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ON THE DEFICIENCIES OF MEROMORPHIC MAPPINGS
OF C* INTO P~C

SEIKI MORI

1. Introduction

Let f(z) be a non-degenerate meromorphic mapping of the n-dimen-
sional complex Euclidean space C” into the N-dimensional complex projec-
tive space PYC. A generalization of results of Edrei-Fuchs [2] for mero-
morphic mappings of C into PYC was given by Toda [5], and an estimate
of K(2) for meromorphic mappings of C" into PYC was done by Noguchi
[4]. In this note we generalize several results of Edrei-Fuchs [2] in the
case of meromorphic mappings of C* into PYC.

Let (2, ---,2,) be the natural coordinate system in C*. We put

Il = Sz, BO)={zeC: |zl <7}, 9B ={zeC:|z] =1}

a=2"LG_5, p=ddloglzl', vi=vA-Av,
4r S———

k
and

o =d°log|z|" N\ ¥u_y .

We note that I o =1 for any r > 0. (See Carlson-Griffiths [1], p. 562).

aB(r)
For a divisor D in C* (20), we write

"t D)y,
£

n(t,D)zj Voo, and N(r,D):L

DNB(t)

Let F be a line bundle over P¥C and let {U,}7-, be an open covering
of PYC such that the restrictions F'|;, are trivial. Then F' is determined
by the 1-cocycles {4,,} which are non-zero holomorphic functions on U; N U,
and satisfying 6,.(w) = 6;,(w)-0,,(w) for we U, N U, N U,.
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Let ¢ = {¢,} e H(P¥C, O(F)) be a holomorphic section of F' and a
= {a;(w)} an Hermitian metric in F, that is, every a,(w) is a positive

C=-function and a,(w) = |0,,(w)} a,(w) on U;NU,. Since g, )" _ | $u(w)
a,(w)  ay(w)

on U, NU,, we put |g(w) = |_¢_j_((_ww))_|2 and call it the norm of ¢. We put
@;
V-1

0= wp = 5 90 log a;(w) which represents a Chern class c¢(F) of F.

The quantity
70, = {0 A
o t Jaw

is called the characteristic function of f, where f*w denotes the pull
back of the form o by f. Sometimes we write T(r) instead of T(r,f)
for simplicity. We note that T'(r, f) is independent of a choice of the
form wy of F up to an 0(1)-term. (See Griffiths-King [3], p. 182)

For a hyperplane H in P¥C, we choose always a global holomorphic
section ¢ € HY(PY¥C, O(F)) such that the divisor (¢) of ¢ is equal to H and
g < 1.

We put

me )= [ u@e (>0,

where u,(z) = log: 1

18] (F(2)

Then by Nevanlinna’s first main theorem,

we have
T(r,f) = N(r, f*H) + m(r,H) — m(0,H) ,

provided that f(0) ¢ H.
For a hyperplane H in PYC, the quantity

: N(r, f*H)
S(H, f)=1-—1 RMANERLLY
H, N im sup T, 7)

is called the deficiency of H. We define the order 2 and the lower order
p of f as follows:

7= lim sup 22872 oy = tim ing 108 L@
e log » 7=o log 7
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Let f:C* — PYC be a meromorphic mapping and w = (wy; - -+ ; wy)
a homogeneous coordinate system in PY¥C. Then f can be represented
as f = (fo; -+ f~), where f; are entire functions and codim {z € C": f,(2)
= ... =fy®=0}>2. If f=1(gs; --;9x) is another representation
of f, then there is an entire function «(z) such that g, =e*-f; (G=0,---,
N). We now take the standard line bundle as F' and, taking the metric

a(w) = 2V o|w, P /lw;|? (w; # 0) in F, we see o = dd°log a(w) and obtain
N 1/2 N 1/2
W ren = tee(S15r) o —log (3 1r,0F)

provided that >3,|f;(0)F # 0.
Let 7,(2,2) be an automorphism of B(p) such that y,(z,2,) =0 for
2,€ B(p). We now write

V(2,2 = Vor,(2,2) and o,(z,2) = co7,(2,2) .
If 2y = (7"0, s "O), C = (Cl, ¢ ',Cn) and If
2\ 1/2 2\ 1/2
T,,(C» ZO) = —“—py—“<C1 ) (1 - (f—)) Czy ) <1 - (Z")) Cn) ’
o — —& o e
0
then, by elementary calculation, we see

A8 20) = O e log ||z P
VG2 = e el

and

2 a2
dlog 17,6 ) |F = —E—"_dclog ||z

r
’P - <;)C1
on 9B(p), since d|z|f = > ., (z.dz, + 2,dZ,) = 0 on dB(p). Hence we have
(-()) (t-G))

—0(0) <0, 2) < o
(1+) (t-7)

a(©)

for ¢ €0B(p).

2. We now prove the following theorem which yields a relation be-
tween the lower order and the deficiencies:
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THEOREM 1. Let f:C"— P¥C be a meromorphic mapping of lower
order p such that lim (T(r, f)/logr) = co and let H; (G =0,..-,N) be

7->00

N +1 hyperplanes in PYC in general position. If y = max (1 —6(H;, /)

0<j<N
<1, then
(i)

y>——{%}i for y 0

and
7= for y=0,

bn
A -

2y such that ((z, + 1" — (2 — 1)) (g, — 1)=" = —g—n-ro"‘.

where t = max (ro, ) and r,€ R s the maximum real number of

The following is a direct result of Theorem 1.

COROLLARY 1. Under the same assumption as in Theorem 1, if there
are N + 1 hyperplanes H; C PVC in general position such that 6(H;, ) > 0
(G=0,---,N), then the lower order p of f is positive or infinity.

To prove Theorem 1, we prepare a lemma.

LEMMA 1. Let f:C*— PYC be a meromorphic mapping and H;
CcCP’C (G=0,---,N) N+ 1 hyperplanes in general position. If > ¢,
then

(2) 70,/ < 2TGr, /) + maxNr, Hy) + Oogn) , (1= o) .
7=
Proof. Since N + 1 hyperplanes H; (j = 0,1, ---, N) in general posi-
tion, we may take a homogeneous coordinate system w = (wy; ---; wy)
in P¥C such that H, ={weP"C:w; =0} (=0,1,---,N), so we fix
such homogeneous coordinate w and represent f as f = (fy; -+ fw)-
Let 7,(2,2,) be an automorphism of B(p) such that y,(2,2) =0 for
z,€B(p). For any j(=0,1,---,N) and p > 0, we have

U QI

= |J o o 100 = 1o e

< Tl(P)fj) + 0(1) < o,
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where T,(p, f;) denotes the characteristic function of f,: C* — P'C. Hence
we see that log |f;(2)| is integrable on 0B(p) for p >0 and j=0,..-,N.
Putting 2z, = (2, — z,)/2 and y, = (2, + 2.)/2v/ —1, we can regard
B(R) as the open ball in the 2n-dimensional real Euclidean space with
radius R and the center at the origin. Consider a Dirichlet problem

{Z( 7o+ T )o,=0 mB®,

ox: oy
Qij(R) = log lf;(z)] .

Then we see that there is a harmonic function 2,(z) in B(R) satisfying

2,0 = lim 2,() = log |£,©)|

z
2EB(R)

for ¢ € 0B(R)\supp (f;), where (f,) denotes the divisor of f;, (j =0, ---,N).
For ||z]| = r and any p:7r < p < R, we have

2;(2) — 2y(2) = LB( ) (250 — (e, (&, 2)
S0

log /(&) = 2,() = LB( ) (250 — £(D)o,(C,2) + 2i(2) .

By a homogeneity of a sphere B(p), the upper bound and the lower bound
of gop,(,2) on dB(p) can be replaced by those of s07((,2), where

e
p——(%)g

g, 2) = & — 1 VT = @), - VI — (r]p)C) -
Hence we have

(82 =0 4+ Qe ,
where

+ D" —(, =" _ 2077 + O(z"%)

(z,
QI = E— —

Therefore, we obtain

log|/,@| = [, (@0 — 24D
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3) PG N G Vi f 12,0 — 2(©)]0©) + 24)
(c, — D" aB(p)
G=0,----N).

Let y, be the characteristic function of B(p). Then the first term
in the right hand side of (3) is equal to

[0, @0 — 200 = [ (2,0 — 2@}
= [ %d@,0 — 200},
which is converges to
[, d@© - 2@ =[ @0 -2 (-h.

This is easily verified by Lebesgue’s convergence theorem.
Similarly, the second term in the right hand side of (3) converges
to

(cr + 1) : (;)R — e f 12,0 — 2©)]a) (—R).

Hence, for any j (= 0,1,.--,N) we obtain from (3)

fj(C)l o(0) + 21 2-[ Lm )1

log|/,@)| = | log
dB(R)

S5 ] © + 2@ ,

Jo© Jo(©)
SO
4 5n )
+ gfaﬁv 27 me lo Jo© lG(C) 242 -

On the other hand, by (1) we have

76, 1) = [ log (5 17:F) "0 — o (3 17,08) "

provided that > 7_,|f;(0)f = 0. Hence, -by integrating (4) on oB(r), we
have

T(r, f) < j max log |/,(2)| o(z) + O(L)

9B(r) 0sjSN



MEROMORPHIC MAPPINGS 171
< max (N, (f,)) — N®, (f)) + 2“T(R, f)
0SjJEN T

+ j o, Q@@ + Oogn), (> o) .

Since 2,(z) is harmonic in B(R), we see

f 2@ = lim Q4(2)0(2)
dB(r

r’=>R J 3B(r’)
= [ 24(2)o(z) = f log | £(2)] o(2)
8B(R) dB(R)
- N(R7 (fo)) )

whence
T(r, /) < max (V@ (7)) + 22T, /) + Olog 1) .
Thus we obtain
I(,f) < max (N(R, (H)) + §}T<R, D+ 0Qogr), (r— o),

since N(Rr(fj)) = N(R’Hj) (.7 =0, ]-y . ',N)-
Therefore we have Lemma 1.
Now we shall prove Theorem 1. By Lemma 1, we have

(5) T(r, /) < max (N, Hy) + 2LT(R, ) + Oflog 1)

for > ¢, R =tr. We now choose ¢ and ¢ such that y < ¢ <e¢<1.
Since 1-— B(Hj,f) = lim SUPN(T,HJ)/T(T,f) g 7 (.7: 0, 1; .. ‘,N)’ we have

=00

(6) N H) <T@, f) (G =0,1,--,N)

for all sufficiently large values of ». We take

(7) T=max(ro,%>,

where 7, is determined such as in the statement of Theorem 1. Then
we have from (5), (6) and (7)

T, f) =@ — T(r, f) .

Hence, by a similar method to Edrei-Fuchs [2], we have
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.. o log T(r, ) { 1 }
= lim inf 2~/ 7 >] — =  t/logrt.
#= logr o8 c¢2—o) / Be
By letting ¢ — y, we obtain the conclusion of Theorem 1.

3. We shall next show that, if K(f) = limsup > ¥ N, H)/T(r, f)

r—o

is sufficiently small, then the order 2 is close to the lower order x and
that, if, in addition, p is finite, then 2 and p are both close to a posi-
tive integer. First we shall prove

LEMMA 2. Let f:C*— PY¥C be a meromorphic mapping. Then
270, f) — 2N() < (@ + D | Neatyt-og(L)ae
e 2

r\¢ r\2+t
(8) + 850N + 1)(;) T(ap) + 8.5(N + 1)(7%-) T(«R) + O(1)
(r— o),

where

1 J o
t) = - ,
PO = o) @ Steoss 1 D7

NG =3 NG, H) ,

a=en, t=@N+ ), p=", R=T"

and q denotes the largest integer not exceeding A.

Proof. Let f = (fo; -3 x) where f; (j =0,1,..-.,N) are entire
functions and 4 be a complex line in C* through the origin. Using the
inequality (10.2) in Edrei-Fuchs [2, p. 317], we have for uec ¢ with
flull =7

ZTZ(T,fj) - 2NZ(7', O,fj)

=1 jzx log™ |f;(ue*)| do + lf” log* L
2xJo 2z Jo

|f1(uet)| @
(9) < (q + D I R Nat, 0, fj)t'q—‘¢(%)dt + 8.5(%)%(@,&)
+ 8.5(%)““%(6{13,]3) :

where N,(r) and T,(r) denote the counting function and the characteristic
function of a meromorphic function of one complex variable obtained
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by restricting of f to ¢ C C~.
Let v(4) be the standard volume form on P"~'C defined by + and
consider ¢ as a point of P*~!C in natural manner. Then we have from

©
2T, f) — 2N(@, 0,1

= [, o8 wilo + [ tog® IJ}jI ’
= LHC u(e){zlﬂ Jz" log* | f;(ue®)| do + Zln: Jz" log* mdﬁ}
<@+ 0 [ NGt Gateig(L)at
+ 8.5(%)%(«@]‘» + 8.5<%>Q+IT(aR,fj)
G=0,---,N),

by noting n(t, () = j Cng(t, 0, f)v(£) and by using Fubini’s theorem,
¢epn—1

where uc ¢ with ||u||=7. Hence, by summing up those with respect

to 7, we have

R N

2 ZNQ, T(r,f)) — 2 io NG H) < (@ + D |3 Neat, Hj)t‘q‘lgz&(%)dt

P 7=

+ 8.5(%)" Jﬁo T(ap, f)) + 8.5(%)"“ ]ﬁzo T(aR, f;) .

This implies
2T(r, f) — 2N() — O1) < (q + Ly f * ﬁo N(at, Hj)t‘q“gz&(%)dt

+ 85V + (L) Ttap, /) + 850V + (%) 7@k, 1) .
e
This proves the lemma.

LEMMA 3. Under the same assumption as in Lemma 1, suppose
further that there are a mon-negative integer q and a positive number
B0 < B <) such that

10) K(f) = lim sup Jﬁo NG, H)|T(r, 1) < 8/5e(q + 1) .

r=—00



174 SEIKI MORI

1. If
an 2>q+1-8,
they every interval
12) < r < BN + D)o (x> xy)
contains a point s such that
(13) Tu= 18 < T(s)s™e1+# @ =u<s),

where x, i1s a suitable positive number satisfying N(x) < T(z) for all
T = X
II. If

14 vt<qg+8,
then every interval (12) contains a point t such that
Tt 7% = T(wyv=9¢, w=1.
From this lemma, we easily have

COROLLARY 2. If (10) and (11) hold, then p = q + 1 — 8. If (10) and
(14) hold, then 2 < q + B.

Here we shall give a proof of Lemma 3. Let r = (35(V 4 1))/ and
g+B8=c=q+1—p. Then we see

(15) T, Nre < sup T(u,f)|u

r/rSuser

for all sufficiently large values of . In fact, if we take x = g/5e(q¢ + 1),
then (10) implies

(16) N@w) < eT(w)

for all large u. Suppose that (15) is violate, that is, suppose
an Tw) < (E>CT(7‘) (ﬁ <u< ‘:’)”) .
7 T

Then Lemma 2, (16), 17) and a similar method to that of Edrei-Fuchs
[2] imply the following contradiction:

22+ %(q + Dk + 17N + 1De/35(N + 1) < 2.
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Thus we have the desired assertion.

THEOREM 2. Let f:C"— PYC be a meromorphic mapping of order
2 and of lower order u. Let p be the integer such that p — 1 < p<p
+ 3 If B:0<B=Z1% and

(18) K(f) = lim supéN(r, H)/T@r,f) < p/max (20n + 1,2z)(p + 1),

700

then »p = 1, |2 — p| < ef/2max (20n + 1,27) and
Pp—B=p=2=p+ {ef/2max (20n + 1,27} .
To prove Theorem 2, we need the following lemma.

LEMMA 4 (Noguchi [4]). Let f: C*— PYC be o meromorphic mapping
of finite order A which is not a positive integer. Then, for any N + 1
hyperplanes H; C PYC (j = 0,1, - - -, N) in general position,

(19) K(f) = 2I(3) |sin 22/ {z*2 + T') |sin za]} .

Now we can give a proof of Theorem 2. If K(f) =0, then y =0
and # = 1. If y 0, then by Theorem 1 we have

_J__) / log = > log (1/2p)/log max (fn, __5”_) .

= log
# 12 —7 =7

Since

r=max (1 — o(H;, ) < K(f) <1/max (2z,20n + D)(p + 1),

0=j=N

we see
log 2z, < log (1/2) and log Bn/y(1 — 7)) < 2log (1/2p) .

Hence we have p= 4, so p = 1.
We now show that

20) A<p+1-4.

Suppose that (20) is violate. Then, from (18), we see K(f) <p/be(p + 1).
Hence we can apply Corollary 2 with ¢ = p and obtain = p + 1 — B.
This contradicts our hypothesis. Hence (20) is valid. By (18) and
Lemma 4, we see

B/max (20n + 1,2¢)(p + 1) > K(f) > |sinzi|/e(p + 1),
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whence
|sin 72| < ef/max (20n + 1,2z, .
If & is the integer defined by |k — 4] £ min (2 — [4],[4] + 1 — 2), then
21k — 2] S |sinz(k — )| = |sin z1] < ef/max (20n + 1,27z, .

Since p — = p=2<p+1— 3, this leaves the only possibility &k = p,
80 |2 — p| < eB/2max (20n + 1, 2¢,).

On the other hand, if we apply Collorary 2 with ¢ + 1 = p =1, then
we see y = p — B. This completes the proof of Theorem 2.

COROLLARY 3. Let f:C*— P¥C be a meromorphic mapping of order
2 and of lower order p and suppose lim T(r, f)/logr = co. If there are

N + 1 hyperplanes H; C PC (7 =0,1,---,N) in general position such
that 6(H;, f) =1 =0,1,.--,N), then 2 is identical with p and is a
positive integer or infinity.

The author expresses his thanks to professors H. Fujimoto and J.
Noguchi who have taken opportunity of reading the first draft of this

paper.
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