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A GENERALIZATION OF THE LEVINSON-MASSERA’S
EQUALITIES

KENICHI SHIRAIWA

In his study of non-linear differential equations of the second order,
N. Levinson [3] defined the dissipative systems (D-systems) which arise
in many important cases in practice. To a dissipative system a trans-
formation T : R?— R? called the Poincaré transformation is associated.
Levinson used the Poincaré transformation in the qualitative study of
dissipative systems, and he [3] and Massera [5] obtained certain equalities
between the number of subharmonic solutions of a dissipative systems
under suitable conditions. We call these the Levinson-Massera’s equalities.

In this paper we define a class of non-linear differential equations
of order n named D’-systems, which is a subclass of D-systems for
n = 2 and still contains many important systems in practice. For a D’-
systems of order », we associate a transformation 7': R® — R"”, which
we call the Poincaré transformation associated to the D’-system. By a
qualitative study of the Poincaré transformation 7', we obtain some
equalities between the number of subharmonic solutions of a D’-system
under suitable conditions. These equalities coincide with the Levinson-
Massera’s equalities for n = 2.

In the final section of this paper, we give an extension of the above
results to a certain class of the time dependent vector fields on a com-
pact differentiable manifold of arbitrary dimension.

§1. The Poincaré transformation

Consider the following differential equation (1).
(1) %=f(t,x), teR, weR

‘We assume the following condition (A) throughout the paper.
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(A) (@) f(t,x) is an R"-valued function of class C.
(b) f(t,x) is periodic of period 1 with respect to the variable t.
That is

fit+1,20) = f(t, 2 for teR, xzcR".

(¢) There exists a solution x = ¢(t; ¢, x,) of the equation (1) defined
on —oo <t < 4 oo with any initial condition (¢,, x,) € R X R".
By the assumption (A) the above solution = = ¢(¢; £, %) is unique with
respect to the initial value (%, x,).

Now, a transformation 7T': R* — R™ is defined by

(2) T@) = ¢1;0,2), reR".
We call this T the Poincaré transformation associated to the equation (1).

PROPOSITION 1. T is a diffeomorphism of class C' and is isotopic
to the identity. FEspeciolly, T is homotopic to the identity and orien-
tation preserving.

Proof. It is easy to see that T is a bijection with T-'(2) = ¢(0; 1, z),
xz e R*. Since f(t,x) is of class C, T and T-! are of class C' by the
smooth dependence of the solutions of the differential equation with
respect to the initial conditions. Therefore, T is a diffeomorphism of
class C.

Let T,:R*—>R* (0=t <1 be a map defined by T,(2) = ¢(t; 0, x),
zecR*. Then T, (0 <t¢t<1)is also a diffeomorphism of class C!, and
T, = 1, the identity map of R*, and T, = T. Now, define a map T:R"
% [0,1]1 —» R* by T(x,t) = T(x) = o(t; 0,2), (x,t)eR* X [0,1]. Then T
is of class C' by the smooth dependence of the solutions with respect to
the initial conditions. Therefore, T is isotopic to the identity.

Since any diffeomorphism which is isotopic to the identity is homo-
topic to the identity and orientation preserving, the latter half of the
proposition is proved.

PROPOSITION 2. ¢t + 1;0,2) = ¢(t; 0,T(x)), te R, xR

Proof. By our assumption (A) (b) it is easy to see that (t)
=ot +1;0,2), teR is a solution of (1) for any xeR". Since (0)
=¢(1;0,2) = T(x), V() = ¢(t; 0, T(x)) by the uniqueness of the solution
of (1) with respect to the initial condition.
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The following corollaries are easy consequences of Proposition 2.
COROLLARY 1. For any integer k, the following equality holds.
ot + k;0,2) = o(t; 0, T*()), teR, xcR",
where T*: R* — R™ is the k-fold iterate of T.

COROLLARY 2. Let k be a positive integer. Then the following
three conditions are equivalent.

(@) «(t) is a periodic solution of (1) of period k.

(o) x(0) is a fixzed point of TE.

(¢) «(0) is a periodic point of T of period k.

Remark 1. If z(t) is a periodic solution of rational period, then
2(0) is a periodic point of T. If x(f) is a periodic solution of irrational
period, then x(0) is a recurrent point of 7. Therefore, it is a non-
wandering point of T.

From now on, we represent a point x of R* as a column vector

Z;
T = ( ), and we identify an n X m matrix A with the linear map R»
Z, .
— R™ which assign Ax e R™ to each z ¢ R".

Let T: R* — R" be a diffeomorphism of class C!, and let pe R* be
a fixed point of T. Then the derivative DT(p): R* — R" of T at p is a
linear map corresponding to the Jacobian matrix of T at p, and it is a

non-singular »n X n matrix.

LEMMA 1. If T:R*— R" is a Poincaré transformation associated
to a differential equation, then det DT*(p) > 0 for any periodic point of
T of period k.

Proof. By Proposition 1, T* is orientation preserving for any
positive integer k. Therefore, det DT* (p) > 0 for any p € R* such that
T*(p) = p.

An isomorphism (or a non-singular square matrix) L: R* — R" is
called hyperbolic if all the absolute values of its eigenvalues are different
from 1. '

Let T: R* — R" be a diffeomorphism of class C!, and let pe R” be
a fixed point of T. We call p a hyperbolic fixed point of T, if DT(p)
is hyperbolic.
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Now, we shalljgivela criterion for a fixed point of a Poincaré trans-
formation associated to a differential equation to be hyperbolic.

Let T:R"— R™ be the Poincaré transformation associated to (1),
and let p e R* be a fixed point of T. Then x = ¢(¢; 0,p) is a periodic
solution of (1) of period 1 by Proposition 2. Now, consider the variation
equation (3) of the equation (1) with respect to the periodic solution
x = o(t; 0,p) of period 1.

(3) 9 — Daf(tglt; 0,003,
where D, f(t,x) is the Jacobian matrix of f(¢,x) with respect to x. The
variation equation (3) is a linear differetial equation with continuous

periodic coefficients of period 1.

PROPOSITION 3. Let W(t) be a fundamental matriz of the linear
system (8). Then DT(p) = WQ)W ().

Proof. Put R() = D,p(;0,p), teR, where D,p(t;0,x) is the
Jacobian matrix of ¢(¢; 0,x) with respect to . Then R(f) is a matrix
solution of (3) with the in.itial condition R(0) = E,, the unit matrix.

Put Sit) = WE)W(©0)*, te R. Then S(f) is also a matrix solution of
(8) with the initial condition S(0) = E,. Therefore, R(t) = S(t) for all
t by the uniqueness of the solution of (3) with respect to the initial
condition. Especially R(1) = S(1), that is DT(p) = W)W ()"

COROLLARY. p is a hyperbolic fixed point of T if and only if all
the real parts of the characteristic exponents of (3) are different from 0.

Proof. This follows from the definition of a hyperbolic fixed point
and the Floquet theory using Proposition 3.

Let T: R* — R* be a diffeomorphism of class C!, and let pc R” be a
hyperbolic fixed point of T. Now, let E* be the intersection of R* and
the direct sum of the generalized eigenspaces of DT(p) corresponding to
the eigenvalues 2 such that |2] > 1. Similarly, let E* be the intersection
of R* and the direct sum of the generalized eigenspaces of DT(p) cor-
responding to the eigenvalues 2 such that |2] < 1.

PROPOSITION 4. Under the above hypothesis and notations, the fol-
lowing properties hold.
(a) RR=E*"®E*®
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(b) E* and E* are DT(p)-invariant subspaces.

(¢) Let 2,---,4, be the characteristic roots of DT(p).

Then dim E* = #{2;;|2;) > 1} and dim E° = #{2;; |2, < 1},

where $M denotes the cardinarity of the set M.

(@ Let | -| be a norm of R*, and let L = DT(p).

Then there exist constant ¢ (¢ > 0) and 2 (0 < 1< 1) such that

IL-*@)|| = ea*|lxfl,  xeB™
IL*@)|| < ea® ||zl ,  xeE*,

where k is any positive integer.

This is a standard results in Smale’s theory on differentiable dy-
namical systems (cf. [8]).

Let » be a hyperbolic fixed point of a diffeomorphism T:R* — R".
Set

W (p) = {x e R"; lim T-*(x) = p} and

k=0
We(p) = {x ¢ R*; lim T(z) = p} .
k—o

We call W=(p) (resp. Wi(p)) the unstable (resp. stable) manifold of p. The
following theorem is a standard results in Smale’s theory (Cf. [8)).

THEOREM. There ewist suitable 1-1 immersions ¢*: E* — R" and
¢*: E* — R" such that

(@) ¢UuE") = WD), ¢*(E") = WD),

() ¢“0) = ¢'0) = », and

(¢) dim W*(p) = dim E¥, dim W¥(p) = dim E*.

COROLLARY. (d) dim W(p) is equal to the number of characteristic
roots 2 of DT(p) such that |2] > 1.
(e) dim Ws(p) is equal to the number of characteristic roots 2 of DT(p)

such that |2] < 1.
This is an easy consequence of the above theorem and Proposition 4.

Let p be a periodic point of T of minimal period n,. Then p is a
fixed point of 7. If DT™(p) is hyperbolic, we call p a hyperbolic
periodic point of 7. TUsing 7™ instead of T, the similar theory can be
developed as above for a periodic point of T.
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§2. The fixed point index

Let T: R* — R be a continuous map, and let p € R* be an isolated
fixed point of T. Defineamapl —T:R*"—-R"by 1 — T)(x) = x — T(x),
xzeR". Then (1 — T)(p) =0, and there exists a neighborhood V of p
such that 1 — T)(V — {p}) € R* — {0} by our assumption. Therefore,
1 — T induces a homomorphism

A —D)y: H(V,V — {p}) —> H,(R*, R" — {0}) ,

where H,(A,B) denotes the n-dimensional homology group of a pair
(A, B) with coefficients in the group of integers Z.

The groups H,(V,V — {p}) and H,(R", R* — {0}) are isomorphic to Z,
and if we fix an orientatation of R”, then there correspond unique gen-
erators O, and Og. of H,(V,V — {p}) and H,(R", R* — {0}) respectively.
Using these generators O, and Op., we get

1 = 1),(0y) = mOga

for a suitable integer m. It is easily shown that m does not depend on
the choice of a neighborhood V and an orientation of R". The integer
determined above is called the fixed point index of T at p and is denoted
by index; (p).

PROPOSITION 5. Let T:R"— R" be a diffeomorphism of class C',
and let pe R* be a hyperbolic fixed point of T. Then p is an isolated
fized point, and the fixed point index is given as follows.

1 if det(1 — DT(p)) >0,

index, (p) = {__1 if det(1 — DT(p)) <0,

where det 1 — DT(p)) is the determinant of the matric 1 — DT(p) and
1 is the unit matrix.

Proof. By a theorem of Hartman ([2], p. 245, Lemma 8.1), T re-
stricted on a suitable neighborhood of p is topologically equivalent to
DT(p) restricted on some neighborhood of the origin 0 of R*. Therefore,
it is sufficient to prove Proposition 5 in case that T = DT(p) and p =0.

Now assume that T is a hyperbolic linear isomorphism and p = 0.
Then T = DT(p) and all the eigenvalues of T are different from 1.
Therefore, det 1 — T) = 0. Thus, 0 e R* is the only fixed point of T,
and »p = 0 is an isolated fixed point of T.
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It is well known that a linear isomorphism L:R" — R™ induces an
isomorphism L, : H,(R*, R" — {0}) — H,(R", R® — {0}), and

Ogn if detL >0,

L, (Og) =
+Or) {—om if detL <0,

Putting L=1—-T =1 — DT(p), we obtain Proposition 5.

PROPOSITION 6. Let T:R"— R™ be a diffeomorphism of class C%,
and let pc R" be a hyperbolic fixed point of T. Let v be the number of
the real characteristic roots ; of DT(p) such that 2; > 1. Then index, (p)
= (=1)".

Proof. Let 2,---,2, be the characteristic roots of DT(p). Then
detd —DTP) =A — 1) ---A —2,). If 2; is a complex number, there
exists some j such that 2, = 2;. Therefore, it does not affect on the

sign of det 1 — DT(p)). Now, it is clear that the sign of det 1 — DT(p))
is equal to that of (—1)". Now Proposition 6 follows from Proposition 5.

PROPOSITION 7. Let T2 R"— R* be a diffeomorphism of class C!,
and let pe R* be a hyperbolic fixed point of T. If we put u = dim E*
and L, = DT(p)|E*: E* — E*, then the following properties hold for any
positive integer k.

(a) If detL, > 0, then indexy:(p) = (—1)%.

(b) If det L, <0, then indeXzu-, (p) = (—1)**! and indeXz.: (p) = (—1)=.

Proof. Let 2, ---,2, be the characteristic roots of DT(p). Then
[2;] #= 1 for any ¢ by our hypothesis. Since DT*(p) = (DT(p))*, the char-
acteristic roots of DT*(p) are 2%, ---,25. Therefore, the absolute values
of any eigenvalues of DT*(p) are different from 1. Therefore, p is a
hyperbolic fixed point of T*.

Now assume the following (4).
A;isreal and 4, > 1 for 1 <i<7r,
A;isreal and 4, < =1 forr+1ZiZ7r+ s,
2; is complex and [4;]> 1 forr +s+1Zi<r+ s+t and
] <lforr+s+t+1=i<n

(4)

Then ¢ is even for complex characteristic roots appear in pair, and
% =17+ 8+t by Proposition 4(c). Since detL, = 4,---2,,,,, and the
product of complex characteristic roots 2,.,.;, -+, 4,.5.; 18 positive, the
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sign of det L, is equal to that of (—1):.

If det L, > 0, then s is even. Therefore, (—1)* = (—1)"*s* = (—1)".
Now, let (k) be the number of the real characteristic roots 2% of DT*(p)
such that 2* > 1. Then by (4) and the fact that the complex character-
istic roots appear in pair with their conjugates, we conclude that »(k)
= rmod 2. Therefore, index;:(p) = (—1)® = (—1)" = (—1)* by Prop-
osition 6 and the above stated facts. This proves (a).

If det L, < 0, then s is odd. Therefore, (—1)* = (—1)7*3*" = (—1)"*.,
And if k£ is even, then »(k)=r +s=r 4+ 1mod2 as above. Thus,
indexp (p) = (—=1)"® = (=1)* if k is even. If k is odd, then #»(&%)
= rmod 2. Therefore, index; (P) = (—1)® = (—~1)" = (=1)**'. This
completes the proof.

EXAMPLE 1. Let =2, and let T: R*— R* be a Poincaré trans-
formation associated to a differential equation. Let p ¢ R? be a hyperbolic
fixed point of 7, and let 2,4, (4] = |4)) be the characteristic roots of
DT(p). Then the following four cases occur since det DT(p) > 0 by
Lemma 1. .

(i) The point p is a completely unstable fixed point of T if
1 =<4 £]2). In this case, indexs: (p) = 1 for any positive integer k.

(ii) The point p is a completely stable fixed point of T if |2,| < |4,
< 1. In this case, indexs (p) = 1 for any positive integer k.

(iii) The point p is a directly unstable fixed point of 7 if 0 < 1,
<1< 2. In this case, index;. (p) = —1 for any positive integer k.

(iv) The point p is an inversely unstable fixed point if 2, < —1
< 1, < 0. In this case, indexzu-: (p) =1 and index;. (p) = —1 for any
positive integer k.

Similar statements hold for hyperbolic periodic points of T.

DEFINITION 1. Let T:R" — R" be a diffeomorphism of class C',
and let p be a hyperbolic fixed point of 7. Let R® = E*@® E* be the
direct sum decomposition of R® with respect to L = DT(p) as in Prop-
osition 4, and let L, = DT(p)|E*: E* — E*.

(i) If dim E* is even and det L, > 0, then we call p a fixed point
of type PD.

(ii) If dim E™ is odd and det L, > 0, then we call p a fixed point
of type ND.

(iii) If dim E™ is even and det L, < 0, then we call p a fixed point
of type PI.



LEVINSON-MASSERA’S EQUALITIES 129

(iv) If dim E* is odd and det L, < 0, then we call p a fixed point
of type NI.

For a hyperbolic periodic point p, we define its type similarly.
Using the above terminology Proposition 7 is restated as follows.

PROPOSITION 7. Under the same assumption of Proposition T, the
following properties hold for any positive integer k.

(i) If p is of type PD, then indexs.(p) = 1.

(ii) If p is of type ND, then index,.(p) = —1.

(i) If p is of type PI, then indeXr.u—. (p) = —1 and index,. (p) =1.

(dv) If p is of type NI, then indeX;u-, () = 1 and index,x (p) = —1.

ExaMPLE 2. If n = 2, case (iii) of Definition 1 does not occur for
any Poincaré transformations associated to differential equations by
Lemma 1.

If p is a completely unstable or stable fixed (or periodic) point of
T, then it is of type PD. If p is a directly unstable fixed (or periodic)
point of T, then it is of type ND. If p is an inversely unstable fixed
(or periodic) point of T, then it is of type NI.

Remark 2. The notions of the completely unstable, completely
stable, directly unstable and inversely unstable fixed point classify the
local topological types of the hyperbolic fixed point for » = 2. But our
types defined above do not classify the local topological types of the
hyperbolic fixed points.

The local topological type of a hyperbolic fixed point is classified
by the dimension of E* and the signs of det L, and det L..

If T is a Poincaré transformation associated to a differential equa-
tion, then det DT (p) > 0 for any fixed point p of T by Lemma 1.
Since det DT(p) = det L, -det L, for a hyperbolic fixed point p, the local
topological type of a hyperbolic fixed point is classified by the dimension
of E* and the sign of L,.

§3. Levinson-Massera’s equalities
The following theorem is well known.
THEOREM. (Poincaré-Hopf-Lefschetz) Let T:R* — R* be a con-

tinuons map such that all the fixed points of T are isolated. Suppose
that there exists a subset K of R"™ such that
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(i) K is homeomorphic to a closed n-disk,
(ii) T(K) Cc K and
(iii) all the fixed points of T are contained in K.
Then the following equality holds.
> indexy (p) =1

T(p=p

For a proof, see A. Dold [1] for example.
As an easy application, we have the following proposition.

PROPOSITION 8. Let T:R"— R* be a diffeomorphism of class C',
and let k be a positive integer. Suppose that all the periodic points of

T of period k are hyperbolic. Further, assume that there exists a sub-
set K of R™ such that

(i) K is homeomorphic to a closed n-disk,
(ii) TYK) C K and
(iii) all the periodic points of T of period k are contained in K.

Then the following equality holds.

> indexn (p) =1

TE(p)=p

Now we shall state the main theorem of this paper.

THEOREM 1. Let T:R" — R" be a diffeomorphism of class C' such
that every periodic point of T is hyperbolic. Further, assume that there
exists a subset K of R™ such that

(i) K is homeomorphic to a closed n-disk,

(ii) T(K) Cc K and

(ili) every periodic point belongs to K.

For each positive integer q, let PD(q) (resp. ND(q), PI(q), NI(q))
denote the number of the periodic points of T of minimal period q of
type PD (resp. ND, PI, NI), and let N(q) be the number of periodic
points of T of minimal period q. Then the following equalities hold.

(5) N(q) = PD(@) + ND(q) + PI(q) + NI(¢g) for any q .
(6) PDQ) + NI(1) = NDQ1) + PI1) + 1.

1) N@) = 2(NDQ) + PIQ1)) + 1.

(8) PD(Q) + NI(Q) = ND(¢) + PI(q9)  if q is odd and ¢ > 1.
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(9) N(@)=2(PD(9) + NI(9)) =2(ND(9) + PI(¢))  if q isoddand ¢>1.
(10) PD(q) + NI(q) + 2PI(q/2) = ND(q) + PI(q) + 2N1(q/2)  if q is even .
1) N(9) = 2(ND(q) + PI(9) + NI(q/2) — PI(q/2))  if q is even .

The following corollary is immediate from Theorem 1.

COROLLARY. Under the same assumption of Theorem 1, the follow-
ing properties hold.

(i) NQ) is odd.

(ii) If q is odd and q > 1, then N(q) is divisible by 2q.

(dii) If q s even and PI(q/2) = NI(q/2), then N(q) is divisible by
2q. Especially, if q is even and PI(q/2) = NI(q/2) = 0, then N(q) 1is
divisible by 2q.

Proof of Theorem 1. By the assumption of Theorem 1, all the
hypothesis of Proposition 8 are satisfied for any positive integer %, and
the equality (5) holds by the definition.

Putting k¥ = 1 in Proposition 8, we obtain the following equality by
Proposition (7).

12) PD(1) — ND(1) — PI(1) + NI(1)) =1.

This proves (6), and (7) is an easy consequence of (5) and (6).

In order to prove (8) and (10), we write down the equality of Prop-
osition 8 in terms of PD(q), ND(q), PI(q) and NI(q). For this purpose,
the following lemma is useful.

LEMMA 2. Let p be a periodic point of T of minimal period 7,
and let k be a positive integer. Then the following properties hold.

(a) If p is of type PD, then p is a periodic point of T of period
kr of type PD for any k.

(b) If p is of type ND, then p is a periodic point of T of period
kr of type ND for any k.

(¢) If p is of type PI, then p is a periodic point of T of period kr
of type PI (resp. PD) for any odd k (resp. even k).

(d) If p is of type NI, then p is a periodic point of T of period
kr of type NI (resp. ND) for any odd k (resp. even k).

Proof. Since DT* (p) = (DT"(p))* for each k, Lemma 1 is easily
derived from the definition.
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Now we come back to the proof of Theorem 1.

Let ¢ be any odd integer greater than 1. Let q = p{*--.p;», where
Py, oD, are odd primes and «, ---,@, are positive integers. Now,
we shall prove (8) by induction on s(@) = a, + -+ + ap.

If s(q) =1, then ¢ is an odd prime, and the number of the fixed
points. of T? of type PD (resp. ND,PI,NI) is equal to PD(1) + PD(q)
(resp. ND(1) + ND(q), PI(1) + PI(q), NI(1) + NI(q)) by Lemma 2. There-
fore, by Proposition 8 applied to case k¥ = q, we obtain the following
equality.

(PDQ) + PD(9) — (ND(Q) + ND(9)) — (PI(1) + PI(9)
+ ND() + ND(¢)) = 1.

Subtracting (12) from the above equality, we obtain (8).

Assume that (8) holds for odd integers » with s(») <s (s > 1). We
shall prove (8) for odd ¢ such that s(q) = s.

By Lemma 2, the number of the fixed points of 7% of type PD
(resp. ND, PI,NI) is equal to >, ,PD(r) (resp. 2, ND(@), >, PI(7),
>ra NI(r)). Therefore, we have the following equality by Proposition 8.

ST PD(r) — 3. ND(r) — IZ PI(r) + 2 NI(r) =1
rlg

rlq rlq rlq

By our inductive assumption, we have the following equality
PD(r) — ND(r) — PI(r) + NI(r) = 0 if rlgand 1<r<gq.

Therefore, from the above equalities and (6), we obtain (8). Thus, (8)
is proved for any odd ¢ with ¢ > 1, and (9) is an easy consequence of

(8) and (5).
Let ¢ be an even integer, and let q = 2%p*...pi», where p,, -+, Pn
are odd primes and « «ay, - -+, a, are positive integers. Now, we shall

prove (10) by induction on ¢(qQ) = ay + oy + -+ + ap.

If t =1, then ¢ = 2, and the number of the fixed point of T¢ of
type PD (resp. ND,PI,NI) is equal to PD(@) + PD(2) + PI(1) (resp.
NDQ@1) + ND@) + NIQ1),PI(2),NI(2)) by Lemma 2. Therefore, the fol-
lowing equality holds by Proposition 8.

(PDA) + PD(2) + PI) — (NDQ) + ND(2) + NI(1))
—PI(2) + NI2) =1

Subtracting (12) from the above equality, we obtain (10) for ¢ = 2.
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Assume that (10) holds for even integers r such that ¢(r) < ¢ (¢ > 1).
We shall prove (10) for even ¢ such that #(¢) = ¢.

Let A = {20pf...0pm: 1 <BZa,—1, 08, Za;, ©=1, - ---,m}
B={pl - pir;0=pi Sy, t=1,---,m} and C={2%pf---pir; 0 < B < ay,
t=1,---,m}. Then, the set {r;r|q} is a disjoint union of A, B and C.

By Lemma 2 the number of the fixed points of 77 of type PD (resp.
ND,PI,NI) is equal to >.,,PD() + 2.,c.PI(r) + >,.c5 PI(r) (resp.
2ara ND@) + 25, a NI() + 20, NI(P), },ec PI(r), }5,cc NI(r)). There-
fore, the following equality holds by Proposition &.

(; PDG) + 3 PIG) + TZe]BPI(r)> _ (|Z ND@) + ¥ NI) + % NI(r))
— STPIG) + 3 NI =1

recC

This is rewritten as follows.

2. (PD(r) — ND(r) + PI(r) — NI(r))

rTEA

13) + 2, (PD(r) — ND(r) + PI(r) — NI(r))

reEB

+ >3 (PD(r) — ND(r) — PI(r) + NI(r)) =1
rec
By (6), (8) and the inductive hypothesis, we have the following
equalities.

PD(r) — ND(r) = PI(r) — NI(r) — 2(PI(r/2) — NI(r/2))
for reAUC, r+q.
PD(r) — ND(r) = PI(r) — NI(v) for reB, r+1.
PD(1) — NDQ1) = PI1) — NI(1) + 1.
Putting these equalities into (13), we obtain the following equality.
2> (PI(r) — NI(r)) — 2 3 (PI(r/2) — NI(r/2))

RecA4d rT€EA

+2 ;B(Pl(f”) — NI(r)) — 2 ;,](Pl(r/2) — NI(r/2))

+ PD(q) — ND(q) — PI(¢) + NI(¢) =0 .

By simplifying the above equality, we obtain the following equality.
2(PI(q/2) — NI1(q/2)) + PD(q) — ND(q) — PI(¢) + NI(9) =0

This proves (10), and (11) is an easy consequence of (5) and (10).
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DEFINITION 2. Consider the equation (1) satisfying the condition (A).
The equation (1) is called a D’-system if there exists a subset K of R"
satisfying the following two conditions.

(i) K is homeomorphic to a closed n-disk.

(ii) For any solution «(f) of (1) there exists a suitable number
t,€ R such that z(¢) ¢ K, and if x(t)e K for some t, e R, then x(f)e K
for any t = ¢,.

Levinson and Massera ([3], [5]) called the equation (1) satisfying the
condition (A) a D-system if it satisfies the following condition.

(iii) There exist a positive number » and a positive integer N sat-
isfying the following condition.

For any solution x(t) of (1) there exists a suitable number t,e R
such that ||z(t)| < r and ||z@)|| < r for £ = ¢, + N.

PROPOSITION 9. If n =2, a D’-system is a D-system.
Proof. This is clear from the definitions.

ExaMpPLE 3. (Duffing’s Equation) In the equation

dx dx
(14) T + f(w)ﬂ + 9@ =e®) ,
‘We assume the following four conditions.

(i) f@),g9(x) and e(t) are of class C.

(ii) e(?) is periodic of period 1.

(iii) There exists a positive constant ¢ such that f(x) = c.

(iv) ¢(x) =0 and lim,.. g > FE, lim,._.gx) < —E, where F
= max |e(?)|.

The equation (14) is equivalent to the following 2-dimensional system
14y,

)
dt

dy _ _
ok J@y — g@) + e(®)

=Y
a4y

The equation (14) (or (14)) is a D’-system (Cf. Loud [4], Shiraiwa
7).

EXAMPLE 4. (Levinson-Langenhop-Opial) In the equation
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) d*x dz\ dx _
(15) o+ f(x, E)ﬁ +oo@) = e®),

we assume the following five conditions.
(i) f(x,v),g(x) and e(t) are of class C.
(ii) e(t) is periodic of period 1.
(iii) There exist positive numbers m and e such that

flz,v) =m for ||z a, [v|=a.
(iv) There exists a positive constant M such that
J@,v) =z —M .
(v) liminf g(x) > Mo + E and limsup g(x) < —(Ma + E), where

Z— o0 ZT~r— 0

E = max|e(®)|.
The equation (15) is equivalent to the following (15).
dx _
a Y
(15) dy
g — S, y) — 9(x) + e()

The equation (15) (or (15)) is a D’-system (Cf. Opial [6]).

THEOREM 2. Let the equation (1) be a D’-system, and let T:R"
— R* be the Poincaré tranmsformation associated to the equation (1).
Suppose that any periodic points of T is hyperbolic. Then the equalities
(B)~11) hold for the periodic points of T.

Proof. By the definition of D’-system, the Poincaré transformation
associated to a D’-system satisfies the assumptions of Theorem 1.

COROLLARY 1. Under the same assumption of Theorem 2, Corollary
of Theorem 1 holds for the Poincaré transformation T:R*— R" as-
sociated to a D’-system (1).

COROLLARY 2. (Levinson-Massera [3],[5]) Suppose that the equation
Q) s a D’-system and n = 2. Let T:R*— R® be the Poincaré trans-
formation associated to the equation (1). Assume that all the periodic
points of T are hyperbolic. We denote by C(q) (resp. D(q), I(q)) the
number of the completely unstable or stable (resp. directly umstable,
wnversely unstable) periodic points of T of minimal period q (q: a positive
integer). Then, the following equalities hold.
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C(l) + I(1) = DQA) + 1.

C(q) + I{(q) = D(Q) if q is odd and q > 1.

C(q) + I(q) = D(q) + 2I(q/2) if q is even.

If we denote by N(q) the number of the periodic points of T of
minimal period q, then the following equalities hold.

N(g) = C(@) + D(@) + I(®) for any q.

N@) =2DQ) + 1.

N(q) = 2D(q) if q is odd and q > 1.

N(@) = 2D(q) + 2I(q/2) if q is even.

Proof. This follows easily from Theorem 2 and Example 2.

§4. An extension of Theorem 1 and 2

In this section we shall discuss an extension of Theorem 1 and 2
to the case where R" is replaced by a compact differentiable manifold
of class C.

Let M be a compact differentiable n-dimensional manifold of class
CY, and let f: M — M be a diffeomorphism of class C'. For a fixed (or
periodic) point of f, we can define the notion of hyperbolicity using a
coordinate neighborhood. Also, the fixed point index can be defined
similarly (Cf. [9], [1]).

The following theorem is well known (Cf. [1]).

THEOREM. (Lefschetz) Let f:M — M be a continuous map such
that all the fixed points of f are isolated. Let f,.,: H,(M)— H,(M) be
the indiuced homomorphism on the i-th homology group H,(M) with co-
efficients in R. Put L(f) = > %, (—1)* Trace f,; (the Lefschetz number).

Then the following equality holds.

2. index; (p) = L(f)

Sf(»)=p
COROLLARY. In addition to the hypothesis of the above theorem,
we assume that | is homotopic to the identity. Set y(M) = > 7., (—1)
dim H, (M) (Euler characteristic of M), where dim H,(M) is the dimension
of H, (M) as a vector space over R. Then,

>, index; (p) = y(M) .

f(p)y=p

Proof. If f is homotopic to the identity, then L(f) = y(M).
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THEOREM 3. Let f: M — M be a diffeomorphism of class C' such
that all the periodic points of f are hyperbolic. Further, we assume
that L(f) = L(f*) for any positive integer k. Then the following equal-
ities hold.

PDQ1) + NIQ1) = NDQ) + PI(1) + L()).

PD(q) + NI(9) = ND(q) + PI(q) if q is odd and q > 1.

PD(q) + NI(9) + 2PI(q/2) = ND(q) + PI(q) + 2NI(q/2) if q is even.

In the above equalities, PD(q) (resp. ND(q), PI(q), NI(q)) is the
number of the periodic points of f of minimal period q of type PD
(resp. ND,PI,NI). And if we denote by N(q) the number of periodic
points of f of minimal period q, then the following equalities hold.

N(q) = PD(q) + ND(q) + PI(q) + NI(q)

NQ@) = 2(NDQ) + PIQ)) + L(f)

N(q) = 2(ND(q) + PI(¢)) if q is odd and q > 1.

N(g9) = 2(ND(q) + PI(@) + NI(q/2) — PI(q/2)) if q is even.

Proof. Theorem 3 is proved similarly to Theorem 1.

Let X,, te R be a time dependent vector field of class C' on M.
Assume that X, is periodic of period 1 with respect to the variable ¢.
Then it is easy to see that there exists a unique solution 2 = o(t; ¢, x)
of X, defined on —oo <t < + oo for any initial value (¢, x,) ¢ R X M.

Now define a transformation f: M — M by f(z) = ¢1;0,x), xc M.
We call this f the Poincaré transformation associated to the periodic
time dependent system X,.

As Proposition 1, we can prove that f is a diffeomorphism of class
C* and is isotopic to the identity. Therefore, f is homotopic to the
identity, and f is orientation preserving if M is oriented.

THEOREM 4. Let X,, te R be a differentiable ttme dependent vector
field of class C* on a compact differentiable manifold M of dimension n.
And assume that X, is pertodic of period 1 with respect to t. Now,
let f:M — M be the Poincaré transformation associated to X,. Assume
further that all the periodic points of f are hyperboiic. Then the fol-
lowing equalities hold.

PD@) + NIQ) = NDQ1) + PI(1) + x(M).

PD(q) + NI(q) = ND(q) + PI(q) if q is odd and q > 1.

PD(q) + NI(g) + 2PI(q/2) = ND(q) + PI(q) + 2NI(q/2) if q is even.

N(q) = PD(q) + ND(q) + PI(q) + NI(q) for any q.

NQ@) = 2(NDQ) + PIQ)) + x(M).
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N(g) = 2(ND(Q) + PI(Q)) if q is odd and q > 1.
N(q) = 2(ND(Q) + PI(9) + NI(q/2) — P(q/2)) if q is even.

Here PD(q), ND(q), PI(g9), NI(q9), N(q) and y(M) are defined as above.

Proof. Theorem 4 is proved from Theorem 38 and the fact that

L(f*) = y(M) for any positive integer k& in our case since f is homotopic
to the identity.
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