THE DECAY OF THE LOCAL ENERGY FOR WAVE EQUATIONS WITH DISCONTINUOUS COEFFICIENTS

HIDEO TAMURA

§ 0. Introduction

The exponential decay of the local energy for wave equations in exterior domains of the odd dimensional space has been proved in [1] ~ [6] etc. under the Dirichlet boundary condition and in [5], [7] under the Neumann condition and the other conditions. In this paper, we shall consider this problem for the following equation:

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} u=\frac{1}{\rho(x)} \nabla \cdot \rho(x) \nabla u, \quad \text { in } R^{n} \times(0, \infty) \tag{I}
\end{equation*}
$$

with the initial data

$$
u(x, 0)=f(x) \quad \text { and } \quad u_{t}(x, 0)=g(x),
$$

where $n \geq 3$ is the space dimension, $f(x)$ and $g(x)$ are of compact support, and $\rho(x)$ is the discontinuous function defined as follows:

$$
\rho(x) \begin{cases}=\rho>1, & \text { in } \mathscr{O} \\ =1 & \text { in } \mathscr{E}=R^{n}-\overline{\mathscr{O}} .\end{cases}
$$

It is convenient to regard the problem (I) as follows: Let v $=\left.u\right|_{e \times(0, \infty)}$ and $w=\left.u\right|_{o \times(0, \infty)}$. Then, v and w satisfy the equations $\square v=0$ and$w=0$ in $\mathscr{E} \times(0, \infty)$ and $\mathcal{O} \times(0, \infty)$, respectively, and the relation between v and w

$$
\begin{align*}
\left.v\right|_{\partial \varepsilon} & =\left.w\right|_{\partial 0}, \tag{0.1}\\
\left.\frac{\partial v}{\partial n}\right|_{\partial s} & =\left.\rho \frac{\partial w}{\partial n}\right|_{\partial 0} \tag{0.2}
\end{align*}
$$

holds on $\partial \mathcal{O}=\partial \mathscr{E}$, where $n=\left(n_{1}, \cdots, n_{n}\right)$ denotes the unit normal on $\partial \mathscr{E}$ Received November 29, 1976.
which points into \mathscr{E}. (From now on, we use $n=\left(n_{1}, \cdots, n_{n}\right)$ in this sense in order to fix the notation.)

By a C^{2}-solution u, we mean that u belongs to $C^{2}(\overline{\mathscr{O}} \times[0, \infty))$ $\cap C^{2}(\overline{\mathscr{E}} \times[0, \infty))$ and satisfies (0.1) and (0.2) on $\partial \mathscr{E}$ and that u is real valued. In fact, such a solution exists: We set $A=-\frac{1}{\rho(x)} \nabla \cdot \rho(x) \nabla$. Then, the operator A is a positive self-adjoint operator in $L^{2}(\rho(x) d x)$ with weight $\rho(x)$ whose domain is given by
$\mathscr{D}(A)=\left\{u \in H^{1}\left(R^{n}\right)|w=u|_{\mathscr{O}} \in H^{2}(\mathcal{O}), v=\left.u\right|_{\mathscr{E}} \in H^{2}(\mathscr{E}), w\right.$ and v satisfy (0.1) and (0.2) in $H^{3 / 2}(\partial \mathscr{E})$ and $H^{1 / 2}(\partial \mathscr{E})$, respectively ,
$H^{1}(\mathcal{O})$ and $H^{2}(\mathscr{E}), \cdots$ being the usual Sobolev spaces. Hence, this implies that for given $f \in H^{1}\left(R^{n}\right)$ and $g \in L^{2}\left(R^{n}\right)$ of problem (I), there exist a unique weak solution $u(x, t)$ such that $u(x, t) \in C^{1}\left((0, T) ; L^{2}\left(R^{n}\right)\right) \cap C((0, T)$; $H^{1}\left(R^{n}\right)$) for any $T>0$. Moreover, if $\partial \mathscr{E}$ is smooth enough, the following regularity theorem holds for A :

$$
\mathscr{D}\left(A^{N}\right) \subset\left\{u \in H^{1}\left(R^{n}\right) \mid w \in H^{2 N}(\mathcal{O}), v \in H^{2 N}(\mathscr{E})\right\} .
$$

Hence, if we choose the initial data f and g as $f \in \mathscr{D}\left(A^{N}\right)$ and $g \in \mathscr{D}\left(A^{N}\right)$, N being large enough, we can find a desired solution by the imbedding theorem of Sobolev. We note that a weak solution is obtained as a limit of such a solution in the energy norm.

As is easily seen, the total energy

$$
\int_{R^{n}} \rho(x)\left(\left|u_{t}(t)\right|^{2}+|\nabla u(t)|^{2}\right) d x
$$

is conserved in t. We denote this quantity by $G_{0}(u)$, so that

$$
\frac{1}{\rho} G_{0}(u) \leq \int_{R^{n}}\left(\left|u_{t}(t)\right|^{2}+|\nabla u(t)|^{2}\right) d x \leq G_{0}(u),
$$

since $\rho>1$. We define $E(u ; h, T)$ as follows:

$$
E(u ; h, T)=\int_{|x| \leq h}\left(\left|u_{t}(T)\right|^{2}+|\nabla u(T)|^{2}\right) d x .
$$

Before stating the main theorem, we make the following assumption on \mathcal{O} :

Assumption (A). (i) \mathcal{O} is a convex open bounded domain with smooth boundary which contains the origin. For brevity,

$$
\begin{equation*}
\mathcal{O} \subset\left\{x \| x \left\lvert\,<\frac{1}{2}\right.\right\} \tag{0.3}
\end{equation*}
$$

(ii) There exists a C^{4}-function $\chi(x)$ such that
(a.1) $\chi(x)=$ const >0, on $\partial \mathscr{E}$;
(a.2) $\chi_{n}=\frac{\partial \chi}{\partial n}=\left(\chi_{j} \cdot n_{j}\right)>\beta>0, \chi_{j}=\frac{\partial \chi}{\partial x_{j}}$, on $\partial \mathscr{E}$;
(a.3) $\left(\chi_{i j}\right), \chi_{i j}=\partial^{2} \chi / \partial x_{i} \partial x_{j}$, is a positive definite matrix at each point of R^{n};
(a.4) $\chi=\left(1-r^{-\delta}\right) x_{j} / r, r=|x|, 0<\delta<1$, for $r \geq r_{0}$ large enough. If \mathcal{O} is strictly convex, we can find such a function (see [5] p.246).

Main Theorem. Let $n \geq 3$. Assume that Assumption (A) is satisfied. Let u be the C^{2}-solution of problem (I) with the initial data f and g of compact support: support of f and $g \subset|x| \leq \gamma$. Then, if n is odd

$$
E(u ; h, T) \leq k_{1} e^{-\theta T} G_{0}(u),
$$

and if n is even,

$$
E(u ; h, T) \leq k_{2} T^{-1} G_{0}(u),
$$

where k_{1}, k_{2} and θ are constants depending only on h and γ.
The above main theorem is proved by a modification or generalization of methods used in Morawetz [4] and Strauss [6]. In §1, we show that $E(u ; h, t)$ is integrable in t and in $\S 2$, we prove that $E(u ; h, t)$ decays at the rate of t^{-1}. In §3, we prove the exponential dacay.

Finally we note the following facts throughout this paper: (a) k, k_{1}, k_{2}, \cdots are used to denote positive constants, which are not necessarily the same. (b) Integration with no domain attached is taken over the whole space. (c) we use the summation convention. (d) we write simply χ_{n}, v_{n}, \cdots instead of $\frac{\partial \chi}{\partial n}, \frac{\partial v}{\partial n}, \cdots$.

1. Integrability of the local energy

We state some preliminary lemmas.
Lemma 1.1. Let $\chi(x)$ be a C^{4}-function. Then, the identity

$$
\begin{equation*}
\left(u_{t t}-u_{j j}\right)\left(\chi_{i} u_{i}+\frac{1}{2} \chi_{i i} u\right)=X_{t}(u)+\nabla \cdot Y(u)+Z(u) \tag{1.1}
\end{equation*}
$$

holds, where

$$
\begin{aligned}
X(u) & =u_{t}\left(\chi_{i} u_{i}+\frac{1}{2} \chi_{i i} u\right), \\
Y_{j}(u) & =-u_{j}\left(\chi_{i} u_{i}+\frac{1}{2} \chi_{i i} u\right)+\frac{1}{2} \chi_{j}\left(|\nabla u|^{2}-u_{t}^{2}\right)+\frac{1}{4} \chi_{i i j} u^{2} . \\
Z(u) & =\chi_{i j} u_{i} u_{j}-\frac{1}{4} \chi_{i i j j} u^{2} .
\end{aligned}
$$

Lemma 1.2. Assume that $\chi(x)$ is a C^{4}-function satisfying (a.4). Then, we have

$$
\begin{equation*}
\chi_{i j} u_{i} u_{j} \geq \delta r^{-1-\delta}|\nabla u|^{2}, \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
\chi_{i i j j} \leq-\delta(1+\delta) r^{-3-\delta} \tag{1.3}
\end{equation*}
$$

for $r=|x| \geq r_{0}$ large enough.
By a direct calculation, we obtain Lemmas 1.1 and 1.2. (see Lemmas 1 and 2 of Strauss [6])

Lemma 1.3. Let u be a C^{2}-solution of problem (I). Suppose that Assumption (A) is satisfied. Then, for any $\varepsilon>0$ small enough,

$$
\begin{aligned}
& \int_{0}^{T} \int e^{-2 s t}\left(|\nabla u|^{2}+(1+r)^{-2} u^{2}\right)(1+r)^{-1-\delta} d x d t \\
& \quad \leq k_{1} G_{0}(u)+k_{2} \int_{0}^{T} \int_{|x| \leq r_{0}} e^{-2 s t} u^{2} d x d t
\end{aligned}
$$

where k_{1} and k_{2} are constants independent of ε and T, and $G_{0}(u)$ is the total energy.

Proof. We set $v=\left.u\right|_{e \times(0, T)}$ and $w=\left.u\right|_{0 \times(0, T)}$. We multiply the identity (1.1) with $\chi(x)$ satisfying (a.1) $\sim\left(\right.$ a.4) by $e^{-2 \epsilon t}$ and integrate over $\mathscr{E} \times(0, T)$ and $\mathcal{O} \times(0, T)$, separately. We have

$$
\begin{align*}
\int_{0}^{T} \int_{0} e^{-2 \epsilon t} Z(v) d x d t= & -\int_{0}^{T} \int_{0} e^{-2 \epsilon t} X_{t}(v) d x d t \\
& +\int_{0}^{T} \int_{\partial \epsilon} e^{-2 \epsilon t}\left(Y_{j}(v) \cdot n_{j}\right) d \sigma d t \tag{1.4}\\
= & I_{1}+I_{2} \\
\int_{0}^{T} \int_{0} e^{-2 \epsilon t} Z(w) d x d t= & -\int_{0}^{T} \int_{0} e^{-2 \epsilon t} X_{t}(w) d x d t \\
& -\int_{0}^{T} \int_{\partial \varepsilon} e^{-2 \varepsilon t}\left(Y_{j}(w) \cdot n_{j}\right) d \sigma d t \\
= & I I_{1}-I I_{2}
\end{align*}
$$

Integration by parts yields

$$
\begin{aligned}
I_{1} & =-\int_{e} e^{-2 \epsilon T} X(v, T) d x+\int_{\varepsilon} X(v, 0) d x-2 \varepsilon \int_{0}^{T} \int_{\varepsilon} e^{-2 \varepsilon t} X(v) d x d t \\
& =I_{11}+I_{12}+I_{13}
\end{aligned}
$$

Recalling the expression of $X(v)$ in Lemma 1.1, we have

$$
X(v) \leq k\left(v_{t}^{2}+|\nabla v|^{2}+r^{-2} v^{2}\right)
$$

for some $k>0$, since $\chi_{i i}=O\left(r^{-1}\right)$ as $r \rightarrow \infty$. Integrating $X(v)$ over \mathscr{E}, we have

$$
\int_{\delta} X(v) d x \leq k \int\left(u_{t}^{2}+|\nabla u|^{2}+r^{-2} u^{2}\right) d x
$$

Note that if $n \geq 3, \int r^{-2} u^{2} d x \leq k \int|\nabla u|^{2} d x$. Then, it follows that

$$
\begin{equation*}
I_{11}, I_{12} \leq k G_{0}(u) \tag{1.6}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
I_{13} \leq k \varepsilon \int_{0}^{T} e^{-2 \varepsilon t} d t G_{0}(u) \leq k_{1} G_{0}(u) \tag{1.7}
\end{equation*}
$$

Combining (1.6) and (1.7), we obtain

$$
\begin{equation*}
I_{1} \leq k G_{0}(u) \tag{1.8}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
I I_{1} \leq k G_{0}(u) \tag{1.9}
\end{equation*}
$$

Next, we consider the terms I_{2} and $I I_{2}$. Making use of the fact that $\chi_{i} v_{i}=\chi_{n} v_{n}$ on $\partial \mathscr{E}$ by (a.1) and writing $|\nabla v|^{2}=v_{n}^{2}+\left|\nabla_{\text {tan }} v\right|^{2}$ on $\partial \mathscr{E}$, we have

$$
\left(Y_{j}(v) \cdot n_{j}\right)=-\frac{1}{2} \chi_{n} v_{n}^{2}-\frac{1}{2} \chi_{i i} v_{n} v+\frac{1}{2} \chi_{n}\left(\left|\nabla_{\tan } v\right|^{2}-v_{t}^{2}\right)+\frac{1}{4} \chi_{i i n} v^{2} .
$$

We obtain a similar expression also for $\left(Y_{j}(w) \cdot n_{j}\right)$. In view of relations (0.1) and (0.2), we see that

$$
\left(Y_{j}(v) \cdot n_{j}\right)-\left(Y_{j}(w) \cdot n_{j}\right)=\frac{1}{2}\left(1-\rho^{2}\right) \chi_{n} w_{n}^{2}+\frac{1}{2}(1-\rho) \chi_{i i} w_{n} w .
$$

Since $\left(1-\rho^{2}\right) \chi_{n}<0$ by $\rho>1$ and (a.2), it follows that on $\partial \mathscr{E}$

$$
\left(Y_{j}(v) \cdot n_{j}\right)-\left(Y_{j}(w) \cdot n_{j}\right) \leq k w^{2},
$$

for $k>0$. Furthermore we have for any $\eta>0$ small enough,

$$
\int_{\partial \varepsilon} w^{2} d \sigma \leq \eta \int_{0}|\nabla w|^{2} d x+k(\eta) \int_{0} w^{2} d x
$$

Hence, we obtain

$$
\begin{equation*}
I_{2}-I I_{2} \leq \eta \int_{0}^{T} \int_{0} e^{-2 \epsilon t}|\nabla w|^{2} d x+k(\eta) \int_{0}^{T} \int_{0} e^{-2 \varepsilon t} w^{2} d x \tag{1.10}
\end{equation*}
$$

for any $\eta>0$ small enough.
Now, by (1.2) and (1.3),

$$
\begin{equation*}
Z(v) \geq \delta r^{-1-\delta}|\nabla v|^{2}+\frac{1}{4} \delta(1+\delta) r^{-3-\delta} v^{2}, \quad \text { for }|r| \geq r_{0} \tag{1.11}
\end{equation*}
$$

And by (a.3),

$$
\begin{gather*}
Z(v) \geq k_{1}|\nabla v|^{2}-k_{2} v^{2}, \quad \text { in }|x| \leq r_{0} \cap \mathscr{E}, \tag{1.12}\\
Z(w) \geq k_{3}|\nabla w|^{2}-k_{4} w^{2}, \quad \text { in } \mathcal{O} . \tag{1.13}
\end{gather*}
$$

Taking η in (1.10) small enough and combining (1.8) ~(1.12) with (1.13), we finally obtain

$$
\begin{aligned}
& \int_{0}^{T} \int e^{-2 s t}\left(|\nabla u|^{2}+(1+r)^{-2} u^{2}\right)(1+r)^{-1-\delta} d x d t \\
& \quad \leq k_{1} G_{0}(u)+k_{2} \int_{0}^{T} \int_{|x| \leq r_{0}} e^{-2 t} u^{2} d x d t
\end{aligned}
$$

Lemma 1.4. Under the same assumption as in Lemma 1.3, the following estimate holds:

$$
\begin{aligned}
\int_{0}^{T} e^{-2 s t}(1 & +r)^{-1-\delta} u_{t}^{2} d x d t \\
& \leq k_{1} G_{0}(u)+k_{2} \int_{0}^{T} \int_{|x| \leq r_{0}} e^{-2 t t} u^{2} d x d t
\end{aligned}
$$

Proof. Let $p(x)=\left(1+r^{2}\right)^{-(1+\delta) / 2}$. Then, $|\Delta p| \leq k(1+r)^{-3-3}$. As in the proof of Lemma 1.3, we set $v=\left.u\right|_{e \times(0, T)}$ and $w=\left.u\right|_{0 \times(0, T)}$. We multiply the equation $\square v=0$ by $e^{-2 s t} p(x) v$ and integrate over $\mathscr{E} \times(0, T)$. Then, we have

$$
\begin{aligned}
0= & \left.\int_{\epsilon} e^{-2 \epsilon t} p(x) v_{t} v d x\right|_{0} ^{T}+\int_{0}^{T} \int_{\epsilon} e^{-2 \epsilon t}\left(|\nabla v|^{2}-v_{t}^{2}\right) p(x) d x d t \\
& +2 \varepsilon \int_{0}^{T} \int_{\epsilon} e^{-2 \epsilon t} p(x) v_{t} v d x d t+\int_{0}^{T} \int_{\partial \epsilon} e^{-2 \epsilon t} p(x) v_{n} v d \sigma d t \\
& -\frac{1}{2} \int_{0}^{T} \int_{\partial \sigma} e^{-2 s t} p_{n} v^{2} d \sigma d t-\frac{1}{2} \int_{0}^{T} e^{-s t} \Delta p v^{2} d x d t
\end{aligned}
$$

A similar identity for w is obtained by multiplying $\square w=0$ by $\rho e^{-2 t t} p(x) w$ and integrating over $\mathcal{O} \times(0, T)$. By the definition of $p(x)$, we can prove in the same way as in the proof of Lemma 1.3 that

$$
\begin{gather*}
\int_{\epsilon} e^{-2 \epsilon t} p(x) v_{t} v d x \int_{0}^{T} \leq k G_{0}(u) \tag{1.14}\\
2 \varepsilon \int_{0}^{T} \int_{\epsilon} e^{-2 \iota t} p(x) v_{t} v d x d t \leq k G_{0}(u) \tag{1.15}
\end{gather*}
$$

The same estimates as (1.14) and (1.15) are obtained for $w(x)$ with domain of integration \mathcal{O}. Thus, by taking account of relations (0.1) and (0.2), and by adding up the two identities obtained for v and w, the boundary integral is estimated by

$$
k \int_{0}^{T} \int_{0} e^{-2 c t}\left(|\nabla w|^{2}+w^{2}\right) d x d t
$$

so that we have

$$
\begin{aligned}
& \int_{0}^{T} \int e^{-2 t t}(1+r)^{-1-\delta} u_{t}^{2} d x d t \\
& \quad \leq k_{1} G_{0}(u)+k_{2} \int_{0}^{T} \int e^{-2 t t}\left(|\nabla u|^{2}+(1+r)^{-2} u^{2}\right)(1+r)^{-1-\delta} d x d t
\end{aligned}
$$

Combining this estimate with Lemma 1.3, we obtain the conclusion.
LEMMA 1.5. Suppose that the same assumption as in Lemma 1.3 is satisfied. Let R be a positive fixed number. Then, for any $\eta>0$ small enough, there exists a constant $k=k(\eta)$ independent of ε such that

$$
\int_{0}^{\infty} \int_{|x| \leq R} e^{-2 \varepsilon t} u^{2} d x d t \leq k G_{0}(u)+\eta \int_{0}^{\infty} \int e^{-2 \epsilon t}(1+r)^{-1-\delta} u_{t}^{2} d x d t
$$

where we note that the constant k may depend on the support of the initial data f and g.

This lemma will be proved in Appendix.
Combining Lemmas 1.3 and 1.4 with Lemma 1.5, and letting $T \rightarrow \infty$ and $\varepsilon \rightarrow 0$, we immediately obtain the following result.

THEOREM 1. Let $n \geq 3$ and let u be a C^{2}-solution of problem (I) with initial data of compact support. Suppose that Assumption (A) is satisfied. Then,

$$
\int_{0}^{\infty} \int\left(u_{t}^{2}+|\nabla u|^{2}\right)(1+r)^{-1-\delta} d x d t \leq k G_{0}(u)
$$

for $k>0$ depending only on δ and the support of the initial data. Therefore, we have that

$$
E(u ; h, t)=\int_{|x| \leq h}\left(u_{t}^{2}+|\nabla u|^{2}\right) d x
$$

is integrable in t.

§ 2. Uniform decay of the local energy

In this section, we shall prove the uniform decay of the local energy. We introduce the following function: Let $\ell(x)$ be a C^{4}-function such that

$$
\begin{gather*}
\ell(x)=\text { const }>0, \quad \text { on } \partial \mathscr{E} \tag{2.1}\\
\ell_{n}=\left(\ell_{j} \cdot n_{j}\right)>\beta>0, \quad \text { on } \partial \mathscr{E} \tag{2.2}
\end{gather*}
$$

We begin with the following identity (cf. Morawetz [4] and Zachmanoglou [9]): Let $A(x, t)$ be a C^{∞}-function of x and t.
(2.4) $\quad\left(u_{t t}-u_{j j}\right)\left(A u_{t}+t \ell_{j} u_{j}+(n-1) t u\right)=F_{t}(u)+\nabla \cdot G(u)+H(u)$, where

$$
\begin{aligned}
F(u)= & \frac{1}{2} A\left(u_{t}^{2}+|\nabla u|^{2}\right)+t \ell_{j} u_{j} u_{t}+(n-1) t u_{t} u-\frac{1}{2}(n-1) u^{2} \\
G_{j}(u)= & -u_{j}\left(A u_{t}+t \ell_{j} u_{j}+(n-1) t u\right)+\frac{1}{2} t \ell_{j}\left(|\nabla u|^{2}-u_{t}^{2}\right) \\
H(u)= & \frac{1}{2} u_{t}^{2}\left(t \ell_{j j}-A_{t}-2(n-1) t\right)+u_{t} u_{j}\left(A_{j}-\ell_{j}\right) \\
& +\frac{1}{2}\left(2 t \ell_{j k} u_{j} u_{k}+2(n-1) t|\nabla u|^{2}-t \ell_{j j}|\nabla u|^{2}-A_{t}|\nabla u|^{2}\right) .
\end{aligned}
$$

Lemma 2.1. Let u be a C^{2}-solution of problem (I) with initial data of compact support and let $w=\left.u\right|_{0 \times(0, T)}$. Assume that $\ell(x)$ satisfies (2.1) ~ (2.3). Then,

$$
\begin{aligned}
& \frac{1}{2} T^{2} \int_{0}\left(w_{t}(T)^{2}+|\nabla w(T)|^{2}\right) d x \\
& \quad \leq k T G_{0}(u)+\int_{0}^{T} \int_{\partial \varepsilon} \alpha(t) d \sigma d t
\end{aligned}
$$

for $k>0$ independent of T, where

$$
\alpha(t)=\frac{1}{2} t \ell_{n} w_{n}^{2}+\frac{1}{2} t \ell_{n}\left(w_{t}^{2}-\left|\nabla_{\tan } w\right|^{2}\right)+(n-1) t w_{n} w+\rho\left(r^{2}+t^{2}\right) w_{n} w_{t}
$$

and $|\nabla w|^{2}=w_{n}^{2}+\left|\nabla_{\tan } w\right|^{2}$ on $\partial \mathscr{E}$.
Proof. We integrate (2.4) with $A=\rho\left(r^{2}+t^{2}\right)$ over $\mathcal{O} \times(0, T)$ to obtain

$$
\begin{equation*}
0=\left.\int_{0} F(w) d x\right|_{0} ^{T}+\int_{0}^{T} \int_{\partial \varepsilon}\left(G_{j}(w) \cdot n_{j}\right) d \sigma d t+\int_{0}^{T} \int_{0} H(w) d x d t \tag{2.5}
\end{equation*}
$$

We note the following estimates:

$$
\begin{align*}
& H(w) \leq k t\left(w_{t}^{2}+|\nabla w|^{2}\right) \tag{2.6}\\
\int_{0}\left|w_{t} w\right| d x & \leq k\left(\int_{0} w_{t}^{2} d x+\int_{0} w^{2} d x\right) \tag{2.7}\\
& \leq k_{1}\left(\int u_{t}^{2} d x+\int r^{-2} u^{2} d x\right) \leq k_{2} G_{0}(u)
\end{align*}
$$

$$
\begin{equation*}
\int_{0} w^{2} d x \leq k G_{0}(u) \tag{2.8}
\end{equation*}
$$

Making use of these estimates, we see from (2.5) and the expression of $F(w)$ that

$$
\begin{align*}
& \frac{1}{2} T^{2} \int_{0}\left(w_{t}(T)^{2}+|\nabla w(T)|^{2}\right) d x \tag{2.9}\\
& \quad \leq k T G_{0}(u)-\int_{0}^{T} \int_{\partial \delta}\left(G_{j}(w) \cdot n_{j}\right) d \delta d t
\end{align*}
$$

On the other hand, by (2.1), we have

$$
\begin{align*}
-\left(G_{j}(w) \cdot n_{j}\right)= & \frac{1}{2} t \ell_{n} w_{n}^{2}+\frac{1}{2} t \ell_{n}\left(w_{t}^{2}-\left|\nabla_{\tan } w\right|^{2}\right) \tag{2.10}\\
& +\rho\left(r^{2}+t^{2}\right) w_{n} w_{t}+(n-1) t w_{n} w
\end{align*}
$$

Combining (2.10) with (2.9), we obtain the desired estimate.
Lemma 2.2. Let u be a C^{2}-solution of problem (I) with initial data of compact support and let $v=\left.u\right|_{e \times(0, T)}$. Assume that $\ell(x)$ satisfies (2.1) $\sim(2.3)$. Then, for fixed $h>0$, there exists a constant $k=k(h)$ independent of T such that

$$
\begin{aligned}
& \frac{1}{8} T^{2} \int_{|x| \leq h n \epsilon}\left(v_{t}(T)^{2}+|\nabla v(T)|^{2}\right) d x \\
& \quad \leq k T G_{0}(u)+\int_{0}^{T} \int_{\partial \varepsilon} \beta(t) d \sigma d t
\end{aligned}
$$

for any $T>0$ large enough, where

$$
\begin{aligned}
\beta(t)= & -\frac{1}{2} t \ell_{n} v_{n}^{2}-\frac{1}{2} t \ell_{n}\left(v_{t}^{2}-\left|\nabla_{\tan } v\right|^{2}\right) \\
& -\left(r^{2}+t^{2}\right) v_{n} v_{t}-(n-1) t v_{n} v,
\end{aligned}
$$

and the constant $k(h)$ may depend on the support of the initial data.
Proof. First, we rewrite $F(v)$ and $G(v)$. To do so, we consider the following identity:

$$
\begin{aligned}
-\frac{1}{2}(n-1)\left(v^{2}\right)_{t}= & -\frac{1}{4}(n-1) \nabla \cdot\left(r^{-2}\left(\left(r^{2}+t^{2}\right) v^{2}\right)_{t} x\right) \\
& +\frac{1}{2}(n-1)\left(\left(r^{-2}\left(r^{2}+t^{2}\right)\left((\nabla v \cdot x) v+\frac{1}{2}(n-2) v^{2}\right)\right)_{t}\right),
\end{aligned}
$$

$x=\left(x_{1}, \cdots, x_{n}\right)$ being a position vector. By use of this identity, we rewrite the last term of $F(v),-\frac{1}{2}(n-1) v^{2}$, so that we have
(2.11) $\quad\left(v_{t t}-v_{j j}\right)\left(A v_{t}+t \ell_{j} v_{j}+(n-1) t v\right)=\tilde{F}_{t}(v)+\nabla \cdot \tilde{G}(v)+\tilde{H}(v)$
with $A(x, t)=\left(r^{2}+t^{2}\right)$, where

$$
\begin{aligned}
\tilde{F}(v)= & \frac{1}{2}\left(r^{2}+t^{2}\right)\left(v_{t}^{2}+|\nabla v|^{2}\right)+t \ell_{j} v_{j} v_{t}+(n-1) t v_{t} v \\
& +\frac{1}{2}(n-1)\left(r^{-2}\left(r^{2}+t^{2}\right)\left((\nabla v \cdot x) v+\frac{1}{2}(n-2) v^{2}\right)\right) \\
\tilde{G}_{j}(v)= & -v_{j}\left(\left(r^{2}+t^{2}\right) v_{t}+t \ell_{j} v_{j}+(n-1) t v\right)+\frac{1}{2} t \ell_{j}\left(|\nabla v|^{2}-v_{t}^{2}\right) \\
& -\frac{1}{4}(n-1) r^{-2}\left(\left(r^{2}+t^{2}\right) v^{2}\right)_{t} x_{j} . \\
\tilde{H}(v)= & H(v) .
\end{aligned}
$$

We integrate (2.11) over $\mathscr{E} \times(0, T)$ to obtain

$$
\begin{equation*}
0=\left.\int_{\varepsilon} \tilde{F}(v) d x\right|_{0} ^{T}-\int_{0}^{T} \int_{\partial \varepsilon}\left(\tilde{G}_{j}(v) \cdot n_{j}\right) d \sigma d t+\int_{0}^{T} \int_{\rho} \tilde{H}(v) d x d t \tag{2.12}
\end{equation*}
$$

Now, by (2.3), we have in $|x| \geq r_{1}$,

$$
\begin{aligned}
\ell_{j k} v_{j} v_{k} & =2|\nabla v|^{2} \\
\ell_{j j} & =2 n,
\end{aligned}
$$

so that

$$
\tilde{H}(v)=0, \quad \text { in }|x| \geq r_{1} .
$$

Hence, we have in \mathscr{E}

$$
\tilde{H}(v) \leq k t(1+r)^{-1-\delta}\left(v_{t}^{2}+|\nabla v|^{2}\right)
$$

for $k>0$ independent of t, so that by Theorem 1 ,

$$
\begin{equation*}
\int_{0}^{T} \int_{s} \tilde{H}(v) d x d t \leq k T G_{0}(u) \tag{2.13}
\end{equation*}
$$

with $k>0$ independent of T. Clearly,

$$
\begin{equation*}
\left.\int_{s}|\tilde{F}(v)| d x\right|_{0} \leq k G_{0}(u) \tag{2.14}
\end{equation*}
$$

for $k>0$ depending only on the support of the initial data, where we have used that $\int r^{-2} u^{2} d x \leq k \int|\nabla u|^{2} d x$ for $n \geq 3$. On the other hand, $\left.\tilde{F}(v)\right|_{T}$ can be rewritten as follows:

$$
\left.\tilde{F}(v)\right|_{T}=K_{1}(v, T)+K_{2}(v, T),
$$

where

$$
\begin{aligned}
K_{1}(v, T)= & \frac{1}{2}\left(r^{2}+T^{2}\right)\left(|\nabla v|^{2}-v_{r}^{2}\right) \\
& +\frac{1}{4} r^{-2 m}\left((r+T)^{2}\left(\left(r^{m} v\right)_{r}+\left(r^{m} v\right)_{t}\right)^{2}\right. \\
& \left.+(r-T)^{2}\left(\left(r^{m} v\right)_{r}-\left(r^{m} v\right)_{t}\right)^{2}\right) \\
& +\left(\frac{1}{4}(n-1)(n-2)-\frac{1}{8}(n-1)^{2}\right) r^{-2}\left(r^{2}+T^{2}\right) v^{2}, \\
& m=(n-1) / 2, \\
K_{2}(v, T)= & \left(\ell_{j} v_{j}-2 r v_{r}\right) T v_{t} .
\end{aligned}
$$

Note that for $n \geq 3, \frac{1}{4}(n-1)(n-2)-\frac{1}{8}(n-1)^{2} \geq 0$ and that $K_{1}(v, T) \geq 0$. By (2.3),

$$
\ell_{j} v_{j}=2 r v_{r}, \quad \text { in }|x| \geq r_{1}
$$

so that

$$
K_{2}(v, T)=0, \quad \text { in }|x| \geq r_{1}
$$

Hence, we have

$$
\begin{equation*}
\int_{\varepsilon}\left|K_{2}(v, T)\right| d x \leq k T G_{0}(u) \tag{2.15}
\end{equation*}
$$

for $k>0$ independent of T. Moreover, when $|x| \leq h, h<\frac{1}{2} T$,

$$
\begin{align*}
K_{1}(v, T) \geq & \frac{1}{2} T^{2}\left(|\nabla v|^{2}-v_{r}^{2}\right) \\
& +\frac{1}{8} r^{-2 m} T^{2}\left(\left(r^{m} v\right)_{r}^{2}+\left(r^{m} v\right)_{t}^{2}\right) \\
& +\frac{1}{8}(n-1)(n-3) r^{-2}\left(r^{2}+T^{2}\right) v^{2} \tag{2.16}\\
\geq & \frac{1}{8} T^{2}\left(|\nabla v|^{2}+v_{t}^{2}+\frac{1}{2}(n-1) V \cdot\left(r^{-2} v^{2} x\right)\right. \\
& \left.-\frac{1}{4}(n-1)(n-3) r^{-2} v^{2}\right)+\frac{1}{8}(n-1)(n-3) r^{-2}\left(r^{2}+T^{2}\right) v^{2}
\end{align*}
$$

$$
\geq \frac{1}{8} T^{2}\left(|\nabla v|^{2}+v_{t}^{2}+\frac{1}{2}(n-1) \nabla \cdot\left(r^{-2} v^{2} x\right)\right) .
$$

With the above estimates (2.13) $\sim(2.16)$, we have from (2.12)

$$
\begin{gather*}
\frac{1}{8} T^{2} \int_{|x| \leqslant n \cap \epsilon}\left(|\nabla v|^{2}+v_{t}^{2}+\frac{1}{2}(n-1) \nabla \cdot\left(r^{-2} v^{2} x\right)\right) d x \tag{2.17}\\
\leq k T G_{0}(u)+\int_{0}^{T} \int_{\partial \sigma}\left(\tilde{G}_{j}(v) \cdot n_{j}\right) d \sigma d t
\end{gather*}
$$

Recalling the expression of $\tilde{G}_{j}(v)$ and writing $|\nabla v|^{2}=v_{n}^{2}+\left|\nabla v_{\tan } v\right|^{2}$ on $\partial \mathscr{E}$, we have by (2.1)

$$
\left(\tilde{G}_{j}(v) \cdot n_{j}\right)=\beta(t)-\frac{1}{4}(n-1) r^{-2}\left(\left(r^{2}+t^{2}\right) v^{2}\right)_{t}\left(x_{j} \cdot n_{j}\right),
$$

where $\beta(t)$ is the function defined in this lemma. Hence,

$$
\begin{aligned}
\int_{0}^{T} \int_{\partial \sigma}\left(\tilde{G}_{j}(v) \cdot n_{j}\right) d \sigma d t= & \int_{0}^{T} \int_{\partial \sigma} \beta(t) d \sigma d t \\
& -\left.\frac{1}{4}(n-1) \int_{\partial \sigma} r^{-2}\left(r^{2}+t^{2}\right) v^{2}\left(x_{j} \cdot n_{j}\right) d \sigma\right|_{c} ^{T}
\end{aligned}
$$

Since

$$
\int_{|x| \leq h \cap \varepsilon} \nabla \cdot\left(r^{-2} v^{2} x\right) d x=\int_{|x|=h} r^{-1} v^{2} d \sigma-\int_{\partial \varepsilon} r^{-2} v^{2}\left(x_{j} \cdot n_{j}\right) d \sigma
$$

it follows from (2.17) that

$$
\begin{align*}
& \frac{1}{8} T^{2} \int_{|x| \leq n \cap s}\left(|\nabla v|^{2}+v_{t}^{2}\right) d x \tag{2.18}\\
& \quad \leq k T G_{0}(u)+\int_{0}^{T} \int_{\partial \varepsilon} \beta(t) d \sigma d t+L(v)
\end{align*}
$$

where

$$
\begin{aligned}
L(v)= & \left.\frac{1}{16}(n-1) T^{2} \int_{\partial \varepsilon} r^{-2} v^{2}\left(x_{j} \cdot n_{j}\right) d \sigma\right|_{T} \\
& -\left.\frac{1}{4}(n-1) \int_{\partial \delta} r^{-2}\left(r^{2}+t^{2}\right) v^{2}\left(x_{j} \cdot n_{j}\right) d \sigma\right|_{0} ^{T}
\end{aligned}
$$

Since $\left(x_{j} \cdot n_{j}\right) \geq 0$ on $\partial \mathscr{E}$ because of the convexity of \mathcal{O},

$$
L(v) \leq\left. k \int_{\partial \varepsilon} v^{2}\left(x_{j} \cdot n_{j}\right) d \sigma\right|_{0} \leq k G_{0}(u)
$$

This, together with (2.18), completes the proof.
Combining Lemmas 2.1 and 2.2, we have the following theorem.

Theorem 2. Suppose that Assumption (A) is satisfied. Let u be the C^{2}-solution of problem (I) with the initial data f and g such that the support of f and g is contained in $|x| \leq \gamma$. Then, there exists a constant $k=k(h, \gamma)$ independent of T such that

$$
\begin{equation*}
E(u ; h, T) \leq k T^{-1} G_{0}(u) . \tag{2.19}
\end{equation*}
$$

Remark. This result is valid for weak solutions, since a weak solution is obtained as a limit of C^{2}-solutions in the energy norm.

Proof. We add up the two inequalities obtained in Lemmas 2.1 and 2.2. Then, we have

$$
\begin{aligned}
& \frac{1}{8} T^{2} \int_{|x| \leq n}\left(|\nabla u(T)|^{2}+u_{t}(T)^{2}\right) d x \\
& \quad \leq k T G_{0}(u)+\int_{0}^{T} \int_{\partial s}(\alpha(t)+\beta(t)) d \sigma d t
\end{aligned}
$$

$\alpha(t)$ and $\beta(t)$ being the functions defined in Lemmas 2.1 and 2.2, respectively. Recall the relations (0.1) and (0.2). Then, we have

$$
\alpha(t)+\beta(t)=\frac{1}{2}\left(1-\rho^{2}\right) t \ell_{n} w_{n}^{2}+(n-1)(1-\rho) t w_{n} w
$$

Since $\rho>1$ and $\ell_{n}>\beta>0$ on $\partial \mathscr{E}$ by (2.2), it follows that

$$
\alpha(t)+\beta(t) \leq k t w^{2}, \quad \text { on } \partial \mathscr{E},
$$

for $k>0$ independent of t. Moreover, we have by Theorem 1 ,

$$
\int_{0}^{T} \int_{\partial \varepsilon} w^{2} d \sigma d t \leq k \int_{0}^{T} \int_{0}\left(|\nabla w|^{2}+w^{2}\right) d x d t \leq k G_{0}(u)
$$

This completes the proof.

§3. Exponential decay of the local energy

In this section, we shall prove the exponential decay of the local energy when n is odd, using Theorem 2 and following the procedure of Morawetz [4].

We recall the definition of $E(u ; h, t)$:

$$
E(u ; h, t)=\int_{|x| \leq h}\left(u_{t}(t)^{2}+|\nabla u(t)|^{2}\right) d x,
$$

and introduce the new notation:

$$
\begin{equation*}
G(u ; h, t)=\int_{|x| \leq h} \rho(x)\left(u_{t}(t)^{2}+|\nabla u(t)|^{2}\right) d x . \tag{3.1}
\end{equation*}
$$

Since $\rho>1$, we have

$$
\begin{equation*}
E(u ; h, t) \leq G(u ; h, t) \leq \rho E(u ; h, t) . \tag{3.2}
\end{equation*}
$$

In this section, by a solution we mean a weak solution. As was stated in Introduction, $G(u ; \infty, t)\left(=G_{0}(u)\right)$ is conserved in t for the solution u of problem (I). For later use, we rewrite (2.19) as follows:

$$
\begin{equation*}
E(u ; h, T) \leq p(T, h, \gamma) E(u ; \infty, 0) \tag{3.3}
\end{equation*}
$$

with $p(T, h, \gamma)=\rho k(h, \gamma) T^{-1}, k(h, \gamma)$ being the constant in Theorem 2. By Remark after Theorem 2, (3.3) is valid for weak solutions.

Lemma 3.1. Let u be the solution of problem (I) with the initial data f and g such that $f \in H^{1}\left(R^{n}\right)$ and $g \in L^{2}\left(R^{n}\right)$ and that the support of f and g is contained in $|x|<\gamma . \quad\left(\gamma>\frac{1}{2}, \mathcal{O} \subset|x|<\gamma\right.$ by (0.3)). Then, the solution u may be written as

$$
u=R_{0}+F_{0},
$$

where F_{0} is the free space solution with the same initial data as u. Furthermore,

$$
F_{0}=0 \quad \text { for } r=|x| \leq t-\gamma
$$

R_{0} has compact support of at most 3γ at $t=2 \gamma$, and is a solution of problem (I) for $t>2 \gamma$. We have

$$
E\left(R_{0} ; \infty, s\right) \leq 4 G_{0}(u), \quad s \geq 0
$$

Proof. It is clear that $F_{0}=0$ for $r \leq t-\gamma$ by Huyghen's principle. Hence, for $t \geq 2 \gamma, F_{0}=0$ in $|x| \leq \gamma$, so that F_{0} is a solution of problem (I) for $t>2 \gamma$. Since u is a solution of problem (I), R_{0} is also a solution for $t>2 \gamma$. We easily see that R_{0} has compact support of at most 3γ at $t=2 \gamma$ by the dependence of domain. Moreover, we have for $s \geq 0$,

$$
E\left(R_{0} ; \infty, s\right)=E\left(u-F_{0} ; \infty, s\right) \leq 2\left(E(u ; \infty, s)+E\left(F_{0} ; \infty, s\right)\right)
$$

Using (3.2) and the fact that F_{0} is the free space solution with the same initial data as u, we conclude that

$$
\begin{aligned}
E\left(R_{0} ; \infty, s\right) & \leq 2\left(G(u ; \infty, s)+E\left(F_{0} ; \infty, 0\right)\right) \\
& \leq 2\left(G_{0}(u)+G\left(F_{0} ; \infty, 0\right)\right)=4 G_{0}(u)
\end{aligned}
$$

Lemma 3.2 (Morawetz [4], Lemma 2). For $T>4 \gamma, R_{0}=R_{1}+F_{1}$. Here F_{1} is the free space solution with the same initial data as R_{0} at $t=T$, and

$$
F_{1}=0 \quad \text { for } r<t-T-\gamma,
$$

while R_{1} is a solution of problem (I) for $t>T+2 \gamma$ and has compact support of at most 3γ at $t=T+2 \gamma$. Furthermore,

$$
E\left(R_{1} ; \infty, T+2 \gamma\right) \leq k E\left(R_{0} ; 5 \gamma, T\right)
$$

with $k=2(\rho+1)$.
Proof. We continue F_{1} as $F_{1}=R_{0}$ for $t<T$. Then, $\square F_{1}=0$ in the domain exterior to $|x| \leq \gamma \times(0, T)$. We apply Huyghen's principle to F_{1} in this domain. Let (x, t) be a point with $|x|<t-T-\gamma$. Then, the backward cone with vertex at (x, t) does not intersect $|x|=\gamma \times(0, T)$, and intersect the plane $t=2 \gamma$ outside the sphere $|x| \leq 3 \gamma$ where the support of R_{0} is contained in virtue of Lemma 3.1. Thus we conclude that $F_{1}=0$ for $|x|<t-T-\gamma$. Consequently, when $t>T+2 \gamma, F_{1}$ is a solution of problem (I). By Lemma 3.1, R_{0} is a solution of problem (I) for $t>2 \gamma$. Hence, R_{1} is also a solution for $t>T+2 \gamma$, and the fact that R_{1} has compact support of at most 3γ at $t=T+2 \gamma$ is easily obtained by the dependence of domain, since $\square R_{1}=0$ in $|x|>\gamma \times(T, \infty)$ and $R_{1}=0$ at $t=T$. Therefore, we have

$$
\begin{aligned}
E\left(R_{1} ; \infty, T+2 \gamma\right) & =E\left(R_{1} ; 3 \gamma, T+2 \gamma\right) \\
& \leq 2\left(E\left(R_{0} ; 3 \gamma, T+2 \gamma\right)+E\left(F_{1} ; 3 \gamma, T+2 \gamma\right)\right) \\
& \leq 2\left(G\left(R_{0} ; 3 \gamma, T+2 \gamma\right)+E\left(F_{1} ; 3 \gamma, T+2 \gamma\right)\right)
\end{aligned}
$$

On the other hand, making use of the fact that R_{0} and F_{1} are solutions of problem (I) and of the free space wave equation with the same initial data as R_{0} at $t=T$, respectively, we can obtain by the standard method of energy estimate that

$$
\begin{aligned}
& G\left(R_{0} ; 3 \gamma, T+2 \gamma\right) \leq G\left(R_{0} ; 5 \gamma, T\right) \\
& E\left(F_{1} ; 3 \gamma, T+2 \gamma\right) \leq E\left(R_{0} ; 5 \gamma, T\right)
\end{aligned}
$$

Thus we conclude that

$$
E\left(R_{1} ; \infty, T+2 \gamma\right) \leq 2(\rho+1) E\left(R_{0} ; 5_{\gamma} ; T\right)
$$

This completes the proof.
Theorem 3. Suppose that Assumption (A) is satisfied. Let u be the solution of problem (I) with the initial data f and g such that $f \in H^{1}\left(R^{n}\right)$ and $g \in L^{2}\left(R^{n}\right)$ and that the support of f and g is contained in $|x|<\gamma$. Let $\gamma_{0}>\gamma$. Then, there exist constants $k=k\left(\gamma_{0}, \gamma\right)$ and θ $=\theta\left(\gamma_{0}, \gamma\right)$ such that

$$
E\left(u ; \gamma_{0}, T\right) \leq k e^{-\theta_{T}} G_{0}(u)
$$

Proof. In Lemma 3.2, we decomposed R_{0} into $R_{0}=R_{1}+F_{1}$. We apply the same procedure to R_{1}. We define F_{2} as follows: $F_{2}=R_{1}$ for $T<t \leq 2 T$ and F_{2} is continued for $t>2 T$ as the solution of the free space wave equation with the initial data $F_{2}(2 T)=R_{1}(2 T)$ and $F_{2 t}(2 T)$ $=R_{1 t}(2 T)$. Exactly in the same way as in the proof of Lemma 3.2, we see that

$$
F_{2}=0, \quad \text { for }|x|<t-2 T-\gamma
$$

We set $R_{2}=R_{1}-F_{2}$. Then, it follows from the above fact that R_{2} is a solution of problem (I) for $t>2 T+2 \gamma$. Furthermore, R_{2} has compact support of at most 3γ at $t=2 T+2 \gamma$, and

$$
E\left(R_{2} ; \infty, 2 T+2 \gamma\right) \leq k E\left(R_{1} ; 5 \gamma, 2 T\right)
$$

with $k=2(\rho+1)$. We repeat this procedure. Then, for $t>n T$,

$$
u=\sum_{j=0}^{n} F_{j}+R_{n},
$$

where

$$
\begin{equation*}
F_{j}=0 \quad \text { for } \quad|x|<t-j T-\gamma, \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{n} \text { is a solution of problem (I) for } t>n T+2 \gamma \tag{3.5}
\end{equation*}
$$

Let $\gamma_{0}>\gamma$ and let $t>n T+\gamma+\gamma_{0}>n T+2 \gamma$. Then, in view of (3.4), $u=R_{n}$ in $|x|<\gamma_{0}$, so that by (3.5) and (3.2),

$$
\begin{aligned}
E\left(u ; \gamma_{0}, t\right) & =E\left(R_{n} ; \gamma_{0}, t\right) \leq G\left(R_{n} ; \gamma_{0}, t\right) \leq G\left(R_{n} ; \infty, t\right) \\
& =G\left(R_{n} ; \infty, n T+2 \gamma\right) \leq \rho E\left(R_{n} ; \infty, n T+2 \gamma\right) .
\end{aligned}
$$

Moreover, by Lemma 3.2, it follows that

$$
E\left(u ; \gamma_{0}, t\right) \leq \rho E\left(R_{n} ; \infty, n T+2 \gamma\right) \leq \rho k E\left(R_{n-1} ; 5 \gamma, n T\right)
$$

for $k=2(\rho+1)$. Note that R_{n-1} is a solution of problem (I) for $t>(n-1) T+2 \gamma$ and that R_{n-1} has compact support of at most 3γ at $t=(n-1) T+2 \gamma$. Hence, we can apply (3.3) to $E\left(R_{n-1} ; 5 \gamma, n T\right)$ to obtain

$$
E\left(R_{n-1} ; 5 \gamma, n T\right) \leq \rho k p(T, \gamma) E\left(R_{n-1} ; \infty,(n-1) T+2 \gamma\right)
$$

with $p(T, \gamma)=\rho k(5 \gamma, 3 \gamma)(T-2 \gamma)^{-1}$. Repeating this procedure and using Lemma 3.1, we conclude that

$$
\begin{aligned}
E\left(u ; \gamma_{0}, t\right) & \leq \rho \exp \{n \log k p(T, \gamma)\} E\left(R_{0} ; \infty, 2 \gamma\right) \\
& \leq 4 \rho \exp \{n \log k p(T, \gamma)\} G_{0}(u) .
\end{aligned}
$$

Here, we take T so large that

$$
\log k p(T, \gamma)=-\theta T
$$

with $\theta>0$. This is possible since $p(T, \gamma) \rightarrow 0$ as $T \rightarrow \infty$. Therefore,

$$
E\left(u ; \gamma_{0}, t\right) \leq 4 \rho e^{-\theta n T} G_{0}(u) .
$$

Thus, if for given $t>0$ large enough, we choose the maximal integer n such that $t \geq n T+\gamma+\gamma_{0}$, then $n \geq\left(t-\gamma-\gamma_{0}\right) T^{-1}-1$. Hence, we obtain

$$
E\left(u ; \gamma_{0}, t\right) \leq k_{1} e^{-\theta t} G_{0}(u)
$$

with $k_{1}=4 \rho \exp \theta\left(\gamma+\gamma_{0}+T\right)$. This completes the proof.
Finally we note the following fact: The method presented here can be applied to a slightly more general problem of the following form:

$$
\frac{\partial^{2}}{\partial t^{2}} u-\frac{1}{a(x)} \nabla \cdot \rho(x) \nabla u=0
$$

where

$$
\rho(x)=\left\{\begin{array}{ll}
\rho>1 & \text { in } \mathcal{O} \\
1 & \text { in } \mathscr{E}
\end{array} \text { and } \quad a(x)=\left\{\begin{array}{ll}
a & \text { in } \mathcal{O} \\
1 & \text { in } \mathscr{E}
\end{array},\right.\right.
$$

and \mathcal{O} satisfies Assumption (A). Then, if $a \leq \rho$, we can obtain the same result as Main Theorem.

Appendix

We shall prove Lemma 1.5 .

Let $s(t)$ be a C^{∞}-function such that $s(t)=0$ for $0 \leq t \leq t_{0}-1$ and and $s(t)=1$ for $t \geq t_{0}, t_{0}>1$. We put $\tilde{u}(x, t)=s(t) u(x, t)$. Then, $\tilde{u}(x, t)$ satisfies the following equation:

$$
\tilde{u}_{t t}-\frac{1}{\rho(x)} \nabla \cdot \rho(x) \nabla \tilde{u}=p(x, t)
$$

with the initial condition

$$
\tilde{u}(x, 0)=0 \quad \text { and } \quad \tilde{u}_{t}(x, 0)=0,
$$

where $p(x, t)=2 s_{t} u_{t}+s_{t t} u$. Using the conservation of energy for u and the fact that the support of \tilde{u} is bounded for $0 \leq t \leq t_{0}$, we see that

$$
\begin{equation*}
\int_{0}^{t_{0}} \int u^{2} d x d t \leq k t_{0}^{3} G_{0}(u)=k_{1} G_{0}(u) . \tag{4.1}
\end{equation*}
$$

Hence, in order to prove Lemma 1.5, it is sufficient to show that
(4.2) $\quad \int_{0}^{\infty} \int_{|x| \leq R} e^{-2 t t} \tilde{u}^{2} d x d t \leq k(\eta) G_{0}(u)+\eta \int_{0}^{\infty} \int e^{-2 t t}(1+r)^{-1-\delta} \tilde{u}_{t}^{2} d x d t$,
where $G_{0}(u)$ is the total energy.
Now, we put $\tilde{v}=\left.\tilde{u}\right|_{e \times(0, \infty)}$ and $\tilde{w}=\left.\tilde{u}\right|_{0 \times(0, \infty)}$ and define $\tilde{U}(x, \omega), \tilde{V}(x, \omega)$ and $\tilde{W}(x, \omega)$ for $\omega=\mu+i \kappa, \kappa>0$, as follows:

$$
\left\{\begin{array}{l}
\tilde{U}(x, \omega)=\int_{0}^{\infty} e^{i \omega t} \tilde{u}(x, t) d t \tag{4.3}\\
\tilde{V}(x, \omega)=\int_{0}^{\infty} e^{i \omega t} \tilde{v}(x, t) d t \\
\tilde{W}(x, \omega)=\int_{0}^{\infty} e^{i \omega t} \tilde{w}(x, t) d t
\end{array}\right.
$$

Then, $\tilde{V}(x, \omega)$ and $\tilde{W}(x, \omega)$ satisfy the following equation:

$$
\begin{gather*}
-\Delta \tilde{V}-\omega^{2} \tilde{V}=P, \quad \text { in } \mathscr{E}, \tag{4.4}\\
-\Delta \tilde{W}-\omega^{2} \tilde{W}=P, \quad \text { in } \mathscr{O}, \\
\tilde{V}=\tilde{W} \quad \text { on } \partial \mathscr{E} \tag{4.5}
\end{gather*}
$$

$$
\begin{equation*}
\tilde{V}_{n}=\rho \tilde{W}_{n}, \quad \text { on } \partial \mathscr{E} \tag{4.6}
\end{equation*}
$$

where

$$
P(x, \omega)=\int_{0}^{\infty} e^{i \omega t} p(x, t) d t
$$

Note that $p(x, t)=0$ for $t \geq t_{0}$ and that $p(x, t)$ is of compact support in x for $0 \leq t \leq t_{0}$, so that $P(x, \omega)$ is also of compact support uniformly in ω. We can prove that if $\operatorname{Im} \omega>0$ and $P \in L^{2}\left(R^{n}\right)$, problem (4.4) ~ (4.6) has a unique solution U such that $U \in H^{1}\left(R^{n}\right), V=\left.U\right|_{\varepsilon} \in H^{2}(\mathscr{E})$ and W $=\left.U\right|_{0} \in H^{2}(\mathcal{O})$ and that (4.5) and (4.6) are satisfied in $H^{3 / 2}(\partial \mathscr{E})$ and $H^{1 / 2}(\partial \mathscr{E})$, respectively.

Before proving (4.2), we introduce the functional space $H^{2}(\mathcal{O}, R)$: Let $B_{R}=\{x| | x \mid \leq R\}$.

$$
H^{2}(\mathcal{O}, R)=\left\{U \in H^{1}\left(B_{R}\right)|U|_{\mathscr{O}} \in H^{2}(\mathcal{O}),\left.U\right|_{B_{R \cap \mathscr{B}}} \in H^{2}\left(B_{R} \cap \mathscr{E}\right) .\right.
$$

The norm in $H^{2}(\mathcal{O}, R)$ is given by

$$
\|U\|_{2, R}^{2}=\|U\|_{1, R}^{2}+\|W\|_{2, \circ}^{2}+\|V\|_{2, B_{R \cap \epsilon}}^{2},
$$

where $W=\left.U\right|_{0}, V=\left.U\right|_{B_{R \cap G}}$ and $\|\cdot\|_{1, R},\|\cdot\|_{2,0}$, and $\|\cdot\|_{2, B_{R} \cap e}$ are the norms in the Sobolev spaces $H^{1}\left(B_{R}\right), H^{2}(\mathcal{O})$ and $H^{2}\left(B_{R} \cap \mathscr{E}\right)$, respectively.

With the above notation, we state the following lemma from which (4.2) follows.

Lemma A.1. Let $\operatorname{Im} \omega>0, \omega=\mu+i \kappa$, and let $G(x)$ be a function with compact support. Let $U(x, \omega)$ be the solution of problem (4.4) ~ (4.6) with $P=G$. Then, we have the following statement:
(i) n; odd. Let $|\mu| \leq \Lambda$ and $0<\kappa \leq 1$. Then, there exists a constant $k=k(\Lambda, R)$ such that

$$
\|U\|_{2, R} \leq k\|G\|_{0}
$$

(ii) n; even. Let $\mu_{1}>0$. Let $\mu_{1} \leq|\mu| \leq \Lambda$ and $0<\lambda \leq 1$. Then, there exists a constant $k_{1}=k_{1}\left(\Lambda, \mu_{1}, R\right)$ such that

$$
\|U U\|_{2, R} \leq k_{1}\|G\|_{0} .
$$

Here $\|\cdot\|_{0}$ is the norm in $L^{2}\left(R^{n}\right)$ and the constants k and k_{1} may depend on the support of G.

The proof of this lemma is rather long and is done in the same way as in the proof of Lemma 4.6, Wilcox [8], pp. 65, and so we omit it.

We shall proceed to the proof of Lemma 1.5.
Proof of Lemma 1.5. As is stated above, it is sufficient to prove (4.2). Using the Schwarz inequality and the fact that $p(x, t)=0$ for
$t \geq t_{0}$, we have

$$
\int|P(x, \omega)|^{2} d x \leq t_{0} \int_{0}^{t_{0}} \int|p(x, t)|^{2} d x d t
$$

Moreover, since $|p|^{2} \leq k\left(u_{t}^{2}+u^{2}\right)$, it follows from (4.1) that

$$
\begin{equation*}
\int|P(x, \omega)|^{2} d x \leq k G_{0}(u) \tag{4.7}
\end{equation*}
$$

for $k=k\left(t_{0}\right)$ independent of ω. First suppose that n is odd. Let $\tilde{U}(x, \omega)$ be the function defined by (4.3). Then, we have by Lemma A. 1 and (4.7),

$$
\begin{aligned}
\int_{0}^{\infty} \int_{|x| \leq R} e^{-2 \epsilon t}|\tilde{u}(x, t)|^{2} d x d t= & \int_{-\infty}^{\infty} \int_{|x| \leq R}|\tilde{U}(x, \mu+i \varepsilon)|^{2} d x d \mu \\
\leq & \int_{-\Lambda}^{A} \int_{|x| \leq R}|\tilde{U}(x, \mu+i \varepsilon)|^{2} d x d \mu \\
& +\Lambda^{-2} \int_{-\infty}^{\infty} \int_{|x| \leq R}|\mu \tilde{U}(x, \mu+i \varepsilon)|^{2} d x d \mu \\
\leq & k(\Lambda) G_{0}(u) \\
& +k(R) \Lambda^{-2} \int_{0}^{\infty} \int e^{-2 \varepsilon t}(1+r)^{-1-\delta} \tilde{u}_{t}^{2} d x d t
\end{aligned}
$$

Hence, if we take Λ sufficiently large, we obtain the desired result.
Next, we consider the even-dimensional case which is more complicated. Let $\delta<\delta^{\prime}<\frac{3}{5}$ and let $\sigma=1+\delta^{\prime}$. We choose $b, 1<b<2$, so that $q(b)=\left(b^{2}-b\right)\left(-\frac{1}{2} b^{2}+b+\frac{1}{2}\right)^{-1}=\sigma$. In fact, such a b exists since $q(1)$ $=0$ and $q(2)=4$. We set $C_{0}=b^{\circ}\left(-\frac{1}{2} b^{2}+b+\frac{1}{2}\right)$ for b defined above and introduce the following function:

$$
\varphi(r)= \begin{cases}1 & \text { for } 0 \leq r \leq 1 \tag{4.8}\\ -\frac{1}{2} r^{2}+r+\frac{1}{2} & \text { for } 1<r \leq b \\ C_{0} r^{-\sigma} & \text { for } r>b, r=|x|\end{cases}
$$

By the definition of b and C_{0}, we see that $\varphi(r)$ is a C^{1}-function and piecewise C^{2}-function and that $\Delta \varphi(r) \leq 0$.

Now, let $\tilde{U}(x, \omega), \tilde{V}(x, \omega)$ and $\tilde{W}(x, \omega)$ be the functions defined by (4.3). We multiply the equation $-\Delta \tilde{V}-\omega^{2} \tilde{V}=P$ by $\varphi(r) \tilde{\tilde{V}}$, integrate over \mathscr{E} and take the real parts. Then, using the fact that $\varphi=1$ and $\varphi_{n}=0$ on $\partial \mathscr{E}$ by (0.3), we have

$$
\begin{array}{r}
\operatorname{Re} \int_{\partial \epsilon} \tilde{V}_{n} \overline{\tilde{V}} d \sigma+\int_{\varepsilon} \varphi(r)|\nabla \tilde{V}|^{2} d x-\frac{1}{2} \int_{\varepsilon} \Delta \varphi|\tilde{V}|^{2} d x \\
=\operatorname{Re} \omega^{2} \int_{\varepsilon} \varphi(r)|\tilde{V}|^{2} d x+\operatorname{Re} \int_{\varepsilon} P \varphi \overline{\tilde{V}} d x
\end{array}
$$

Similarly multiplying the equation $-\Delta \tilde{W}-\omega^{2} \tilde{W}=P$ by $\rho \overline{\tilde{W}}$, we obtain

$$
\begin{aligned}
& -\operatorname{Re} \int_{\partial \delta} \rho W_{n} \overline{\tilde{W}} d \sigma+\int_{0} \rho|\nabla \tilde{W}|^{2} d x \\
& \quad=\operatorname{Re} \omega^{2} \int_{0} \rho|\tilde{W}|^{2} d x+\operatorname{Re} \int_{0} \rho P \overline{\tilde{W}} d x
\end{aligned}
$$

Taking account of relations (4.5) and (4.6), and adding up these two equalities, we have

$$
\begin{align*}
k \int(1+r)^{-\sigma}|\nabla \tilde{U}|^{2} d x & \leq \operatorname{Re} \omega^{2}\left(\int_{\theta} \varphi(r)|\tilde{V}|^{2} d x+\int_{0} \rho|\tilde{W}|^{2} d x\right) \tag{4.9}\\
& +\operatorname{Re} \int_{0} P \varphi \overline{\tilde{V}} d x+\operatorname{Re} \int_{0} \rho P \overline{\tilde{W}} d x,
\end{align*}
$$

where we have used that $\Delta \varphi \leq 0$ and that $\varphi(r) \geq k(1+r)^{-\sigma}$. We claim that if $n \geq 4$ and $1<\sigma<\frac{8}{5}$,

$$
\begin{equation*}
\int(1+r)^{-2-\sigma}|\tilde{U}|^{2} d x \leq k \int(1+r)^{-\sigma}|\nabla \tilde{U}|^{2} d x \tag{4.10}
\end{equation*}
$$

This assertion will be proved later. The third and fourth terms on the right side of (4.9) are estimated as

$$
\eta \int(1+r)^{-2-\sigma}|\tilde{U}|^{2} d x+k(\eta) \int|P|^{2} d x
$$

for any $\eta>0$ small enough, where we have used the fact that P is of compact support uniformly in ω. Hence, in view of (4.9) and (4.10), it follows that there exist constants k_{1} and k_{2} such that

$$
\int(1+r)^{-2-\sigma}|\tilde{U}|^{2} d x \leq k_{1} \mu^{2} \int(1+r)^{-\sigma}|\tilde{U}|^{2} d x+k_{2} \int|P|^{2} d x,
$$

since $\operatorname{Re} \omega^{2}=\mu^{2}-\kappa^{2} \leq \mu^{2}, \omega=\mu+i \kappa$, and $\varphi \leq k(1+r)^{-\sigma}$. We rewrite $k_{1} \mu^{2} \int(1+r)^{-\sigma}|\tilde{U}|^{2} d x$ as follows:

$$
\begin{aligned}
k_{1} \mu^{2} \int(1+r)^{-\sigma}|\tilde{U}|^{2} d x= & k_{1} \mu^{2} \int_{|x| \leq M}(1+r)^{-2-\sigma}(1+r)^{2}|\tilde{U}|^{2} d x \\
& +k_{1} \mu^{2} \int_{|x| \geq M}(1+r)^{-1-\delta}(1+r)^{-\eta^{\prime}}|\tilde{U}|^{2} d x
\end{aligned}
$$

where $\sigma=1+\delta^{\prime}$ and $\eta^{\prime}=\delta^{\prime}-\delta>0$. For $\eta>0$ small enough, we first choose $M=M(\eta)$ so large that $k_{1}(1+r)^{-\eta^{\prime}} \leq \eta$ for $|x| \geq M$, and next $\mu_{0}=\mu_{0}(\eta)$ so small that $k_{1} \mu^{2}(1+r)^{2} \leq \eta$ for $|x| \leq M$ and $|\mu| \leq \mu_{0}(\eta)$. Thus, we conclude that for any $\eta>0$ small enough, there exist constants $k(\eta)$ and $\mu_{0}(\eta)$ such that

$$
\int(1+r)^{-2-\sigma}|\tilde{U}|^{2} d x \leq \eta \mu^{2} \int(1+r)^{-1-\delta}|\tilde{U}|^{2} d x+k(\eta) \int|P|^{2} d x
$$

for $|\mu| \leq \mu_{0}(\eta)$. Hence, for each fixed $R>0$ and any $\eta>0$ small enough, we have

$$
\begin{equation*}
\int_{|x| \leq R}|\tilde{U}|^{2} d x \leq \eta \mu^{2} \int(1+r)^{-1-\delta}|\tilde{U}|^{2} d x+k(\eta, R) \int|P|^{2} d x \tag{4.11}
\end{equation*}
$$

for $|\mu| \leq \mu_{0}(\eta, R)$.
Now, we shall prove (4.2). As in the proof of the odd dimensional case, we have

$$
\begin{aligned}
\int_{0}^{\infty} \int_{|x| \leq R} e^{-2 \varepsilon t} \tilde{u}^{2} d x d t & =\int_{-\infty}^{\infty} \int_{|x| \leq R} \mid \tilde{U}\left(x, \mu+\left.i \varepsilon\right|^{2} d x d \mu\right. \\
& =\int_{|\mu| \leq \mu_{0}(\eta)} d x d \mu+\int_{\mu_{1} \leq|\mu| \leq \Lambda} d x d \mu+\int_{|\mu| \geq 1} d x d \mu \\
& =I_{1}+I_{2}+I_{3}
\end{aligned}
$$

I_{1}, I_{2} and I_{3} are estimated as follows:

$$
I_{1} \leq \eta \int_{-\infty}^{\infty} \int(1+r)^{-1-\delta}|\mu \tilde{U}(x, \mu+i \varepsilon)|^{2} d x d \mu+k_{1}(\eta) G_{0}(u)
$$

by (4.11) and (4.7), if we take $\mu_{0}(\eta)$ sufficiently small for any $\eta>0$.

$$
I_{2} \leq k_{2}(\eta, \Lambda) G_{0}(u)
$$

by (ii) of Lemma A. 1 and (4.7).

$$
I_{3} \leq k_{3} \Lambda^{-2} \int_{-\infty}^{\infty} \int(1+r)^{-1-\delta}|\mu \tilde{U}(x, \mu+i \varepsilon)|^{2} d x d \mu
$$

Here the constants k_{1}, k_{2} and k_{3} may depend on R. Thus, for any $\eta>0$ small enough, we can choose Λ so large that

$$
\int_{0}^{\infty} \int_{|x| \leq R} e^{-2 t t} \tilde{u}^{2} d x d t \leq k(\eta) G_{0}(u)+\eta \int_{0}^{\infty} \int e^{-2 t t}(1+r)^{-1-\delta} \tilde{u}_{t}^{2} d x d t
$$

This proves (4.2). It remains to prove (4.10). We start with the following identity:

$$
\begin{aligned}
\int r^{2-n}\left|\nabla\left((1+r)^{-\sigma / 2} r^{(n-2) / 2} u\right)\right|^{2} d x= & \int(1+r)^{-\sigma}|\nabla u|^{2} d x \\
& -C_{1} \int(1+r)^{-2-\sigma}|u|^{2} d x \\
& +2 C_{2} \int(1+r)^{-1-\sigma} r^{-1}|u|^{2} d x \\
& -C_{3} \int(1+r)^{-\sigma} r^{-2}|u|^{2} d x
\end{aligned}
$$

for $u \in H^{1}\left(R^{n}\right)$, where

$$
C_{1}=\frac{1}{4}\left(\sigma^{2}+2 \sigma\right), C_{2}=\frac{1}{4} \sigma(n-1), \quad \text { and } \quad C_{3}=\frac{1}{4}(n-2)^{2} .
$$

Furthermore, we have by the Schwarz inequality,

$$
\begin{aligned}
2 C_{2} \int(1+r)^{-1-\sigma} r^{-1}|u|^{2} d x \leq & C_{4} \int(1+r)^{-2-\sigma}|u|^{2} d x \\
& +C_{3} \int(1+r)^{-\sigma} r^{-2}|u|^{2} d x
\end{aligned}
$$

with $C_{4}=\sigma^{2}(n-1)^{2}(2 n-4)^{-2}$. Hence, if $\sigma<\frac{5}{8} \leq 2(n-2)^{2}(2 n-3)^{-1}$, then $C_{1}-C_{4}>0$. This completes the proof.

References

[1] J. Cooper, Local decay of solutions of the wave equation in the exterior of a moving body, J. Math. Anal. Appl., 49 (1975), 130-153.
[2] J. Copper and W. A. Strauss, Energy boundness and decay of waves reflecting off a moving obstacle, India. Univ. Math. J., 25 (1976), 671-690.
[3] P. Lax and R. Phillips, Scattering Theory, Academic Press, New York, 1967.
[4] C. Morawetz, Exponential decay of solutions of the wave equation, Comm. Pure Appl. Math., 19 (1966), 439-444.
[5] -, Decay for solutions of the exterior problem for the wave equation, Comm. Pure Appl. Math., 28 (1975), 229-264.
[6] W. A. Strauss, Dispersal of waves vanishing on the boundary of an exterior domain, Comm. Pure Appl. Math., 28 (1975), 265-278.
[7] M. E. Taylor, Grazing rays and reflection of singularities of solutions to wave equations, Comm. Pure Appl. Math., 29 (1976), 1-38.
[8] C. H. Wilcox, Scattering theory for the d'Aembert equation in exterior domains, Lecture notes in Math., 442, Springer-Verlag, 1975.
[9] E. C. Zachmanoglou, The decay of solutions of the initial-boundary value problem
for the wave equation in unbounded regions, Arch. Rat. Mech. Anal., 14 (1963), 312-325.

Department of Mathematics
Faculty of Engineering
Nagoya University

