σ μ"° ( I ] aD,(Fii)e'n ® (x) Σs aD>(Fim)e/h

= Σ μ" ° Σ ^ ' ( ^ ΐ 1 ) aD,(Fiz)eu (x) (

Σ βto'l Zi a^'-^Fil - F= Σ Σ

which is the linear combination of the e/H with coefficients the right
sides of (5.1) for p — m + 1. Hence F e R@iffm{Df,D") is equivalent with
^ ( ^ G ^ ί ^ K Φ O ^ m Φ ' O ) . Thus, j / m is full and faithful. The
assertion that s/m is an equivalence with the described subcategory is
obvious.

Next we should like to remark, without giving the routine proof,
that any λe Rsέlgm(A,B) with λp — 0, for p>p0, induces a map S(X):
S(A) -> S(B) by putting

Σ Pi

Hence, the functor S: R Algm —> Sets can be extended to the subcategory
of Rsέlgm whose morphisms are "finite" in the above sense.

(5.3) and (5.4) still make sense in case the β-algebras A and B have
arities, say wl and m, which are possibly distinct from each other. In
this event, (5.5) is replaced by a bifunctor P: ΛA\g0^ x RAlgm-> RAlgm.
For three JB-algebras A,B and C of respective arity m',m, and m", (5.6)
remains meaningful. This allows us, just as in (5.7), to form a category,

Rs/, which contains []miJAlgm as a subcategory. The definition (5.8) of
δA/B also makes sense in this setting, and (5.9) remains valid. (5.10)
and (5.11) remain meaningful, and the validity of (5.12), (5.13), and (5.14)
can be established just as in the previous proofs.

We close this section by pointing out that there is a commutative
version to the B-algebra P(A, B); it is obtained by dividing out by the
ideal Y[p=1C

p(A,B)—see the remarks on page 3.18. The resulting R-
algebras, P(A,B)C9 can be used to form categories R<%fmc and R<%?lgmc into
which many of the arguments of this section carry over. In particular,
the multiplication μA>B on P(A9B) induces a multiplication μAtBc on
P(A, B)c, δA/B: P(A, B) -> P(A, B) induces δA/Bc: P(A, B)c -> P(A, B)c, and

lgne (A,B) = {λ:δA/Bcλ = μA>Bc(®m X)} c P(A,B)C
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6. The symmetry group of an algebra

Given a differential equation D of arity m over a Banach algebra

R, it is important to obtain information on the group of ^///^-auto-

morphisms of D (see [4]). This group shall be called the symmetry

group of D and is denoted by RGf(JD). If we replace BSnff'm by B2iffm

then the corresponding group will be denoted by BG(D). In view of

(5.15) it makes sense to investigate BG(A), the group of jBj//#m-automor-

phisms of an 72-algebra A of arity m; again RG(A) will be called the

symmetry group of A. The group of ^Alg^-automorphisms of A, an

algebraic group, will be denoted by RAut(A).

(6.1) PROPOSITION. ΛAut(A) is a subgroup of RG{A).

(6.2) PROPOSITION. The set of elements λe R<sfίgm(A,A) with λι = id^

forms a normal subgroup BU(A) of RG(A), and BG(A) is a split exten-

sion of ΛAut(A) by BU(A).

Proof. Evidently, the identity morphism on A is in BU(A). Due

to (5.6), (λo/c)1 = λ1oκι; hence RU(A) is closed under forming product.

A simple computation shows that inverses exist in RU(A). Normality of

RU(A) follows from the relation on first components that was just stated.

Since ΛAut(A) Π RU(A) = 1, the quotient map RG(A) -> RG(A)/RU(A) is

an injection on ^Aut (A). It follows from (5.6) that λ e RG(A) is equiv-

alent with ^ e Λ A u t ( A ) . Hence RG(A) = RA\xt(A).RU(A). Thus the

quotient map induces an isomorphism RAut(A) ^ RG(A)/U(A). The

splitting map is obvious.

The commutative analog of RU(Am(D)) Π RG'φ) has been determined

in [4] in case R is a Banach algebra and D is "nicht entartet".

Due to (6.2), a further discussion of the structure of RG(A) has to

focus on RU(A).

Denote by BU(Ap* the set of all λ e RU(A) with λ2 = = λp = 0.

Put RU(A)m = RU(A), and write the multiplication, that is composition,

in BU(A) as addition. Then we obtain, denoting—as we did prior to

section 5—the multiplication in A by μ,

(6.3) THEOREM. RU(A)^ is a normal subgroup of BU(A)ι*~1'1, cmd the

quotient group 22D
r(A)Cί)~1]/i2Ϊ7(A)M is isomorphίc to an additive subgroup

of
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(6.4) Qj= If: f 0(1^,^ = μoΣ(g)ί-HdA (3/®®^ idλ c T*(A,A) .

// for every reR, either r or —r has a (p — l)th root, then this additive

subgroup is in fact a R-submodule of TP(A,A).

Proof. It is easy to see from (5.10) that RU(A)ίpl is a subgroup of

BU(A). Moreover, for K e RU{Afp~1'1, we obtain from (5.10)

and thus, for λe RU{Af^ and 1 < pf < p,

( ( - * + X) + *)*' = Σ Σ ( - * + W ° C^1 <8> ® ̂ )

= ido/c*' + (-A: + ^ Ό i d

= ^ ' + Σ Σ ( - ^ o ( ^ ( x ) ... (g)^β)
q ji+ " + jq^p'

= Λ:̂  + (-Λr)pΌid + i d o ^ ' = 0 .

Hence RU(A)ίpl is a normal subgroup of BU(A)ίp~1Ί. Another easy com-

putation shows that

(X + κy == κp and fax + AT2)
P = Λ:f + /c? .

Hence the map

BU(Af*-v 3fC~>^e T»(A, A)

induces a homomorphiom

(6.5) xWAV*-*/BU(A)™ -> TKA, A)

which is clearly an injection. The image of (6.5) is an additive sub-

g r o u p o f T p ( A , A ) . L e t r e R a n d K e B U { A ) ί v ' ^ y a n d d e f i n e r - κ b y (r-/c)p'

— rv'~ι-κv'. Then a simple computation shows that r κ is again in

RU(A)ίp~12. Thus, under the additional assumptions, the image of (6.5)

is a i?-submodule of TV(A,A). In any case, if we take the pth compo-

nent of the defining relation (5.11) for κ> then we get by (5.4) and (5.8)

Hence κv lies in Qp.

Let us return for a moment to (6.4). Given / e Qj, we can equip the

β-module A with the multiplication/, thereby obtaining a β-algebra (A,/)
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of arity p; the graded β-homomorphism (3.10) corresponding to (A,/) is
dSf%. Then we obtain

(6.6) COROLLARY. ( i ) Qj = {f:fodμtP+n^ = μodftP+m^} c T*(A,A).
(ii) / eQj i/ crncϋ owZs/ i/ μ e Qj\
(iii) μ e Q™.

For i? a Banach algebra and A = Am(D) an analog to (6.6) can be
found in [4].

Let δ be a B-algebra of arity m. A β-module homomorphism
δ: B -»B is called a β-derivation if

m

δjb, ® <8> bj = H ^ ( δ , ® • ® &i_! ® 5δf ® 6 i + ι Θ ® δ j ,

holds.

(6.7) LEMMA. Leέ (B,μB) be a R-algebra of arity m without Z-torsion
and let δ: B —>B be a Z-derivation with respect to μB. Let furthermore
f'(S)1kB-*B satisfy the following conditions

( i ) ί ( / ( & i ® ••• ® 6 P ) ) =

(ii) f°dμBiV+m_x = μB°d7>p+m^

Suppose that aoeB satisfies δa0 = //jB((x)m α0) α^d ίfeαί α1? α2, e J5 are

subject to

fas = Σ /(^x ® ® aip) , / = 1,2,

δaj = /

Proof. The claim is correct for j = 0 by assumption. We proceed
by induction on j . Assume that the formula is correct for i < j — 1.
Then

= δ( Σ /(% ® ® a,*})

Σ
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— Σ f° dμB,m+p-ι(a£l ® (§

Σ Σ
l 1

4 ® • ® α^+j.,) ® <*<i+J) (g)

Σ Σ Σ αΛ ® ® «?w

Σ

= iμB{ Σ

Since B has no Z-torsion, the induction step is completed.

For R a Banach algebra, A = Am(D), Z) "nicht entarted", and p = m

the commutative version of the following result appears in [4].

(6.8) THEOREM. Suppose that QaR holds. Then for any R-algebra A

and any p, the map RU(A)ίp~i:ϊ/RU(A)ίpl -» Qp

μ established in (6.3) is an

isomorphism.

Proof. We apply (6.7) to (B,μB) = (P(A,A),μA>A), δ = δA/A, a0 = id^

eP(AfA), and / = μftf, where / is a given element of Qv

μ and μftf is

obtained just as μA)A using / rather than μ. We have to verify the

conditions (i) and (ii) of (6.7). Using (3.10), (5.4) and (5.8) we get

Σ / o « ' x ® ••• ®

= Σ /of^®---

Σ / ° Σ ^ ®
j j i l

which establishes (i). Furthermore we have
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V

ί = l

® %ί + m ® * ® Ap + m-i)q

=z ^^ f ° y~" /P* ^ ) * * * (X) /l^*"1 (X) ίί(λ'*ί (R) * (S) ŷ  ?< + m""1')

® ^i + mm ® * * ' ® ^iVmpL

Since / is an element of Qp, the "inside" sum satisfies

as can be checked on elements immediately. So, if we reverse the pre-
ceding argument, we obtain a verification of (ii). Since Q c R holds,
we can define, inductively, the a/s to satisfy the required relations in
(6.7). Then, however, by (6.7),

(6.9) δΛ/Λa,j = μA,A( Σ J , a h ® # # * ® ajm) -

α0, by definition, has the following components

αj = id^ , αg = 0 for g ^ 1 .

A simple verification shows that

ap=f, a\ = 0 f or g ^ P

A routine induction argument shows that

a] — 0 for q Φ j(p — 1) + 1 .

Define λeP(A,A) by

λ9 = 0 for g ^ /(p - 1) + 1
•( -D+i κp-υ+1 y = 0 , 1 , . . .

Evidently, λ1 = id^ and P = /. (6.9) is then equivalent with λ e

Bjt/lgm(A,A); and thus λ belongs to RU(A)ίp-i:ϊ and has / as its image
in QJ.

Given feQp, the element Λ e RU(A)ίp~i:ϊ which was constructed in the
proof of (6.8) shall be denoted by λ(J).
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(6.10) COROLLARY. Suppose that QdR holds. For feQ1', the element

λ(f) satisfies the following conditions:

λ(f)q = 0 for q=£l mod (p - 1)

'1) + 1 - - k p ° ' od/.i(p-D+i f°r ; = 1,2, . . .

. Apply (6.7) to (B,μB) = (P(A, A),μftf\ δ = δ / # /, α0 = id^, and

/ = ^ / f / . Then, obviously, (i) and (ii) of (6.7) are satisfied. Hence

δf/faj_ι = μfj Σ α i t <g> <g> a A = ^ .
\ y 1 + . . . + .7p=7-l /

Therefore,

Thus, a straightforward induction argument delivers our formula.

(6.11) COROLLARY. Suppose that QaR holds. Then for any non-trivial

R-algebra A of arity m, Q™ Φ 0 and hence both BU{A)ίm~11 and RU(A)

are non-trivial.

Proof. By (6.6), 0 Φ μeQ™. By (6.8), μ is the image of some ele-

ment Φl in RU(A)ίm~^, which is contained in BU(A).

(6.12) COROLLARY. Suppose that Q c R holds. Let N be a trivial R-

algebra of arity m with TP(N, N)Φθ for some p>2. Then both RU(A)ip~^

and RU(A) are non-trivial. In particular, this is true if R is any field

of characteristic zero.

Proof. T*(N, N) = Q*.

Before formulating the next statement we ought to recall that, rather

at the beginning of this section, the product—that is composition— in

RU{A) was written as (not necessarily commutative) addition. With this

understanding we obtain

(6.13) COROLLARY. Suppose that QaR holds. Thenjor every f e Rϋ(A)

there exists uniquely a sequence of elements fp e Qp

μ, p = 2,3, such

that f = λ(f2) + λ(f3) + this sum is locally finite.

Proof. Clearly, —λ(f2) + f has vanishing second component, and

/ 2 = / 2 is an element of Q2

μ. Suppose we have constructed /2, ,/ β such

that /p e QJ, p = 2, , q, and that -λ(fq) - - λ(f2) + f is in
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13. τ h e n w e take fq+ι = (~λ(fq) - . . . - λ(f2) + /)* + 1 . These
inductively constructed elements will satisfy our claim. Uniqueness of
the fp's is obvious.

For a differential equation D of arity m we denote by QP

D the R-
module Qj, where μ is the multiplication of the β-algebra Am(D). Fur-
thermore, for λeP(Amφ), Am(D)) we denote by ai\λ) the formal power
series

i

where α^1 is applied to each component of λq separately. With these
notations we have

(6.14) PROPOSITION. Let R be a commutative unital Banach algebra.
Let furthermore D be a differential equation of arity m and dimension
n over R. Then for any f eQl, ai\λ(J)) is in B2iff'mφ9D) and satisfies
χ(J) = s/m(aiKλ(f))). Moreover, BG'φ) = RGφ) if and only if either of
the following conditions is satisfied

(i) there exists an integer p0 such that

(ii) there exists an integer p0 such that

Ql» = Qjo+i = . . . = 0 .

In this case, RG'φ) has the additional properties stated in (7.16)
for FU(A).

Proof. Due to the definition of sέm—see proof of (5.15)—the as-
serted equality is clear. Hence it remains to be shown that aj>l(jL(J)) is
a convergent power series. Since the roles of / and μ are interchange-
able, it suffices to deal with μ rather than /. Due to (3.14) and (6.10)
we obtain, putting A = Amφ),

- 1 ) + 1) - -iΓctϊι(dμDιmo . . odμDίHm_1)+1)

ΓΓaD \°A/A ° * °°A/A \βμDtΉl))
3]
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A straightforward computation shows that

a-D\dμD,J = φγ{X)y - ,Dn{X))

holds. Put

M =

and let P e R[Xιy , Xn] be a homogeneous polynomial of degree g whose

coefficients are bounded, in norm, by W'. Then a simple computation

shows that the coefficients of δDP are bounded, in norm, by gMM'.

Hence the coefficients of δj£~ιP are bounded by

g(g + m - 1) . (g + (j - 2)(m - l))M'W~ι .

This, in turn, shows that the coefficients of a^\λ(μ)nm~l) + ι) are bounded

by

_Lm(2m - 1) ((j - l)(m - 1) + ΐ)M* < {mUy .

Since a^ι(λ(μ)j{m~l)+ι) has at most njim~1)+ί monomial terms, this implies

convergence. The remaining assertion follows from (6.13).

The example

shows that o&QHJ)) cannot be expected to be an entire function.

(6.15) PROPOSITION. Let R be a commutative unital Banach algebra.

Let furthermore D be a differential equation of arity m over R whose

associated R-algebra Am(D) has multiplication μD. Then, for every

a e Am(D) that is sufficiently close to 0, there exists a ε > 0 such that

for all seR with \s\ < ε,

holds, where &a(t) denotes the unique solution of D with <3Γα(0) = a.

Proof. Evidently, the left side of the formula constitutes a solu-

tion of D, due to (6.14) and the definition of R@ίff'm. Hence we only

have to determine its constant term. A straight forward computation

shows that this constant term equals

(6.16) a + f] λ(μDym-1)+1(®jυn-1)+1 a)s' .
l
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Denote the coefficient of s^ in (6.16) by aά and put bά = λ(μDVim'1)+ι.

Then α, = &/(g)>(TO-1)+1α). Since λ(μD) is in Λ!7(ATO(D)),(5.8) and (5.11)

imply

5 M o < ) i ( m . 1 ) + 1 = Σ μDo{bH® ••• <g)&,J , i = 1,2, . . . .
yi+ +jm=y-i

(6.10) shows that

jbj = δ < / _ 1 od / / 2 > ) < ; . ( m _ 1 ) + 1 .

Hence

2] ^ ( α ^ (x) . . . (x) ajm) .2]

This, finally, shows that (6.16) equals S£a(s).
Thus, the "one-parmeter" subgroup {λ(sμD):seR} of RU(Am(D))

permits a geometrical interpretation: given any initial value aeAm(D)
which is sufficiently close to 0, it moves a along the trajectory through
a.

We come now to a brief remark concerning the parameter depend-
ence of Qp

μ. Using the same conventions as at the end of section 3 we
obtain

(6.17) PROPOSITION. For fixed p, dim^ Qv

μ is upper semicontinuous on
Fnm+1 with respect to the Zariski-topology.

Proof. Let e\ - ,en be the unit vectors in Fn. For feTp(A,A)
put

f(ekl (x) <g) ek») == Σfp>'~>kpei .
i = l

Then it follows from (6.4) that feQp

μ is equivalent with the f^-^p
satisfying a certain system Lp of homogeneous linear equations whose
coefficients are Z-linear combinations of the structure coefficients of the
F-algebra A. The corank of Lp is therefore upper semicontinuous on
•pinm+i wj£k r e S p e c t t0 the Zariski-topology. Hence our first assertion is
established.

We close this section with stating—without proof—the changes that
occur as one switches from Rsέlgm to Rs/lgmc. If the corresponding groups
are denoted by RG'(D)c,RGφ)c,RG{A)C9RU(A)C9 and RU(A)™ then all
previous statements and proofs remain in force, provided that
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( i ) in (6.4) and subsequently Qv

μ is replaced by

where μc is the canonical image of μ in Tm(A,A)c

(ii) in (6.10), the pertinent formula is replaced by

D = 3 ( P ) o . . . o ^ / J ( / )
?!

(iii) in (6.11) and (6.12), A is assumed to be a non-trivial commuta-

tive i?-algebra.

These claims are verified by simply checking the previous proofs.

7 Properties of the symmetry group

(7.1) PROPOSITION. Suppose that Q c R holds. Then there are non-

trivial R-algebras A of arity m, whose underlying R-module is finitely

generated and free, such that βC7(A)[27~1]/i2Z7(A)M Φ 0 for all p > 2. In

case R is a Banach algebra, ^[/(A)1^11 contains for all p>2 global ana-

lytic maps which are not in EU(A)ίpl and, if A = Amφ), B@ίffm(D,D)

Proof. Let A — Rn and define, on A, a m-ary multiplication μ such

that

μ(®m A) c= Rn~ι x {0} and

0 φ annA = {a: ^((x)^1 A <g) a ® (x)771"̂  A) = 0, i = 1, . . , m}

This can be easily done. Then there are elements 0 Φ fp e TP(A,A) with

p{®v A) c annA and Z^®*- 1 A (g) ̂ ((x)w A) ® (g)^ A) = 0 ,

i = 1, ,p .

Define ^eP(A,A) by

λ1 = id^ , ^ = / P , and ^ ' = 0 for p' Φ p, 1 .

A straightforward computation shows that λ is indeed in ^[/(Ap-13 as

(fl^tt))1 = μA = ^ 4 > 4 ( ® m ^)x and ( 3 ^ ) * = 0 = ^^^((g)w ««, g > 1. In case

R is a Banach algebra and A = Am(D), this Λ is a global analytic map

Rκ->Rn. On the other hand, if we define λeP(A,A) by
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with fpΦθ satisfying the previous relations then a suitable choice of
the rpeR will force λ to be a formal power series in RU(A) which is
not convergent.

Thus, R®iffmφ'9D") is—in general—a proper subset of R2iff'mφ',D").
For R a Banach algebra and A = Amφ) the commutative version of

the following result and of (7.5) can be found in [4].

(7.2) PROPOSITION. Let A be a R-algebra of arity m>2 which has no
Z-torsίon. If A has a unit element then

(i) Λff(A)M = = ΛU(A)t»-* = RU(A) and
(ii) Bϋ(A)M = Rυ(AJ™^ = . . . = 0.

Proof, ( i ) By (6.3) it suffices to show that the ^-modules (6.4)
vanish for p = 2, -—,m — 1. The defining relation for the β-module
(6.4) reads on elements aλ ® ® ap+m_x

Let w be the unit element of A. Then (7.3) renders for u = ^ =

(7.4)

and hence f(®v u) = 0. This will now be used to start an induction
argument. So, assume that

f(ax ® . ® a£ ® (x)^-1-7" w ® α p_ r + 1 ® ® αp) = 0

for all choices of at and £ < k,r < q. Keeping in mind that k + q < p
<m — 1, we evaluate (7.3) on αx® ®ak®®v-k-q+m~ιu®av_q^® ® α p

and obtain for k — 0, q > 0

(P - Q)Λ®p~q u ® α p . β + 1 ® ® αp) = 0 ,

for fc > 0, q = 0

(P - fc)/(tt! ® ® ak ® (x)*-* w) = 0 ,

for k> 0,q> 0

(p-k- q + 2)/(α1 ® ® αfc ® (g)?-*-* u ® αp_,+ 1 ® . . . ® αp)
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® α t ® <g)*-* u) ® (g)™-1"* u ® ap

p_,+ 1 ® ® ap)

The first of these relations renders through induction

f(u ® α2 ® ® ap) = 0 ,

the second one furnishes

/ ( α x ® ••• ® α p . ! ® w ) = 0;

and these, together with the third one, finally result in

ap) == 0 , α 1 , . - , α p G A ,

by choosing fc — 1, g = p — 1.

(ii) Let λ be in RU(A)ίm\ Then, by definition, λ2 = . . . = = Λm = 0.

We prove, by induction on p, that Λp = 0 for all p > m. If λq — 0 for

2 < ^ < p, then it follows from (5.11)—by computing the (p + m — l ) s ί

component—that / = λp satisfies (7.3). Hence we obtain again (7.4) and,

as p > m, /((x)p u) — 0. This, however, makes it possible to repeat the

argument of (i). Thus / = λp = 0, which sets the induction in motion.

(7.5) PROPOSITION. Suppose that Q c R holds. Let A be a R-algebra

of arity m which possesses a unit element. Then RU(A) = Q™. More-

over, there is a canonical, injective R-homomorphism Q™ —> A.

Proof. (6.8) and (7.2) render the isomorphism RU(A) ^ Q™. Denote,

again, by u the unit element of A. Evidently, the map

is a JMiomomorphism. In order to see that it is an injection we prove,

by induction on I + r, that /((x)m w) = 0 implies

(7.6) fia, ® ® at ® ® - - ^ - t̂  ® α ί + 1 ® ® α/+r) = 0

for all β,r with ^ + r < m. Assume that this is true for all £9r with

t, + r < k + q. By evaluating (7.3) on ^ ® ® αfc ® (g)2^-*-?-1 ^ ® αfc+1

® ® ak+q we obtain, using the induction hypothesis

(m - q)f(®m-q u ® αx ® ® αβ) = 0 if fc = 0, q Φ 0

(m - k)f(ax ® ® αfe ® (x)m-fc ^) = 0 if fc ^ 0, q = 0

(m ~ q - k + 2)f(ax ® ® αfc ® (g)™-*-« ̂  ® αfc+1 ® ® ak+q) = 0

if fc ^ 0, g ^ 0 .
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These relations, however, imply (7.6) as is easily seen. Thus, the last

claim is established.

Next, we shall deal with change of rings. Here we have

(7.7) LEMMA. Let R —> S be a unital ring homomorphism such that S

is a finitely generated projective R-module, Then for any R-algebra A

of arity m there is a S-module isomorphism

ω:S® RT*(A, A) -+ T*(S ®RA,S® RA)

that is given by

ω{s®f)ϋsι®aι)® ••• ® ( β p ® α p ) ) = 88^-- s , ® / ^ ® ••• <8)ap) .

Proof. [1], p. 257,279,282,283.

(7.8) PROPOSITION. Let R —> S be a unital ring homomorphism such

that S is a finitely generated projective R-module. Then ω induces iso-

morphisms

S®BQ*^ Qp

s0Rfl and Q; ^ ω(l ® ΛΓ*(A, A)) Π Q

Proof. By (7.7) and the definition of S® Rμ we have

and

These formulas, when added up with respect to ΐ, show that ω maps

^ ® ΛQ? into Qg®^. Conversely, if / is in Q^0Rfi then we have

® (1 ® a<+w-i)) ® (1 ® α<+TO)
( 7 ' 9 ) = Σ (S ® ΛiM)(l ® ad ® (1 ® Λi-i) ®/((I ® α j ®

It is well known ([1], p. 238) that there are finitely many elements σά eS

and σf e S* such that id5 = Σj σfσj holds. Let
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where t£(aly •• , α p ) e S and b£(aly , ap) e A, and put, identifying R ® RA

with A,

Then (7.9) becomes

αp)

= Σ σ*

m

= Σ
i l

In other words, /^ belongs to Qv

μ. Now,

(sp ® ap)) = Si

= S1 Σ Σ
e 3

σό ®fj(ax ap)

®a ί Λ + p . 1 )

ap))

Σ sp ® ap)) ,

and thus / — Σ.? ω(σj ®/j) a s had to be shown to obtain the first iso-

morphism. As for the second isomorphism, we only have to show that

ω(l ® /) 6 Q§®Λί, implies / e ζ>£. However, substituting ω(l (x) /) for / in

(7.8) leads immediately to (7.3), as had to be shown.

(7.10) THEOREM. Let F be a field of characteristic zero and let A be

a F-algebra of arity m>2 with dim^ A < oo. Let e be a non-trivial

idempotent of A such that for the F-endomorphisms ^ of A, which are

given by

τ.(a) = μi®1'1 e ® a ® (x)m~€ e) , i = 1, , m ,

the following conditions are satisfied:

( i ) for p = 2, . , p Φ m

pΛάA — Σ τi) = 0

(ii) /or any L e Hom^ (A, A) and any £ = 1,2,
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(a) £L = τxL — Lτx implies L = 0

(β) SL = r m L — Lτm implies L — 0

(iii) /or α%2/ L e Hom^ (A ® ^A, A) and any & == 0,1,

Λ + L o ( T l ® icU + icL (x) τm) = 0 implies L = 0

det(icL.X
(iv) ^

(Z — m)

Then

(1) ^C7(A) = ^E7(A)W =

(2) ^Z7(A)W = rU(A)tm+* = .. = 0

(3) ίfeere is α canonical, injective F-homomorphism Q™ -> A

(4) FC^(A) is α one-dimensional F-vector space.

Proof. (1) It follows immediately from (7.3) and (7.10), (i), that

for p < m and / e Qp

μ9 f(®p e) = 0.

It is well known that there is a F-basis

u i , j f L — -Ly 9 rt/j y J — ±9 9 υ >

of A such that

TmiKj) = b'i + l,J > ί = 1, , ^ — 1

ί = l

with suitable scalars rίtj e F. We want to prove, by induction on r, that,

for r < p

(7.11) f{®p'r e ® αx ® ® αr) = 0 for all α1? . , ar e A .

Assume that (7.11) is valid for r < q. By evaluating (7.3)—see proof of
(7.2)—on (^V-Q+TΠ-I e 0 fyj (x)α2® . ®α α we obtain

(V - q)f(®p-q e ® δ ^ ® α2 ® .

(7.12) + /(®p-β β ® τmφ'itj)

= rm(/(® ?" 9 e ® 6<fi ® α,

Put

Q e ® 6{fi ® a2

Then (7.12) becomes
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(V - Φfi,j + fi + l,j = TmifiJ > i = 1, * * * , Πj - 1

(V - Q)fnj,J + Σ njftj = Tmifnj.j)

Define the F-endomorphism L of A by putting L{b[}j) = / ^ . Then the

last relations can be written as

(p - g)L = τJL - Lτm .

By assumption, q Φ p implies L — 0 and thus fitj •=• 0. Therefore, (7.11)

is valid for r = 0, -,p — 1. Similarly, we obtain that

(7.13) f(aλ <g) (x) ar <g) ( x ) ^ β) = 0 for all α1? ., αr e A

is valid for r = 0, , p — 1.

Next, choose a F-basis rbk>ι of A which behaves relative to τλ as the

basis b'itj does relative to τm. We want to prove, by induction on r,

that for r < p

(7.14) f(a, (x) (g)p~r e (x) α2 (x) . (x) αr) = 0 for all α1? . , ar e A .

This, of course, means that Qv

μ = 0, for p — 2, , m — 1—which is the

first assertion. Assume that (7.14) is valid for r<q, and evaluate (7.3)

on fbktt®®*-q+m-2e®b'i>j®a2® Θ aq. Using (7.11) and (7.13) we

obtain the relation

(7.15) + (p - q - D/Cδ,,, (8) (x)^^-1 β (x) b'u3 ® a2 ® ® αβ)

+ /('&*,, ® Θ^-^ 1 e ® τmKj ® Oa ® ® αβ) = 0 .

As before, we define a F-homomorphism L: A (x) ̂ A —> A by putting

An easy computation shows that (7.14) now becomes

(p - q- ΐ)L + Lo(Tl(g)idA + id^ ® τm) = 0 .

Since g < p — 1 holds, assumption (iii) implies L — 0. Thus the induc-

tion argument is finished, and the first assertion is proved.

(2) As for the second claim, let λ be an element of FU(A)ίml. By

definition we have λ2 = — λm = 0. We want to prove, by induction

on p, that λp = 0, for all p > m. If λ9 = 0, for 2 < q < p, then it follows

from (5.11)—by computing the (p + m — l)st component—that / = λp
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satisfies (7.3). As in (1) we obtain /((g)p e) = 0, as p Φ m holds. This,

however, makes it possible to repeat the previous argument, which leads

to / - 0.

(3) Again, (6.8) and (7.9), (1) and (2), render the isomorphism

FU(A) ^ Q™. And, as before, we have the canonical F-homomorphism

Q? 9 / -> f(®m e) e A .

And, again, we will have to prove that f(®m e) = 0 implies / = 0. The

proof proceeds literally as in (1), since the assumption /((x)m e) = 0 fur-

nishes the starting point for the induction argument.

(4) An easy computation shows that f eQ™ implies

In other words, /((x)m e) is an eigenvector, with eigenvalue m, of 2ϋϊU τ t.

Since μA(®m β) is such an eigenvector, condition (iv) implies that / ( ® m e)

is a scalar multiple of μA(®m e) Hence Q™ is one-dimensional, and (1),

(2), (3) imply (4).

(7.16) COROLLARY. Suppose that, under the general assumptions of

(7.10), (ii) and (iii) are satisfied and (i) is valid for all p > p0, for some

p0. Then FU(A)M = FU(A)ίPo+1^ = = 0, and hence FU(A) can be ob-

tained by finitely many successive extensions of certain finite dimensional

F-vector spaces; moreover, FU(A) is a unipotent algebraic group. In

particular, if F = R or C, then—under the stated conditions—FU(A) is

a unipotent, simply connected real resp. complex Lie group which, in the

complex case, is a Stein manifold.

Proof. The proof of (7.10) shows that the assumptions imply Qf+1

= Qf+* = . . = 0. Hence FU(A)M = FU(A)^+1^ = . . . Since the inter-

section of these groups is trivial, they all have to be trivial. Algebra-

icity of FU(A) follows from (5.12), and the remaining assertions are now

either obvious or a matter of definition.

(7.17) Remark. Condition (iv) of (7.10) is only needed to prove asser-

tion (4). In the absence of (iv) one still has that FU(A) is isomorphic

to a finite dimensional F-vector space, namely Q™.

(7.18) THEOREM. Let F be a field of characteristic zero. Then the as-
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sertίons of (7.10) are Zarίski-generically valid for F-algebras of arity m.

That is

(1) FU(A) = FU(A)W - . . . - FU(A)tm-*

(2) FU(A)™ = FC7(A)^+ 13 = . . . = o

(3) FU(A) is a F-vector space of dimension 1.

Proof. Due to (6.8), these assertions are equivalent with

Qp = 0 tor p Φm , and dinvp Q™ = 1 .

Let e\ ,en be the unit vectors in Fn. For / e Tp(A,A)y put

Then it follows from (6.4) that / e Q j is equivalent with the ftr"ikp

satisfying a certain system Lp of homogeneous linear equations whose

coefficients are Z-linear combinations of the structure coefficients of the

F-algebra A. One checks easily that the number of these linear equa-

tions equals nm+p. Therefore, Qv

μ = 0, for p Φ m, is equivalent with

rank Lp = n1+p; this in turn is equivalent with the structure coefficients

lying in a certain Zariski-open set Zp. (7.2) shows that none of the sets

Zp, p Φ m, is empty as for any m there is a F-algebra of arity m on

Fn which has a unit element (e.g. γ[^Em). Finally, dimFQ™ = 1 is equiv-

alent with rank Lm = nι+p — 1 this is equivalent with the structure

coefficients lying in a certain Zariski-open set Zm which, by the previous

argument, is not empty. Hence our claim is established.

Finally, we shall state—again without giving detailed proofs—the

changes that occur as one switches from Rsέlgm to Rstflgmc> (7.1) remains

valid for RU(A)ψ rather than BU(A)ίv\ (7.2) also stays in force. Here

one has to observe that for f eTp(A,A) and fc its canonical image in

T*(A,A)e,

is equivalent with

(7.19) δ%Af -δ*,Aμ

One verifies easily that (7.4) still holds. This starts, as in the proof of

(7.2), an induction argument on q which shows that / vanishes on all

elements of the form cp(α2(x) ««• ®α β) (see proof of (4.18)). Then the
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reasoning contained in the proof of (3.21) leads to the desired result.

Similarly, (7.5) remains valid with an analogous adjustment in proof.

It is easy to see that (7.7) stays true and that ω maps S® RCP(A,A)

onto CP(S® RA, S® RA), thus inducing an isomorphism

ωc: S ® RTp(A, A)c -> Tp(S ®RA,S® RA)C .

The validity of (7.8) for Q% and Ql®Rμc follows exactly as in the proof

of (7.8). Now, in place of (7.10) we get

(7.20) THEOREM. Let F be a field of characteristic zero and let A be

a F-algebra of arity m>2 with dim.FA < oo. Let e be a non-trivial

idempotent of A such that for the F-endomorphism T of A, which is

given by

T(a) = J] μi®*'1 e®a® (x)m~* e) ,

the following conditions are satisfied:

(i) for any L e Honip ((x) #A, A) and any pair of integers p, q with

0 < q < p and p > 2, other than p = m and q = 0

idA®T

implies L = 0

(ϋ)

(X — m)

(1)

(2) ^C7(A)w = ^ί/(A)^+1^ = . . . = 0

(3) there is a canonical, injective F-homomorphism Q™c —> A

(4) FU(A)C is one-dimensional F-vector space.

Proof. The proof proceeds along the lines of the proof of (7.10).

It follows from (7.19) and hypothesis (i), for q = 0 and p Φm, that for

any / e T*(A, A) with fc e Q;e,

/«g)p e) = 0 .

This is used as the anchor point for an induction, on q, that / vanishes
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on the image of cPtQ: (x)£ A -> (x)£ A where cVΛ is defined by (see proof

of (4.18))

Cp,qiβχ ® ® cLq) = Cpia, ® ® αβ) .

The induction hypothesis, applied to (7.19), renders then

TofocPyq = (p - ? ) / o c M + /o c M o j ] (g)*-i id4 (g) Γ ® (g)*-* id^ .

Hence hypothesis (i) leads to the assertions (l)-(3) (see also proof of
(7.10)). (ii), finally, implies (4)—just as in the proof of (7.10).

(7.16), (7.17), and (7.18) remain valid in the commutative situation.
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