s. Mori

Nagoya Math. J.
Vol. 67 (1977), 165-176

ON THE DEFICIENCIES OF MEROMORPHIC MAPPINGS OF C^{n} INTO $P^{N} C$

SEIKI MORI

1. Introduction

Let $f(z)$ be a non-degenerate meromorphic mapping of the n-dimensional complex Euclidean space C^{n} into the N-dimensional complex projective space $P^{N} C$. A generalization of results of Edrei-Fuchs [2] for meromorphic mappings of C into $P^{N} C$ was given by Toda [5], and an estimate of $K(\lambda)$ for meromorphic mappings of C^{n} into $P^{N} C$ was done by Noguchi [4]. In this note we generalize several results of Edrei-Fuchs [2] in the case of meromorphic mappings of C^{n} into $P^{N} C$.

Let $\left(z_{1}, \cdots, z_{n}\right)$ be the natural coordinate system in C^{n}. We put

$$
\begin{gathered}
\|z\|^{2}=\sum_{\alpha=1}^{n} z_{\alpha} \bar{z}_{\alpha}, \quad B(r)=\left\{z \in C^{n}:\|z\|<r\right\}, \quad \partial B(r)=\left\{z \in C^{n}:\|z\|=r\right\} \\
d^{c}=\frac{\sqrt{-1}}{4 \pi}(\bar{\partial}-\partial), \quad \psi=d d^{c} \log \|z\|^{2}, \quad \psi_{k}=\underbrace{\psi \wedge \cdots \wedge}_{k},
\end{gathered}
$$

and

$$
\sigma=d^{c} \log \|z\|^{2} \wedge \psi_{n-1}
$$

We note that $\int_{\partial B(r)} \sigma=1$ for any $r>0$. (See Carlson-Griffiths [1], p. 562).
For a divisor D in $C^{n}(\nexists 0)$, we write

$$
n(t, D)=\int_{D \cap B(t)} \psi_{n-1} \quad \text { and } \quad N(r, D)=\int_{0}^{r} \frac{n(t, D)}{t} d t
$$

Let F be a line bundle over $P^{N} C$ and let $\left\{U_{j}\right\}_{j=1}^{m}$ be an open covering of $P^{N} C$ such that the restrictions $\left.F\right|_{U_{j}}$ are trivial. Then F is determined by the 1-cocycles $\left\{\theta_{j k}\right\}$ which are non-zero holomorphic functions on $U_{j} \cap U_{k}$ and satisfying $\theta_{j k}(w)=\theta_{j \ell}(w) \cdot \theta_{\ell k}(w)$ for $w \in U_{j} \cap U_{k} \cap U_{\ell}$.

[^0]Let $\phi=\left\{\phi_{j}\right\} \in H^{0}\left(P^{N} C, \mathcal{O}(F)\right)$ be a holomorphic section of F and a $=\left\{a_{j}(w)\right\}$ an Hermitian metric in F, that is, every $a_{j}(w)$ is a positive C^{∞}-function and $a_{j}(w)=\left|\theta_{j k}(w)\right|^{2} a_{k}(w)$ on $U_{j} \cap U_{k}$. Since $\frac{\left|\phi_{j}(w)\right|^{2}}{a_{j}(w)}=\frac{\left|\phi_{k}(w)\right|^{2}}{a_{k}(w)}$ on $U_{j} \cap U_{k}$, we put $|\phi|^{2}(w)=\frac{\left|\phi_{j}(w)\right|^{2}}{a_{j}(w)}$ and call it the norm of ϕ. We put $\omega=\omega_{F}=\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \log a_{j}(w)$ which represents a Chern class $c(F)$ of F.

The quantity

$$
T(r, f)=\int_{0}^{r} \frac{d t}{t} \int_{B(t)} f^{*} \omega \wedge \psi_{n-1}
$$

is called the characteristic function of f, where $f^{*} \omega$ denotes the pull back of the form ω by f. Sometimes we write $T(r)$ instead of $T(r, f)$ for simplicity. We note that $T(r, f)$ is independent of a choice of the form ω_{F} of F up to an $0(1)$-term. (See Griffiths-King [3], p. 182)

For a hyperplane H in $P^{N} C$, we choose always a global holomorphic section $\phi \in H^{\circ}\left(P^{N} C, \mathcal{O}(F)\right)$ such that the divisor (ϕ) of ϕ is equal to H and $|\phi|^{2} \leqslant 1$.

We put

$$
m(r, H)=\int_{\partial B(r)} u_{\phi}(z) \sigma \quad(\geqslant 0),
$$

where $u_{\phi}(z)=\log \frac{1}{|\phi|^{2}(f(z))}$. Then by Nevanlinna's first main theorem, we have

$$
T(r, f)=N\left(r, f^{*} H\right)+m(r, H)-m(0, H)
$$

provided that $f(0) \notin H$.
For a hyperplane H in $P^{N} C$, the quantity

$$
\delta(H, f)=1-\lim _{r \rightarrow \infty} \frac{N\left(r, f^{*} H\right)}{T(r, f)}
$$

is called the deficiency of H. We define the order λ and the lower order μ of f as follows:

$$
\lambda=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r} \quad \text { and } \quad \mu=\liminf _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}
$$

Let $f: \boldsymbol{C}^{n} \rightarrow P^{N} \boldsymbol{C}$ be a meromorphic mapping and $w=\left(w_{0} ; \cdots ; w_{N}\right)$ a homogeneous coordinate system in $P^{N} C$. Then f can be represented as $f=\left(f_{0} ; \cdots ; f_{N}\right)$, where f_{j} are entire functions and $\operatorname{codim}\left\{z \in C^{n}: f_{0}(z)\right.$ $\left.=\cdots=f_{N}(z)=0\right\} \geqslant 2$. If $f=\left(g_{0} ; \cdots ; g_{N}\right)$ is another representation of f, then there is an entire function $\alpha(z)$ such that $g_{j}=e^{\alpha} \cdot f_{j}(j=0, \cdots$, N). We now take the standard line bundle as F and, taking the metric $a(w)=\sum_{j=0}^{N}\left|w_{j}\right|^{2} /\left|w_{i}\right|^{2}\left(w_{i} \neq 0\right)$ in F, we see $\omega=d d^{c} \log a(w)$ and obtain

$$
\begin{equation*}
T(r, f)=\int_{\partial B(r)} \log \left(\sum_{j=0}^{N}\left|f_{j}\right|^{2}\right)^{1 / 2} \sigma-\log \left(\sum_{j=0}^{N}\left|f_{j}(0)\right|^{2}\right)^{1 / 2}, \tag{1}
\end{equation*}
$$

provided that $\sum_{j=0}^{N}\left|f_{j}(0)\right|^{2} \neq 0$.
Let $\gamma_{\rho}\left(z, z_{0}\right)$ be an automorphism of $B(\rho)$ such that $\gamma_{\rho}\left(z_{0}, z_{0}\right)=0$ for $z_{0} \in B(\rho)$. We now write

$$
\psi_{\rho}\left(z, z_{0}\right)=\psi \circ \gamma_{\rho}\left(z, z_{0}\right) \quad \text { and } \quad \sigma_{\rho}\left(z, z_{0}\right)=\sigma \circ \gamma_{\rho}\left(z, z_{0}\right) .
$$

If $z_{0}=(r, 0, \cdots, 0), \zeta=\left(\zeta_{1}, \cdots, \zeta_{n}\right)$ and if

$$
\gamma_{\rho}\left(\zeta, z_{0}\right)=\frac{\rho}{\rho-\frac{r}{\rho} \zeta_{1}}\left(\zeta_{1}-r,\left(1-\left(\frac{r}{\rho}\right)^{2}\right)^{1 / 2} \zeta_{2}, \cdots,\left(1-\left(\frac{r}{\rho}\right)^{2}\right)^{1 / 2} \zeta_{n}\right)
$$

then, by elementary calculation, we see

$$
\psi_{\rho}\left(\zeta, z_{0}\right)=\frac{\rho^{2}-r^{2}}{\left\|\gamma_{\rho}\left(\zeta, z_{0}\right)\right\|^{2}} d d^{c} \log \|z\|^{2}
$$

and

$$
d^{c} \log \left\|\gamma_{\rho}\left(\zeta, z_{0}\right)\right\|^{2}=\frac{\rho^{2}-r^{2}}{\left|\rho-\left(\frac{r}{\rho}\right) \zeta_{1}\right|^{2}} d^{c} \log \|z\|^{2}
$$

on $\partial B(\rho)$, since $d\|z\|^{2}=\sum_{\alpha=1}^{n}\left(\bar{z}_{\alpha} d z_{\alpha}+z_{\alpha} d \bar{z}_{\alpha}\right)=0$ on $\partial B(\rho)$. Hence we have

$$
\frac{\left(1-\left(\frac{r}{\rho}\right)^{2}\right)^{n}}{\left(1+\frac{r}{\rho}\right)^{2 n}} \sigma(\zeta) \leqslant \sigma_{\rho}\left(\zeta, z_{0}\right) \leqslant \frac{\left(1-\left(\frac{r}{\rho}\right)^{2}\right)^{n}}{\left(1-\frac{r}{\rho}\right)^{2 n}} \sigma(\zeta)
$$

for $\zeta \in \partial B(\rho)$.
2. We now prove the following theorem which yields a relation between the lower order and the deficiencies:

TheOrem 1. Let $f: \boldsymbol{C}^{n} \rightarrow P^{N} C$ be a meromorphic mapping of lower order μ such that $\lim _{r \rightarrow \infty}(T(r, f) / \log r)=\infty$ and let $H_{j}(j=0, \cdots, N)$ be $N+1$ hyperplanes in $P^{N} C$ in general position. If $\gamma=\max _{0 \leqq j \leqq N}\left(1-\delta\left(H_{j}, f\right)\right)$ <1, then

$$
\mu \geqslant \frac{\log \left(\frac{1}{\gamma(2-\gamma)}\right)}{\log \tau} \quad \text { for } \gamma \neq 0
$$

and

$$
\mu \geqslant 1 \quad \text { for } \gamma=0
$$

where $\tau=\max \left(\tau_{0}, \frac{5 n}{\gamma(1-\gamma)}\right)$ and $\tau_{0} \in \boldsymbol{R}$ is the maximum real number of τ_{0} such that $\left(\left(\tau_{0}+1\right)^{n}-\left(\tau_{0}-1\right)^{n}\right) \cdot\left(\tau_{0}-1\right)^{-n}=\frac{5}{2} n \cdot \tau_{0}{ }^{-1}$.

The following is a direct result of Theorem 1.
Corollary 1. Under the same assumption as in Theorem 1, if there are $N+1$ hyperplanes $H_{j} \subset P^{N} C$ in general position such that $\delta\left(H_{j}, f\right)>0$ $(j=0, \cdots, N)$, then the lower order μ of f is positive or infinity.

To prove Theorem 1, we prepare a lemma.
Lemma 1. Let $f: C^{n} \rightarrow P^{N} C$ be a meromorphic mapping and H_{j} $\subset P^{N} C(j=0, \cdots, N) N+1$ hyperplanes in general position. If $\tau>\tau_{0}$, then

$$
\begin{equation*}
T(r, f) \leqslant \frac{5 n}{\tau} T(\tau r, f)+\max _{0 \leq j \leq N} N\left(\tau r, H_{j}\right)+O(\log r), \quad(r \rightarrow \infty) \tag{2}
\end{equation*}
$$

Proof. Since $N+1$ hyperplanes $H_{j}(j=0,1, \cdots, N)$ in general position, we may take a homogeneous coordinate system $w=\left(w_{0} ; \cdots ; w_{N}\right)$ in $P^{N} C$ such that $H_{j}=\left\{w \in P^{N} C: w_{j}=0\right\}(j=0,1, \cdots, N)$, so we fix such homogeneous coordinate w and represent f as $f=\left(f_{0} ; \cdots ; f_{N}\right)$.

Let $\gamma_{\rho}\left(z, z_{0}\right)$ be an automorphism of $B(\rho)$ such that $\gamma_{\rho}\left(z_{0}, z_{0}\right)=0$ for $z_{0} \in B(\rho)$. For any $j(=0,1, \cdots, N)$ and $\rho>0$, we have

$$
\begin{gathered}
\left|\int_{\partial B(\rho)} \log \right| f_{j}(z)|\sigma(z)|=\left|\int_{\partial B(\rho)}\left(\log ^{+}\left|f_{j}(z)\right|-\log ^{+} \frac{1}{\left|f_{j}(z)\right|}\right) \sigma(z)\right| \\
<T_{1}\left(\rho, f_{j}\right)+O(1)<\infty
\end{gathered}
$$

where $T_{1}\left(\rho, f_{j}\right)$ denotes the characteristic function of $f_{j}: C^{n} \rightarrow P^{1} C$. Hence we see that $\log \left|f_{j}(z)\right|$ is integrable on $\partial B(\rho)$ for $\rho>0$ and $j=0, \cdots, N$.

Putting $x_{\alpha}=\left(z_{\alpha}-\bar{z}_{\alpha}\right) / 2$ and $y_{\alpha}=\left(z_{\alpha}+\bar{z}_{\alpha}\right) / 2 \sqrt{-1}$, we can regard $B(R)$ as the open ball in the $2 n$-dimensional real Euclidean space with radius R and the center at the origin. Consider a Dirichlet problem

$$
\left\{\begin{aligned}
\sum_{\alpha=1}^{n}\left(\frac{\partial^{2}}{\partial x_{\alpha}^{2}}+\frac{\partial^{2}}{\partial y_{\alpha}^{2}}\right) \Omega_{j} & =0 \quad \text { in } B(R), \\
\Omega_{j \mid \partial B(R)} & =\log \left|f_{j}(z)\right|
\end{aligned}\right.
$$

Then we see that there is a harmonic function $\Omega_{j}(z)$ in $B(R)$ satisfying

$$
\Omega_{j}(\zeta)=\lim _{\substack{z \rightarrow \xi \\ z \in B(R)}} \Omega_{j}(z)=\log \left|f_{j}(\zeta)\right|
$$

for $\zeta \in \partial B(R) \backslash \operatorname{supp}\left(f_{j}\right)$, where $\left(f_{j}\right)$ denotes the divisor of $f_{j},(j=0, \cdots, N)$.
For $\|z\|=r$ and any $\rho: r<\rho<R$, we have

$$
\Omega_{j}(z)-\Omega_{0}(z)=\int_{\partial B(\rho)}\left(\Omega_{j}(\zeta)-\Omega_{0}(\zeta)\right) \sigma_{\rho}(\zeta, z),
$$

so

$$
\log \left|f_{j}(z)\right| \leqq \Omega_{j}(z) \leqq \int_{\partial B(\rho)}\left(\Omega_{j}(\zeta)-\Omega_{0}(\zeta)\right) \sigma_{\rho}(\zeta, z)+\Omega_{0}(z)
$$

By a homogeneity of a sphere $B(\rho)$, the upper bound and the lower bound of $\sigma \circ \gamma_{\rho}(\zeta, z)$ on $\partial B(\rho)$ can be replaced by those of $\sigma \circ \gamma_{\rho}^{0}(\zeta, z)$, where

$$
\gamma_{\rho}^{0}(\zeta, z)=\frac{\rho}{\rho-\left(\frac{r}{\rho}\right) \zeta_{1}}\left(\zeta_{1}-r, \sqrt{1-(r / \rho)^{2}} \zeta_{2}, \cdots, \sqrt{1-(r / \rho)^{2}} \zeta_{n}\right)
$$

Hence we have

$$
\sigma_{\rho}(\zeta, z)=(1+Q) \sigma(\zeta),
$$

where

$$
|Q| \leqq \frac{\left(\tau_{\rho}+1\right)^{n}-\left(\tau_{\rho}-1\right)^{n}}{\left(\tau_{\rho}-1\right)^{n}}=\frac{2 n \tau_{\rho}^{n-1}+O\left(\tau_{\rho}^{n-3}\right)}{\left(\tau_{\rho}-1\right)^{n}}, \quad \tau_{,}=\frac{\rho}{r}>1
$$

Therefore, we obtain

$$
\log \left|f_{j}(z)\right| \leqq \int_{\partial B(\rho)}\left(\Omega_{j}(\zeta)-\Omega_{0}(\zeta)\right) \sigma(\zeta)
$$

$$
\begin{align*}
+\frac{\left(\tau_{\rho}+1\right)^{n}-\left(\tau_{\rho}-1\right)^{n}}{\left(\tau_{\rho}-1\right)^{n}} \int_{\partial B(\rho)}\left|\Omega_{j}(\zeta)-\Omega_{0}(\zeta)\right| \sigma(\zeta) & +\Omega_{0}(z) \tag{3}\\
& (j=0, \cdots N)
\end{align*}
$$

Let χ_{ρ} be the characteristic function of $B(\rho)$. Then the first term in the right hand side of (3) is equal to

$$
\begin{aligned}
\int_{\partial B(\rho)}\left(\Omega_{j}(\zeta)-\Omega_{0}(\zeta)\right) \sigma(\zeta) & =\int_{B(\rho)} d\left\{\left(\Omega_{j}(\zeta)-\Omega_{0}(\zeta)\right) \sigma(\zeta)\right\} \\
& =\int_{B(R)} \chi_{\rho} d\left\{\left(\Omega_{j}(\zeta)-\Omega_{0}(\zeta)\right) \sigma(\zeta)\right\}
\end{aligned}
$$

which is converges to

$$
\int_{B(R)} d\left\{\left(\Omega_{j}(\zeta)-\Omega_{0}(\zeta)\right) \sigma(\zeta)\right\}=\int_{\partial B(R)}\left(\Omega_{j}(\zeta)-\Omega_{0}(\zeta)\right) \sigma(\zeta) \quad(\rho \rightarrow R)
$$

This is easily verified by Lebesgue's convergence theorem.
Similarly, the second term in the right hand side of (3) converges to

$$
\frac{\left(\tau_{R}+1\right)^{n}-\left(\tau_{R}-1\right)^{n}}{\left(\tau_{R}-1\right)^{n}} \int_{\partial B(R)}\left|\Omega_{j}(\zeta)-\Omega_{0}(\zeta)\right| \sigma(\zeta) \quad(\rho \rightarrow R)
$$

Hence, for any $j(=0,1, \cdots, N)$ we obtain from (3)

$$
\log \left|f_{j}(z)\right| \leqq \int_{\partial B(R)} \log \left|\frac{f_{j}(\zeta)}{f_{0}(\zeta)}\right| \sigma(\zeta)+\frac{5 n}{2 \tau} \int_{\partial B(R)} \log \left|\frac{f_{j}(\zeta)}{f_{0}(\zeta)}\right| \sigma(\zeta)+\Omega_{0}(z)
$$

so

$$
\begin{align*}
\max _{0 \leqq j \leqq N} \log \left|f_{j}(z)\right| & \leqq \max _{0 \leqq j \leqq N}\left(N\left(R,\left(f_{j}\right)\right)-N\left(R,\left(f_{0}\right)\right)\right) \\
& +\max _{0 \leqq j \leqq N} \frac{5 n}{2 \tau} \int_{\partial B(R)}|\log | \frac{f_{j}(\zeta)}{f_{0}(\zeta)}| | \sigma(\zeta)+\Omega_{0}(z) \tag{4}
\end{align*}
$$

On the other hand, by (1) we have

$$
T(r, f)=\int_{\partial B(r)} \log \left(\sum_{j=0}^{N}\left|f_{j}\right|^{2}\right)^{1 / 2} \sigma-\log \left(\sum_{j=0}^{N}\left|f_{j}(0)\right|^{2}\right)^{1 / 2}
$$

provided that $\sum_{j=0}^{N}\left|f_{j}(0)\right|^{2} \neq 0$. Hence, by integrating (4) on $\partial B(r)$, we have

$$
T(r, f) \leqq \int_{\partial B(r)} \max _{0 \leqq j \leqq N} \log \left|f_{j}(z)\right| \sigma(z)+O(1)
$$

$$
\begin{aligned}
\leqq & \max _{0 \leqq j \leqq N}\left(N\left(R,\left(f_{j}\right)\right)-N\left(R,\left(f_{0}\right)\right)\right)+\frac{5 n}{\tau} T(R, f) \\
& +\int_{\partial B(r)} \Omega_{0}(z) \sigma(z)+O(\log r), \quad(r \rightarrow \infty)
\end{aligned}
$$

Since $\Omega_{0}(z)$ is harmonic in $B(R)$, we see

$$
\begin{aligned}
\int_{\partial B(r)} \Omega_{0}(z) \sigma(z) & =\lim _{r^{\prime} \rightarrow R} \int_{\partial B\left(r^{\prime}\right)} \Omega_{0}(z) \sigma(z) \\
& =\int_{\partial B(R)} \Omega_{0}(z) \sigma(z)=\int_{\partial B(R)} \log \left|f_{0}(z)\right| \sigma(z) \\
& =N\left(R,\left(f_{0}\right)\right),
\end{aligned}
$$

whence

$$
T(r, f) \leqq \max _{0 \leqq j \leqq N}\left(N\left(R,\left(f_{j}\right)\right)\right)+\frac{5 n}{\tau} T(R, f)+O(\log r) .
$$

Thus we obtain

$$
T(r, f) \leqq \max _{0 \leq j \leq N}\left(N\left(R,\left(H_{j}\right)\right)\right)+\frac{5 n}{\tau} T(R, f)+O(\log r), \quad(r \rightarrow \infty)
$$

since $N\left(R,\left(f_{j}\right)\right)=N\left(R, H_{j}\right)(j=0,1, \cdots, N)$.
Therefore we have Lemma 1.
Now we shall prove Theorem 1. By Lemma 1, we have

$$
\begin{equation*}
T(r, f) \leqq \max _{0 \leqq j \leqq N}\left(N\left(R, H_{j}\right)\right)+\frac{5 n}{\tau} T(R, f)+O(\log r) \tag{5}
\end{equation*}
$$

for $\tau>\tau_{0}, R=\tau r$. We now choose c and c^{\prime} such that $\gamma<c^{\prime}<c<1$. Since $1-\delta\left(H_{j}, f\right)=\limsup _{r \rightarrow \infty} N\left(r, H_{j}\right) / T(r, f) \leqq \gamma(j=0,1, \cdots, N)$, we have

$$
\begin{equation*}
N\left(r, H_{j}\right)<c^{\prime} T(r, f) \quad(j=0,1, \cdots, N) \tag{6}
\end{equation*}
$$

for all sufficiently large values of r. We take

$$
\begin{equation*}
\tau=\max \left(\tau_{0}, \frac{5 n}{c(1-c)}\right), \tag{7}
\end{equation*}
$$

where τ_{0} is determined such as in the statement of Theorem 1. Then we have from (5), (6) and (7)

$$
T(r, f) \leqq c(2-c) T(\tau r, f)
$$

Hence, by a similar method to Edrei-Fuchs [2], we have

$$
\mu=\liminf _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r} \geqq \log \left\{\frac{1}{c(2-c)}\right\} / \log \tau
$$

By letting $c \rightarrow \gamma$, we obtain the conclusion of Theorem 1 .
3. We shall next show that, if $K(f)=\limsup _{r \rightarrow \infty} \sum_{j=0}^{N} N\left(r, H_{j}\right) / T(r, f)$ is sufficiently small, then the order λ is close to the lower order μ and that, if, in addition, μ is finite, then λ and μ are both close to a positive integer. First we shall prove

Lemma 2. Let $f: C^{n} \rightarrow P^{N} C$ be a meromorphic mapping. Then

$$
\begin{align*}
2 T(r, f)- & 2 N(r)<(q+1) r^{q} \int_{\rho}^{R} N(\alpha t) t^{-q-1} \phi\left(\frac{t}{r}\right) d t \\
& +8.5(N+1)\left(\frac{r}{\rho}\right)^{q} T(\alpha \rho)+8.5(N+1)\left(\frac{r}{R}\right)^{q+1} T(\alpha R)+O(1) \tag{8}\\
& (r \rightarrow \infty),
\end{align*}
$$

where

$$
\begin{aligned}
\phi(t) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{d \theta}{\left(t^{2}-2 t \cos \theta+1\right)^{1 / 2}}, \quad N(r)=\sum_{j=0}^{N} N\left(r, H_{j}\right), \\
\alpha & =e^{1 / q+1}, \quad \tau=(35(N+1))^{1 / \beta}, \quad \rho=\frac{r}{\alpha \tau}, \quad R=\frac{\tau r}{\alpha}
\end{aligned}
$$

and q denotes the largest integer not exceeding λ.
Proof. Let $f=\left(f_{0} ; \cdots ; f_{N}\right)$, where $f_{j}(j=0,1, \cdots, N)$ are entire functions and ℓ be a complex line in C^{n} through the origin. Using the inequality (10.2) in Edrei-Fuchs [2, p. 317], we have for $u \in \ell$ with $\|u\|=r$

$$
\begin{align*}
& 2 T_{\ell}\left(r, f_{j}\right)-2 N_{\ell}\left(r, 0, f_{j}\right) \\
& \quad=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f_{j}\left(u e^{i \theta}\right)\right| d \theta+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+} \frac{1}{\left|f_{j}\left(u e^{i \theta}\right)\right|} d \theta \\
& \quad \leqq(q+1) r^{q} \int_{\rho}^{R} N_{\ell}\left(\alpha t, 0, f_{j}\right) t^{-q-1} \phi\left(\frac{t}{r}\right) d t+8.5\left(\frac{r}{\rho}\right)^{q} T_{\ell}\left(\alpha \rho, f_{j}\right) \tag{9}\\
& \quad+8.5\left(\frac{r}{R}\right)^{q+1} T_{\ell}\left(\alpha R, f_{j}\right)
\end{align*}
$$

where $N_{\ell}(r)$ and $T_{\ell}(r)$ denote the counting function and the characteristic function of a meromorphic function of one complex variable obtained
by restricting of f to $\ell \subset C^{n}$.
Let $\nu(\ell)$ be the standard volume form on $P^{n-1} C$ defined by ψ and consider ℓ as a point of $P^{n-1} C$ in natural manner. Then we have from (9)

$$
\begin{aligned}
2 T\left(r, f_{j}\right)- & 2 N\left(r, 0, f_{j}\right) \\
= & \int_{\partial B(r)} \log ^{+}\left|f_{j}\right| \sigma+\int_{\partial B(r)} \log ^{+} \frac{1}{\left|f_{j}\right|} \sigma \\
= & \int_{P^{n-1} C} \nu(\ell)\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f_{j}\left(u e^{i \theta}\right)\right| d \theta+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+} \frac{1}{\left|f_{j}\left(u e^{i \theta}\right)\right|} d \theta\right\} \\
< & (q+1) r^{q} \int_{\rho}^{R} N\left(\alpha t,\left(f_{j}\right)\right) t^{-q-1} \phi\left(\frac{t}{r}\right) d t \\
& \quad+8.5\left(\frac{r}{\rho}\right)^{q} T\left(\alpha \rho, f_{j}\right)+8.5\left(\frac{r}{R}\right)^{q+1} T\left(\alpha R, f_{j}\right) \\
& \quad(j=0, \cdots, N),
\end{aligned}
$$

by noting $n\left(t,\left(f_{j}\right)\right)=\int_{\ell \in P^{n-1} C} n_{\ell}\left(t, 0, f_{j}\right) \nu(\ell)$ and by using Fubini's theorem, where $u \in \ell$ with $\|u\|=r$. Hence, by summing up those with respect to j, we have

$$
\begin{aligned}
2 \sum_{j=0}^{N} T\left(r, f_{j}\right)-2 \sum_{j=0}^{N} N\left(r, H_{j}\right) & \leqq(q+1) r^{q} \int_{\rho}^{R} \sum_{j=0}^{N} N\left(\alpha t, H_{j}\right) t^{-q-1} \phi\left(\frac{t}{r}\right) d t \\
+ & 8.5\left(\frac{r}{\rho}\right)^{q} \sum_{j=0}^{N} T\left(\alpha \rho, f_{j}\right)+8.5\left(\frac{r}{R}\right)^{q+1} \sum_{j=0}^{N} T\left(\alpha R, f_{j}\right)
\end{aligned}
$$

This implies

$$
\begin{aligned}
2 T(r, f)-2 N(r) & -O(1) \leqq(q+1) r^{q} \int_{\rho}^{R} \sum_{j=0}^{N} N\left(\alpha t, H_{j}\right) t^{-q-1} \phi\left(\frac{t}{r}\right) d t \\
& +8.5(N+1)\left(\frac{r}{\rho}\right)^{q} T(\alpha \rho, f)+8.5(N+1)\left(\frac{r}{R}\right)^{q+1} T(\alpha R, f)
\end{aligned}
$$

This proves the lemma.
Lemma 3. Under the same assumption as in Lemma 1, suppose further that there are a non-negative integer q and a positive number $\beta\left(0<\beta<\frac{1}{2}\right)$ such that

$$
\begin{equation*}
K(f)=\underset{r \rightarrow \infty}{\lim \sup } \sum_{j=0}^{N} N\left(r, H_{j}\right) / T(r, f)<\beta / 5 e(q+1) . \tag{10}
\end{equation*}
$$

I. $I f$

$$
\begin{equation*}
\lambda>q+1-\beta \tag{11}
\end{equation*}
$$

they every interval

$$
\begin{equation*}
x \leqq r \leqq(35(N+1))^{1 / \beta} x \quad\left(x>x_{0}\right) \tag{12}
\end{equation*}
$$

contains a point s such that

$$
\begin{equation*}
T(u) u^{-q-1+\beta} \leqq T(s) s^{-q-1+\beta} \quad\left(x_{0} \leqq u \leqq s\right) \tag{13}
\end{equation*}
$$

where x_{0} is a suitable positive number satisfying $N(x)<\tau T(x)$ for all $x \geqq x_{0}$.
II. $I f$

$$
\begin{equation*}
\mu<q+\beta, \tag{14}
\end{equation*}
$$

then every interval (12) contains a point t such that

$$
T(t) t^{-q-\beta} \geqq T(v) v^{-q-\beta} . \quad(v \geqq t)
$$

From this lemma, we easily have
Corollary 2. If (10) and (11) hold, then $\mu \geqq q+1-\beta$. If (10) and (14) hold, then $\lambda \leqq q+\beta$.

Here we shall give a proof of Lemma 3. Let $\tau=(35(N+1))^{1 / \beta}$ and $q+\beta \leqq c \leqq q+1-\beta$. Then we see

$$
\begin{equation*}
T(r, f) / r^{c}<\sup _{r / \tau \leq u \leqq \tau r} T(u, f) / u^{c} \tag{15}
\end{equation*}
$$

for all sufficiently large values of r. In fact, if we take $\kappa=\beta / 5 e(q+1)$, then (10) implies

$$
\begin{equation*}
N(u)<\kappa T(u) \tag{16}
\end{equation*}
$$

for all large u. Suppose that (15) is violate, that is, suppose

$$
\begin{equation*}
T(u) \leqq\left(\frac{u}{r}\right)^{c} T(r) \quad\left(\frac{r}{\tau} \leqq u \leqq \tau r\right) \tag{17}
\end{equation*}
$$

Then Lemma 2, (16), (17) and a similar method to that of Edrei-Fuchs [2] imply the following contradiction:

$$
2 \leqq 2 \kappa+\frac{2.2 e}{\beta}(q+1) \kappa+17(N+1) e / 35(N+1)<2
$$

Thus we have the desired assertion.
Theorem 2. Let $f: C^{n} \rightarrow P^{N} C$ be a meromorphic mapping of order λ and of lower order μ. Let p be the integer such that $p-\frac{1}{2} \leqq \mu<p$ $+\frac{1}{2}$. If $\beta: 0<\beta \leqq \frac{1}{2}$ and
(18) $K(f)=\limsup _{r \rightarrow \infty} \sum_{j=0}^{N} N\left(r, H_{j}\right) / T(r, f)<\beta / \max \left(20 n+1,2 \tau_{0}\right)(p+1)$, then $p \geqq 1,|\lambda-p|<e \beta / 2 \max \left(20 n+1,2 \tau_{0}\right)$ and

$$
p-\beta \leqq \mu \leqq \lambda \leqq p+\left\{e \beta / 2 \max \left(20 n+1,2 \tau_{0}\right)\right\}
$$

To prove Theorem 2, we need the following lemma.
Lemma 4 (Noguchi [4]). Let $f: C^{n} \rightarrow P^{N} C$ be a meromorphic mapping of finite order λ which is not a positive integer. Then, for any $N+1$ hyperplanes $H_{j} \subset P^{N} C(j=0,1, \cdots, N)$ in general position,

$$
\begin{equation*}
K(f) \geqq 2 \Gamma^{4}\left(\frac{3}{4}\right)|\sin \pi \lambda| /\left\{\pi^{2} \lambda+\Gamma^{4}\left(\frac{3}{4}\right)|\sin \pi \lambda|\right\} . \tag{19}
\end{equation*}
$$

Now we can give a proof of Theorem 2. If $K(f)=0$, then $\gamma=0$ and $\mu \geqq 1$. If $\gamma \neq 0$, then by Theorem 1 we have

$$
\mu \geqq \log \frac{1}{\gamma(2-\gamma)} / \log \tau>\log (1 / 2 \gamma) / \log \max \left(\tau_{0}, \frac{5 n}{\gamma(1-\gamma)}\right) .
$$

Since

$$
\gamma=\max _{0 \leqq j \leqq N}\left(1-\delta\left(H_{j}, f\right)\right) \leqq K(f)<1 / \max \left(2 \tau_{0}, 20 n+1\right)(p+1)
$$

we see

$$
\log 2 \tau_{0}<\log (1 / 2 \gamma) \quad \text { and } \quad \log (5 n / \gamma(1-\gamma))<2 \log (1 / 2 \gamma) .
$$

Hence we have $\mu \geqq \frac{1}{2}$, so $p \geqq 1$.
We now show that

$$
\begin{equation*}
\lambda \leqq p+1-\beta \tag{20}
\end{equation*}
$$

Suppose that (20) is violate. Then, from (18), we see $K(f)<\beta / 5 e(p+1)$. Hence we can apply Corollary 2 with $q=p$ and obtain $\mu \geqq p+1-\beta$. This contradicts our hypothesis. Hence (20) is valid. By (18) and Lemma 4, we see

$$
\beta / \max \left(20 n+1,2 \tau_{0}\right)(p+1)>K(f)>|\sin \pi \lambda| / e(p+1)
$$

whence

$$
|\sin \pi \lambda|<e \beta / \max \left(20 n+1,2 \tau_{0}\right) .
$$

If k is the integer defined by $|k-\lambda| \leqq \min (\lambda-[\lambda],[\lambda]+1-\lambda)$, then

$$
2|k-\lambda| \leqq|\sin \pi(k-\lambda)|=|\sin \pi \lambda|<e \beta / \max \left(20 n+1,2 \tau_{0}\right)
$$

Since $p-\frac{1}{2} \leqq \mu \leqq \lambda<p+1-\beta$, this leaves the only possibility $k=p$, so $|\lambda-p|<e \beta / 2 \max \left(20 n+1,2 \tau_{0}\right)$.

On the other hand, if we apply Collorary 2 with $q+1=p \geqq 1$, then we see $\mu \geqq p-\beta$. This completes the proof of Theorem 2 .

Corollary 3. Let $f: C^{n} \rightarrow P^{N} C$ be a meromorphic mapping of order λ and of lower order μ and suppose $\lim _{r \rightarrow \infty} T(r, f) / \log r=\infty$. If there are $N+1$ hyperplanes $H_{j} \subset P^{N} C(j=0,1, \cdots, N)$ in general position such that $\delta\left(H_{j}, f\right)=1(j=0,1, \cdots, N)$, then λ is identical with μ and is a positive integer or infinity.

The author expresses his thanks to professors H. Fujimoto and J. Noguchi who have taken opportunity of reading the first draft of this paper.

REFERENCES

[1] Carlson, J. and Griffiths, P., A defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. of Math., 95 (1972), 556-584.
[2] Edrei, A. and Fuchs, W. H. J., On the growth of meromorphic functions with several deficient values, Trans. Amer. Math. Soc., 93 (1959), 293-328.
[3] Griffiths, P. and King, J., Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math., 130 (1973), 145-220.
[4] Noguchi, J., A relation between order and defect of meromorphic mappings of C^{n} into $P^{N} C$, Nagoya Math. J., 59 (1975), 97-106.
[5] Toda, N., Sur la croissance de fonctions algebroides á valeurs deficientes, Kōdai Math. Sem. Rep., 22 (1970), 324-337.

Mathematical Institute

Tōhoku University

[^0]: Received September 27, 1976.

