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A GENERALIZATION OF THE LEVINSON-MASSERA'S
EQUALITIES

KENICHI SHIRAIWA

In his study of non-linear differential equations of the second order,
N. Levinson [3] defined the dissipative systems (Z)-systems) which arise
in many important cases in practice. To a dissipative system a trans-
formation T: R2 —> R2 called the Poincare transformation is associated.
Levinson used the Poincare transformation in the qualitative study of
dissipative systems, and he [3] and Massera [5] obtained certain equalities
between the number of subharmonic solutions of a dissipative systems
under suitable conditions. We call these the Levinson-Massera's equalities.

In this paper we define a class of non-linear differential equations
of order n named jD'-systems, which is a subclass of Z)-systems for
n = 2 and still contains many important systems in practice. For a D'-
,systems of order n, we associate a transformation T: Rn —> Rn, which
we call the Poincare transformation associated to the D'-system. By a
qualitative study of the Poincare transformation T, we obtain some
equalities between the number of subharmonic solutions of a .D'-system
under suitable conditions. These equalities coincide with the Levinson-
Massera's equalities for n — 2.

In the final section of this paper, we give an extension of the above
results to a certain class of the time dependent vector fields on a com-
pact differentiable manifold of arbitrary dimension.

§ 1. The Poincare transformation

Consider the following differential equation (1).

^ (t,x), teR, xeRn< 1 ) ^ f(
dt

We assume the following condition (A) throughout the paper.
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(A) (a) fit, x) is an Rn-valued function of class C1.

(b) f(t,x) is periodic of period 1 with respect to the variable t~

That is

fit + l,x) = f(t, x) for t e R , x e Rn .

(c) There exists a solution x — φ(t t0, #0) of the equation (1) defined

on — oo < £ < + oo with any initial condition (£o>#o) eR X Rn.

By the assumption (A) the above solution x — φ(t £0, xQ) is unique with

respect to the initial value ito,xo).

Now, a transformation T: Rn —> i?w is defined by

( 2) Γ(a ) = φ(l;0,x) , x e Rn .

We call this Γ the Poincare transformation associated to the equation (1)..

PROPOSITION 1. T is a dίffeomorphίsm of class C1 and is isotopic

to the identity. Especially, T is homotopίc to the identity and orien-

tation preserving.

Proof. It is easy to see that T is a bisection with T~\x) = ^(0; 1, x)r

x e Rn. Since fit, x) is of class C\ T and T~ι are of class C1 by the

smooth dependence of the solutions of the differential equation with

respect to the initial conditions. Therefore, T is a diffeomorphism of

class C1.

Let Tt:R
n -> Rn (0 ̂  ί <; 1) be a map defined by Tt{x) = φit O, x)r

xeRn. Then Tt (0 ̂  t <̂  1) is also a diffeomorphism of class C\ and

To = 1, the identity map of Rn, and Tx = T. Now, define a map f: Rn

X [0,1] -» i?w by Γ(a;, t) = Γt(α?) = φ(t 0, a?), (a?, t) e Rn x [0,1]. Then f

is of class C1 by the smooth dependence of the solutions with respect to

the initial conditions. Therefore, T is isotopic to the identity.

Since any diffeomorphism which is isotopic to the identity is homo-

topic to the identity and orientation preserving, the latter half of the

proposition is proved.

PROPOSITION 2. φ(t + 1 0, x) = φ(t 0, T(x)), teR, xeRn.

Proof. By our assumption (A) (b) it is easy to see that ψ(ί)>

= φ(t + 1 0, x), teR is a solution of (1) for any x e Rn. Since ψ(0>

= φ(l 0,x) = T(x), ψit) — φit; 0, Tix)) by the uniqueness of the solution

of (1) with respect to the initial condition.
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The following corollaries are easy consequences of Proposition 2.

COROLLARY 1. For any integer k, the following equality holds.

φ(t + k 0, x) = <p(t 0, Tk(x))9 teR, x e Rn ,

where Tk: Rn-> Rn is the k-fold iterate of T.

COROLLARY 2. Let k be a positive integer. Then the following

three conditions are equivalent.

(a) x(t) is a periodic solution of (1) of period k.

(b) x(0) is a fixed point of Tk.

(c) #(0) is a periodic point of T of period k.

Remark 1. If x(t) is a periodic solution of rational period, then

x(0) is a periodic point of T. If x(t) is a periodic solution of irrational

period, then x(0) is a recurrent point of T. Therefore, it is a non-

wandering point of T.

From now on, we represent a point x of Rn as a column vector

[xA
x = , and we identify an n X m matrix A with the linear map Rn

w
-> Rm which assign Ax e Rm to each # e Rn.

Let T: Rn -+ Rn be a diffeomorphism of class C1, and let peRn be

a fixed point of T. Then the derivative DT(p): IT -> I?" of Γ at p is a

linear map corresponding to the Jacobian matrix of Γ at p, and it is a

non-singular n x n matrix.

LEMMA 1. If T: Rn —> Rn is a Poίncare transformation associated

to a differential equation, then det DTk(p) > 0 for any periodic point of

T of period k.

Proof. By Proposition 1, Tk is orientation preserving for any

positive integer k. Therefore, det DTk (p) > 0 for any p e Rn such that

Tk(p) - p.

An isomorphism (or a non-singular square matrix) L: Rn —• Rn is

called hyperbolic if all the absolute values of its eigenvalues are different

from 1.

Let T: Rn -* Rn be a diff eomorphism of class C\ and let p e Rn be

a fixed point of T. We call p a hyperbolic fixed point of Γ, if DT(p)

is hyperbolic.
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Now, we shall?give?a criterion for a fixed point of a Poincare trans-

formation associated to a differential equation to be hyperbolic.

Let T: Rn -+ Rn be the Poincare transformation associated to (1),

and let p e Rn be a fixed point of T. Then x = <p(t 0, p) is a periodic

solution of (1) of period 1 by Proposition 2. Now, consider the variation

equation (3) of the equation (1) with respect to the periodic solution

x = φ(t; 0, p) of period 1.

( 3 ) ^^ Dxf(t,φ(f,
dt

where Dxf(t, x) is the Jacobian matrix of fit, x) with respect to x. The

variation equation (3) is a linear differetial equation with continuous

periodic coefficients of period 1.

PROPOSITION 3. Let W(t) be a fundamental matrix of the linear

system (3). Then DT(p) = Wil)W(0)"1.

Proof. Put R(t) = Dxφ(t 0, p), teR, where Dxψ(t 0, x) is the

Jacobian matrix of φ(t 0, x) with respect to x. Then jβ(ί) is a matrix

solution of (3) with the initial condition R(0) = En, the unit matrix.

Put S(t) = W(t)W(0)-\ teR. Then S(t) is also a matrix solution of

(3) with the initial condition 5(0) = En. Therefore, R(t) = S(t) for all

t by the uniqueness of the solution of (3) with respect to the initial

condition. Especially R(l) = S(l), that is Z?Γ(p) = W(1)W(0)"1.

COROLLARY. 2̂  is α hyperbolic fixed point of T if and only if all

the real parts of the characteristic exponents of (3) are different from 0.

Proof. This follows from the definition of a hyperbolic fixed point

and the Floquet theory using Proposition 3.

Let T: Rn -»R n be a diffeomorphism of class C\ and let p e Rn be a

hyperbolic fixed point of Γ. Now, let Z?w be the intersection of Rn and

the direct sum of the generalized eigenspaces of DT{p) corresponding to

the eigenvalues λ such that \λ\ > 1. Similarly, let Es be the intersection

of Rn and the direct sum of the generalized eigenspaces of DT(p) cor-

responding to the eigenvalues λ such that \λ\ < 1.

PROPOSITION 4. Under the above hypothesis and notations, the fol-

lowing properties hold.

(a) Rn = Eu Θ # s
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(b) Eu and Es are DT(p)-invariant subspaces.

(c) Let λ19 "'9λn be the characteristic roots of DT(p).

Then dimEu = #{*,; \λ€\ > 1} and dirnE8 = #{*«; μ,| < 1},

where #M denotes the cardinarίty of the set M.

(d) Let || || be a norm of Rn, and let L = DT(p).

Then there exist constant c (c > 0) and λ (0 < λ < 1) such that

\\L-k(x)\\ ^ cλk \\x\\ , xeEu

\\Lk(x)\\ ^ cλk \\x\\ , xeEs ,

where k is any positive integer.

This is a standard results in Smale's theory on differentiate dy-

namical systems (cf. [8]).

Let p be a hyperbolic fixed point of a diffeomorphism T:Rn->Rn.

Set

Wu(p) = ix e Rn lim T~k{x) = p) and
I fc-oo J

W5(p) = Ix e Rn lim Tfc(x) = p) .

We call Wu(p) (resp. ΐ^s(p)) the unstable (resp. stable) manifold of p. The

following theorem is a standard results in Smale's theory (Cf. [8]).

THEOREM. There exist suitable 1-1 immersions φu:Eu->Rn and

φs: Es -• Rn such that

(a) ^ ( # w ) = Wu(p), φs(Es) = Ws(p),

(b) φu(0) = ^s(0) = p, and

(c) dim ΐ^w(p) = dim Eu, dim VFs(p) = dim Es.

COROLLARY, (d) dim Wu(p) is equal to the number of characteristic

roots λ of DT(p) such that \λ\ > 1.

(e) dim Ws(p) is equal to the number of characteristic roots λ of DT(p)

such that \λ\ <1.

This is an easy consequence of the above theorem and Proposition 4.

Let p be a periodic point of T of minimal period nQ. Then p is a

fixed point of Tno. If DTno(p) is hyperbolic, we call p a hyperbolic

periodic point of T. Using Tno instead of Γ, the similar theory can be

developed as above for a periodic point of T.



126 KENICHISHIRAIWA

§2. The fixed point index

Let T: Rn -* Rn be a continuous map, and let p e Rn be an isolated

fixed point of T. Define a map 1 - T: Rn -> Rn by (1 - T)(x) = x - T(x),

xeRn. Then (1 — T)(p) = 0, and there exists a neighborhood V of p

such that (1 — T)(V — {p}) c Rn — {0} by our assumption. Therefore,

1 — T induces a homomorphism

(1 - D * : #«(V\ 7 - {P}) • Hn(R\ R- - {0}) ,

where Hn(A,B) denotes the n-dimensional homology group of a pair

(A,B) with coefficients in the group of integers Z.

The groups Hn(V, V — {p}) and Hn(Rn, Rn — {0}) are isomorphic to Z,

and if we fix an orientatation of Rn, then there correspond unique gen-

erators Ov and ORn of Hn(V, V — {p}) and Hn(Rn

9 Rn — {0}) respectively.

Using these generators Ov and ORn, we get

(1 - 2\(O F ) - mORn

for a suitable integer m. It is easily shown that m does not depend on

the choice of a neighborhood V and an orientation of Rn. The integer

determined above is called the fixed point index of T at p and is denoted

by indexΓ (p).

PROPOSITION 5. Let T: Rn -* Rn be a dίffeomorphism of class C\

and let p e Rn be a hyperbolic fixed point of T. Then p is an isolated

fixed point, and the fixed point index is given as follows.

1 if det (1 - DT(p)) > 0 ,

i if det (1 ~ DT(p)) < 0 ,

where det (1 — DT(p)) is the determinant of the matrix 1 — DT(p) and

1 is the unit matrix.

Proof. By a theorem of Hartman ([2], p. 245, Lemma 8.1), T re-

stricted on a suitable neighborhood of p is topologically equivalent to

DT(p) restricted on some neighborhood of the origin 0 of Rn. Therefore,

it is sufficient to prove Proposition 5 in case that T = DT(p) and p = 0.

Now assume that T is a hyperbolic linear isomorphism and p = 0.

Then T = DT(p) and all the eigenvalues of T are different from 1.

Therefore, det (1 - Γ) Φ 0. Thus, 0 e Rn is the only fixed point of Γ,

and p = 0 is an isolated fixed point of T.
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It is well known that a linear isomorphism L: Rn —* Rn induces an

isomorphism L* : Hn(Rn, Rn - {0}) -> Hn(Rn, Rn - {0}), and

°* if ,
0 ^ if detL < 0 ,

Putting L — 1 — T — 1 — DT(p), we obtain Proposition 5.

PROPOSITION 6. Lei T: Rn -+ Rn be a diff eomorphism of class C\

and let p e Rn be a hyperbolic fixed point of T. Let r be the number of

the real characteristic roots λt of DT(p) such that λt > 1. Then indexΓ (p)

= (-Dr.

Proof. Let λ19 •• ,>iTO be the characteristic roots of DT(p). Then

det (1 — DT(p)) = (1 — λλ) (1 — λn). If λt is a complex number, there

exists some j such that λj = 3ίβ Therefore, it does not affect on the

sign of det (1 - DT(p)). Now, it is clear that the sign of det (1 - DT(p))

is equal to that of (—l) r. Now Proposition 6 follows from Proposition 5.

PROPOSITION 7. Let T'.Rn-+Rn be a diffeomorphism of class C\

and let p e Rn be a hyperbolic fixed point of T. If we put u = dim Eu

and Lu = DT(p) \EU:EU —> Eu, then the following properties hold for any

positive integer k.

(a) // detLw > 0, then indexΓ*(p) = ( - l ) w .

(b) // det Lu < 0, then index^-x (p) = ( - l ) w + 1 and indexΓ2ft (p) = (-l)u.

Proof. Let λu-"9λn be the characteristic roots of DT(p). Then

1̂ 1 Φ 1 for any i by our hypothesis. Since DTk(p) = (DT(p))k, the char-

acteristic roots of DTk(p) are Λf, , Λ*. Therefore, the absolute values

of any eigenvalues of DTk(p) are different from 1. Therefore, p is a

hyperbolic fixed point of Tk.

Now assume the following (4).

λi is real and λt > 1 for 1 <£ i gΞ r ,

^ is real and λt < — 1 for r + l ^ i ^ r + s ,

λt is complex and | ^ | > 1 for r + s + l<^i<^r + s + t and
( 4 )

Then t is even for complex characteristic roots appear in pair, and

u = r + s + t by Proposition 4(c). Since άetLu = ^ -^ r + s + ί and the

product of complex characteristic roots Λr+S+1, •• ,Λr+5+ί is positive, the
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sign of detLu is equal to that of (—l) s.

If detLw > 0, then s is even. Therefore, ( - l ) u = (-l)r+s+t = ( - l ) r .

Now, let r(k) be the number of the real characteristic roots λ1- of DTk(p)

such that λi > 1. Then by (4) and the fact that the complex character-

istic roots appear in pair with their conjugates, we conclude that r(k)

= r m o d 2 . Therefore, indexΓ* (p) = (- l) r ( f c ) = ( - l ) r = (~l)u by Prop-

osition 6 and the above stated facts. This proves (a).

If detL w < 0, then s is odd. Therefore, (~l)u = (-iγ+s+t = ( - l ) r + 1 .

And if k is even, then r(k) = r + s = r + l mod 2 as above. Thus,

indexΓ*(p) = (-l) r ( f c ) = ( - l ) w if k is even. If k is odd, then r(k)

= r mod 2. Therefore, indexΓ* (p) = ( - l) r (A:) = ( - l ) r = ( - l ) ω + 1 . This

completes the proof.

EXAMPLE 1. Let n = 2, and let T:R2->R2 be a Poincare trans-

formation associated to a differential equation. Let p e R2 be a hyperbolic

fixed point of Γ, and let λlfλ2 (|Λi| ^ |Λ2|) be the characteristic roots of

DT(p). Then the following four cases occur since det DT(p) > 0 by

Lemma 1.

( i ) The point p is a completely unstable fixed point of T if

1 ^ |^i| ^ |Λ2|. In this case, indexΓ&(p) — 1 for any positive integer k.

(ii) The point p is a completely stable fixed point of T iΐ \λι\^\λ2\

< 1. In this case, indexr* (p) = 1 for any positive integer k.

(iii) The point p is a directly unstable fixed point of T if 0 < λx

< 1 < λ2. In this case, indexΓft(p) = — 1 for any positive integer fc.

(iv) The point p is an inversely unstable fixed point if λ2 < — 1

< λγ < 0. In this case, index^-i (p) = 1 and indexΓ2* (p) — — 1 for any
positive integer k.

Similar statements hold for hyperbolic periodic points of T.

DEFINITION 1. Let T:Rn-*Rn be a diffeomorphism of class C1,

and let p be a hyperbolic fixed point of Γ. Let Rn = ί7w ® E'5 be the

direct sum decomposition of Rn with respect to L = DT(p) as in Prop-

osition 4, and let Lu = DT(p) \ Eu: Eu -* # \

( i ) If dim J?w is even and det Lu > 0, then we call p a fixed point
of type PD.

(ii) If άιmEu is odd and detLu > 0, then we call p a fixed point
of type ND.

(iii) If dim Eu is even and det Lu < 0, then we call p a fixed point
of type PL
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(iv) If dimEu is odd and detLu < 0, then we call p a, fixed point

of type NL

For a hyperbolic periodic point p, we define its type similarly.

Using the above terminology Proposition 7 is restated as follows.

PROPOSITION Ψ. Under the same assumption of Proposition 7, the

following properties hold for any positive integer k.

( i ) If p is of type PD, then indexΓfc (p) — 1.

(ii) If p is of type ND, then index^* (p) = — 1.

(iii) // p is of type PI, then index^*-! (p) — — 1 and index^* (p) = 1.

(iv) // p is of type NI, then index^*-! (p) = 1 and indexΓ2fc (p) = — 1.

EXAMPLE 2. If n = 2, case (iii) of Definition 1 does not occur for

any Poincare transformations associated to differential equations by

Lemma 1.

If p is a completely unstable or stable fixed (or periodic) point of

Γ, then it is of type PD. If p is a directly unstable fixed (or periodic)

point of Γ, then it is of type ND. If p is an inversely unstable fixed

(or periodic) point of T, then it is of type NI.

Remark 2. The notions of the completely unstable, completely

stable, directly unstable and inversely unstable fixed point classify the

local topological types of the hyperbolic fixed point for n = 2. But our

types defined above do not classify the local topological types of the

hyperbolic fixed points.

The local topological type of a hyperbolic fixed point is classified

by the dimension of Eu and the signs of detLw and detL s .

If T is a Poincare transformation associated to a differential equa-

tion, then d e t Z ) Γ ( p ) > 0 for any fixed point p of T by Lemma 1.

Since det DT(p) = detLw detL s for a hyperbolic fixed point p, the local

topological type of a hyperbolic fixed point is classified by the dimension

of Eu and the sign of Lu.

§3. Levinson-Massera's equalities

The following theorem is well known.

THEOREM. (Poincare-Hopf-Lefschetz) Let T: Rn -* Rn be a con-

tinuous map such that all the fixed points of T are isolated. Suppose

that there exists a subset K of Rn such that
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( i ) K is homeomorphic to a closed n-dίsk,

(ii) T(K) (ZK and

(iii) all the fixed points of T are contained in K.

Then the following equality holds.

Σ indexΓ (p) = 1
Γ(p)=P

For a proof, see A. Dold [1] for example.

As an easy application, we have the following proposition.

PROPOSITION 8. Let T:Rn-+Rn be a diffeomorphism of class C\

and let k be a positive integer. Suppose that all the periodic points of

T of period k are hyperbolic. Further, assume that there exists a sub-

set K of Rn such that

( i ) K is homeomorphic to a closed n-disk,

(ii) Tk(K) czK and

(iii) all the periodic points of T of period k are contained in K.

Then the following equality holds.

2 indexΓ* (p) = 1

Now we shall state the main theorem of this paper.

THEOREM 1. Let T: Rn —> Rn be a diffeomorphism of class C1 such

that every periodic point of T is hyperbolic. Further, assume that there

exists a subset K of Rn such that

( i ) K is homeomorphic to a closed n-disk,

(ii) T(K) c K and

(iii) every periodic point belongs to K.

For each positive integer q, let PD(q) (resp. ND(q), PI(q), NI(q))

denote the number of the periodic points of T of minimal period q of

type PD (resp. ND, PI, NI), and let N(q) be the number of periodic

points of T of minimal period q. Then the following equalities hold.

( 5) N(q) - PD(q) + ND(q) + PI(q) + NI(q) for any q .

( 6) PD(1) + NIQ.) - NDQ.) + PI(X) + 1 -

( 7) N(X) - 2(ND(1) + P/(D) + 1

( 8) PD(q) + NI(q) = ND(q) + PI(q) if q is odd and q > 1 .



LEVINSON-MASSERA'S EQUALITIES 131

( 9 ) N(q) = 2(PD(q) + NI(q)) = 2(ND(q) + PI(q)) if q is odd and q > 1 .

(10) PD(q) + NI(q) + 2PI(q/2) = ND(q) + PI(q) + 2NI(q/2) if q is even .

(11) N(q) = 2(ND(q) + PI(q) + NI(q/2) - PI(q/2)) if q is even .

The following corollary is immediate from Theorem 1.

COROLLARY. Under the same assumption of Theorem 1, the follow-

ing properties hold.

(i) N(l) is odd.

(ii) If q is odd and q > 1, then N(q) is divisible by 2g.

(iii) // q is even and PI(q/2) = NI(q/2), then N(q) is divisible by

2q. Especially, if q is even and PI(q/2) — NI(q/2) = 0, then N(q) is

divisible by 2q.

Proof of Theorem 1. By the assumption of Theorem 1, all the

hypothesis of Proposition 8 are satisfied for any positive integer k, and

the equality (5) holds by the definition.

Putting k = 1 in Proposition 8, we obtain the following equality by

Proposition (7)'.

(12) PD(ΐ) - ND(1) - P/(D + NIO ) = 1

This proves (6), and (7) is an easy consequence of (5) and (6).

In order to prove (8) and (10), we write down the equality of Prop-

osition 8 in terms of PD(q), ND(q), PI(q) and NI(q). For this purpose,

the following lemma is useful.

LEMMA 2. Let p be a periodic point of T of minimal period r,

and let k be a positive integer. Then the following properties hold.

(a) // p is of type PD, then p is a periodic point of T of period

kr of type PD for any k.

(b) // p is of type ND, then p is a periodic point of T of period

kr of type ND for any k.

(c) // p is of type PI, then p is a periodic point of T of period kr

of type PI (resp. PD) for any odd k (resp. even k).

(d) // p is of type NI, then p is a periodic point of T of period

kr of type NI (resp. ND) for any odd k (resp. even k).

Proof. Since DTkr(p) = (DTr(p))k for each k, Lemma 1 is easily

derived from the definition.
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Now we come back to the proof of Theorem 1.

Let q be any odd integer greater than 1. Let qr = pΓ1# ίCm> where

Pi> ',Vm are odd primes and aϊ9 •• , α m are positive integers. Now,

we shall prove (8) by induction on s(q) = aλ + + am.

If s(q) = 1, then q is an odd prime, and the number of the fixed

points, of Tq of type PD (resp. ND, PI, NI) is equal to PD(1) + PD(q)

(resp. ND(X) + ND(q), P/(l) + PI(q), NIQ.) + NI(q)) by Lemma 2. There-

fore, by Proposition 8 applied to case k = q, we obtain the following

equality.

ND(q)) = 1 .

Subtracting (12) from the above equality, we obtain (8).

Assume that (8) holds for odd integers r with s(r) < s (s > 1). We

shall prove (8) for odd q such that s(q) = s.

By Lemma 2, the number of the fixed points of Tq of type PD

(resp. ND,PI,NI) is equal to Σr\qPD(r) (resp. Σ r | ί t f D ( r ) , Σ n β W ( r ) ,

ΣrlqNI(r)). Therefore, we have the following equality by Proposition 8.

Σ Σ Σ Σ
r\q r\q r\q r\q

By our inductive assumption, we have the following equality

PD(r) - ND(r) - PI(r) + NI(r) = 0 if r \ q and 1 < r < q .

Therefore, from the above equalities and (6), we obtain (8). Thus, (8)

is proved for any odd q with q > 1, and (9) is an easy consequence of

(8) and (5).

Let q be an even integer, and let q = 2α°pΐ1 p^m, where p1? , p m

are odd primes and #0> #i> > <*m are positive integers. Now, we shall

prove (10) by induction on t(q) = aQ + ax + + am.

If t — 1, then g = 2, and the number of the fixed point of Tq of

type PD (resp. ND,PI,NI) is equal to PZ)(1) + PD(2) + P/(l) (resp.

ND(X) + ND(2) + N/(l),P/(2),N/(2)) by Lemma 2. Therefore, the fol-

lowing equality holds by Proposition 8.

PD(2) + P/(l)) - (NDQ.) + ND(2) + NIQ.))

-PI (2) + NI(2) = 1

Subtracting (12) from the above equality, we obtain (10) for q = 2.
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Assume that (10) holds for even integers r such that t(r) < t (t > 1).

We shall prove (10) for even q such that t(q) = t.

L e t A = {2P°pt .'Pt;l^βQ^a0-l, 0 ^ βt ^ au i = 1, - , m }

5 = {Pi1- -PUT; 0 ^ ft ^ α,, i = 1, ,m} and C = {2σ«p*. -pfir; O^ft ^ α o

i = 1, . . ,ra}. Then, the set {r; r|<?} is a disjoint union of A, B and C.

By Lemma 2 the number of the fixed points of Tq of type PD (resp.

ND,PI,NI) is equal to ΣnQ PD(r) + Σ r e i l P/(r ) + Σren PI(r) (resp.

Σm ND(r) + ΣreΛ NI(r) + ΣreB NI(r), Σrec PI(r), Σrec NI(r)). There-

fore, the following equality holds by Proposition 8.

Σ PD(r) + Σ PI(r) + Σ PKr)) - (Σ ND(r) + Σ NI(r) + Σ NI(r))
r\q rGA reB / \r\q rGA reB /

Σ + Σ NI(r) = 1
rec rec

This is rewritten as follows.

Σ (PD(r) - ND(r) + PI(r) -
VGA

(13) + Σ (PD(r) - ND(r) + PI(r) -
reB

+ Σ (PD(r) - NDir) - PI(r) + NI(r)) = 1
rec

By (6), (8) and the inductive hypothesis, we have the following

equalities.

PD(r) - ND(χ) = Plir) - NI(r) - 2(P7(r/2) - Λ7(r/2))

for reAΌC,rΦq.

PD{r) - ND(r) = PI(r) - NI(r) for r e B, r φ 1 .

PD(ΐ) - ND(X) = P/(l) - NI(ΐ) + 1 .

Putting these equalities into (13), we obtain the following equality.

2 Σ ( p / W - W W ) - 2 Σ (PI(r/2) - NI(r/2))
ReA reA

+ 2 Σ {PI{r) - NI(r)) - 2 Σ (P/(r/2) -
reB reC

rφq

+ PD(q) - ND(q) - PI(q) + NI(q) = 0 .

By simplifying the above equality, we obtain the following equality.

2(PI(q/2) - NI(q/2)) + PD(q) - ND(q) - PI(q) + NI(q) = 0

This proves (10), and (11) is an easy consequence of (5) and (10).
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DEFINITION 2. Consider the equation (1) satisfying the condition (A).

The equation (1) is called a JD'-system if there exists a subset K of Rn

satisfying the following two conditions.

( i ) K is homeomorphic to a closed w-disk.

(ii) For any solution x(t) of (1) there exists a suitable number

toe R such that x(t0) e K, and if x(t^ e K for some tx e R, then x(t) e K

for any t ^> t lβ

Levinson and Massera ([3], [5]) called the equation (1) satisfying the

condition (A) a D-system if it satisfies the following condition.

(iii) There exist a positive number r and a positive integer N sat-

isfying the following condition.

For any solution x(t) of (1) there exists a suitable number toeR

such that ||a(to)|| ^ r and ||α(t)|| ^ r for t ^ t0 + N.

PROPOSITION 9. If n = 2, a D'-system is a D-system.

Proof. This is clear from the definitions.

EXAMPLE 3. (Duίfing's Equation) In the equation

(14) - U + f{x)^~ + g(x) -
dt2 dt

We assume the following four conditions.

( i ) f(%), g(x) and e(t) are of class C\

(ii) e(t) is periodic of period 1.

(iii) There exists a positive constant c such that fix) :> c.

(iv) g'(x) ^ 0 and l i m ^ g(x) > E, lim,;.,.^ g(x) < — E, where E

The equation (14) is equivalent to the following 2-dimensional system

(14)'.

Lg- = -f(χ)y - g(x) + e{t)
dt

The equation (14/ (or (14)) is a D^system (Cf. Loud [4], Shiraiwa

17]).

EXAMPLE 4. (Levinson-Langenhop-Opial) In the equation
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= e(t) ,fix,
V dt I dt

we assume the following five conditions.

( i ) fix, v), gix) and e(t) are of class C\

(ii) e(t) is periodic of period 1.

(iii) There exist positive numbers m and a such that

fix, v) ^> m for \x\ g: a , \v\ ^ α .

(iv) There exists a positive constant M such that

fix, v) ^ - M .

(v) lim inf gix) > Ma + E and lim sup gix) < — (i¥α + Έ), where
x-* oo α;-*-°o

ί7 = max|e(ί)|.
The equation (15) is equivalent to the following (15)7.

The equation (15)' (or (15)) is a ZZ-system (Cf. Opial [6]).

THEOREM 2. Lβέ ίfeβ equation il) be a D'-system, and let T: Rn

-^ Rn be the Poincare transformation associated to the equation (1).

Suppose that any periodic points of T is hyperbolic. Then the equalities

(5)~(11) hold for the periodic points of T.

Proof. By the definition of 17-system, the Poincare transformation

associated to a Z^-system satisfies the assumptions of Theorem 1.

COROLLARY 1. Under the same assumption of Theorem 2, Corollary

of Theorem 1 holds for the Poincare transformation T: Rn —> Rn as-

sociated to a D'-system (1).

COROLLARY 2. iLevinson-Massera [3], [5]) Suppose that the equation

(1) is a Ώr-system and n = 2. Let T: J?2 -> R2 be the Poincare trans-

formation associated to the equation (1). Assume that all the periodic

points of T are hyperbolic. We denote by Ciq) iresp. Diq), /(#)) the

number of the completely unstable or stable iresp. directly unstable,

inversely unstable) periodic points of T of minimal period q iq: a positive

integer). Then, the following equalities hold.
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C(l) + /(I) = D(l) + 1.

C(q) + I(q) = £>(#) £/ <? is odd and q > 1.

C(g) + /(<?) = £>(<?) + 2/(g/2) if q is even.

If ive denote by N(q) the number of the periodic points of T of

minimal period q, then the following equalities hold.

N(q) = C(q) + D(q) + I(q) for any q.

NO) = WO) + 1.
N(q) = 2D(q) if q is odd and q > 1.

N(q) = 2D(g) + 2/(g/2) i/ g is even.

Proof. This follows easily from Theorem 2 and Example 2.

§4. An extension of Theorem 1 and 2

In this section we shall discuss an extension of Theorem 1 and 2

to the case where Rn is replaced by a compact differentiate manifold

of class C1.

Let M be a compact differentiate n-dimensional manifold of class

C1, and let f: M —> M be a diffeomorphism of class C1. For a fixed (or

periodic) point of / , we can define the notion of hyperbolicity using a

coordinate neighborhood. Also, the fixed point index can be defined

similarly (Cf. [9], [1]).

The following theorem is well known (Cf. [1]).

THEOREM. (Lefschetz) Let f:M—>M be a continuous map such

that all the fixed points of f are isolated. Let / # i : HiiM) —> HiiM) be

the induced homomorphίsm on the i-th homology group Ht{M) with co-

efficients in R. Put L(f) = 2ϋ?=o (—1)* Trace / ^ (the Lefschetz number).

Then the following equality holds.

Σ 7
f(p)=P

COROLLARY. In addition to the hypothesis of the above theorem,

we assume that f is homotopίc to the identity. Set χ(M) = Σ?=o(—1)*

dim Hi(M) (Eider characteristic of M), where dim Ht(M) is the dimension

of H^M) as a vector space over R. Then,

Σ index7 (p) = χ(M) .
f(p)=P

Proof. If / is homotopic to the identity, then L(f) = χ(M).
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THEOREM 3. Let f:M->M be a dίffeomorphίsm of class C1 such

that all the periodic points of f are hyperbolic. Further, we assume

that L(f) = L(fk) for any positive integer k. Then the following equal-

ities hold.

PD(X) + NI(X) = ND(ΐ) + PIO) + L(f).

PD(q) + NI(q) = ND(q) + PI(q) if q is odd and q > 1.

PD(q) + NI(q) + 2PI(q/2) = ND(q) + PI(q) + 2NI(q/2) if q is even.

In the above equalities, PD(q) (resp. ND(q), PI(q), NI(q)) is the

number of the periodic points of f of minimal period q of type PD

(resp. ND,PI,NI). And if we denote by N(q) the number of periodic

points of f of minimal period q, then the following equalities hold.

N(q) = PD(q) + ND(q) + PI(q) + NI(q)

N(l) - 2(ND(X) + PI(X)) + Lif)

N(q) = 2(ND(q) + PI(q)) if q is odd and q > 1.

N(q) = 2(ND(q) + PI(q) + NI(q/2) - PI(q/2)) if q is even.

Proof. Theorem 3 is proved similarly to Theorem 1.

Let Xt, t e R be a time dependent vector field of class C1 on M.

Assume that Xt is periodic of period 1 with respect to the variable t.

Then it is easy to see that there exists a unique solution x = <p(t ί0, x)

of Xt defined on — oo < £ < + oo for any initial value (ί0, x0) e R x M.

Now define a transformation f: M -+ M by fix) = ^(1 0, x), xe M.

We call this / the Poincare transformation associated to the periodic

time dependent system Xt.

As Proposition 1, we can prove that / is a diffeomorphism of class

C1 and is isotopic to the identity. Therefore, / is homotopic to the

identity, and / is orientation preserving if M is oriented.

THEOREM 4. Let Xt, teRbea differentiate time dependent vector

field of class C1 on a compact differentiate manifold M of dimension n.

And assume that Xt is periodic of period 1 with respect to t. Now,

let f:M-*M be the Poincare transformation associated to Xt. Assume

further that all the periodic points of f are hyperbolic. Then the fol-

lowing equalities hold.

PDQ.) + NI(X) - ND(X) + PI(X) + χ(M).

PD(q) + NI(q) = ND(q) + PI(q) if q is odd and q > 1.

PD(q) + NI(q) + 2PI(q/2) = ND(q) + PI(q) + 2NI(q/2) if q is even.

N(q) = PD(q) + ND(q) + PI(q) + NI(q) for any q.

N(ΐ) = 2(ND(1) + PIO)) + χ(M).
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N(q) = 2(ND(q) + PI(q)) if q is odd and q > 1.
N(q) = 2(ND(q) + PI(q) + NI(q/2) - P(q/2)) if q is even.

Here PD(q), ND(q), PI(q), NI(q), N(q) and χ(M) are defined as above.

Proof. Theorem 4 is proved from Theorem 3 and the fact that
L(fk) = χ(M) for any positive integer k in our case since / is homotopic
to the identity.
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