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ON PROJECTIVE INVARIANCE OF MULTI-PARAMETER

BROWNIAN MOTION

SHIGEO TAKENAKA

The multi-parameter Brownian motion introduced by P. Levy is not
only a basic random field but also gives us interesting fine probabilistic
structures as well as important properties from the view point of anal-
ysis. We shall be interested in investigation of such structures and
properties by expressing the Brownian motion in terms of the multi-
parameter white noise. The expression naturally requires basic tools
from analysis, in particular the Radon transform. While there arises
the special linear group SL(n + 1,R), to which the Radon transform is
adapted, and the group plays an important role in observing probabilis-
tic structures of the Brownian motion. To be more interested, we can
give some deep insight to unitary representations of SL(n + 1, R) through
our discussion.

Before we come to our topic, we shall have a quick review of the
one dimensional case, emphasizing the following three points:

1) The ordinary Brownian motion B(t), teR, has an integral rep-
resentation

Bit) = ξxV~dx, where {ξxVcίx} is the white noise on (/?, dx) .
Jo

2) Using the white noise {ξxVdx} we get an isometry W(-) called the
Wiener integral from L2(R,dx) into the space of random variables with
finite variance L\Ω) such that

and get the Fock decomposition, where L2(Ω) can be identified with
Exp L\R, dx):
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L\Ω) = Exp L\R, dx) .

3) There exists an important group Fλ (isomorphic to SL(2, R)) that
expresses the projective invariance of the Brownian motion B(t).

In this paper we shall, by generalizing them, carry out investiga-
tions in the multi-parameter case where much fine and interesting
structure is found.

Our steps are as follows. Let (E, B, μ) be a measure space. In the
first place, we consider the Gaussian random measure

& = {X(B,ω);BeB,ωeΩ} on (E,B,μ) (§1).

We take a space of step functions on E to be the basic probability space
Ω (§2). We assume that a group G acting on E is given and the
measure μ on E is quasi-invariant under the action of G. An action of
G can be lifted up on the probability space Ω in such a way that

(g o ω)(x) — ω(xg) , ω e Ω .

This action induces an action on the random measure as

Let /(•) and /*(•) denote the stochastic integrals with respect to the
random measure X and &9, respectively. Then we get the following
relation

o) = I( r^—-f{χg), ω) , / e L2(#, μ) (Theorem 3) .
\Λ dμ

Thus we get a unitary representation of G

Ug;f(x)^J^f^-f(χg)

on L2(E,μ) (but not necessarily be continuous in g) (§3).
In the next place, identify the n-dimensional Euclidean space Rn with

the n-dimensional real projective space Pn by using the homogeneous
coordinate. Let M(n) be the w-dimensional Euclidean motion group, and
set

M*(ri) ^{tg g

where ιg denotes the transposed matrix of g (see the matrix form (40)
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of M(ri)). Let cM be an M*(w)-invariant measure on Pn and let {ξxVdλϊ}

be the random measure on the measure space (Pn,<M).

Put

B(a) = p.v. (f - f )ξxVdU(x) ,

where a e Rn, and Pn(ά*) assigns an orientation of Pn — a* (α* is the

inversion of α) which is continued from the origin 0 of Rn through the

projection π. Then B{a) satisfies the following condition 1) and 2):

1) 5(0) = 0,

2) B(a)-B(b)~N{0,\\a- &||).

That is, B(ά) is the Brownian motion with parameter space Rn in the

sense of P. Levy [10b], (§4).

In the case of odd dimension n, we consider an isometric operator

R which links the space L\Rn, dx) and the space L\Pn, dM). The opera-

tor R is defined by

/ / 3 \(n-l)/2 P \

fix) .-» (Rf)(η) = ((-_) f(x)dx
\\ dp I J<ζ,%>=P /

!l£!1=i

x,ξ,ηeRn,peR, (§5).

Consider the following one-parameter groups of unitary operators

acting on L2(Rn,dx):

1) Shift:

(S*(t)/)(ίC) = f(xl9 , Xi-u Xi + t, Xi + ί, , Xn) ,

(the flow of the ordinary Brownian motion).

2) Dilation:

(Di(t)f)(x) = et/2f(x19 , Xi_19 e
ιxu xui, , xn) .

Set

and consider

3) Stj = Ji-'SjJt, for i φ j,

4) Ki = Ji-
ιSiJi.
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Then these one-parameter groups induce a quasi-regular representation
Tg of the group SL(n + 1,2?) (§6).

The measure άM is quasi-invariant under the action of SL{n + 1,R),
so that we get a unitary representation Ug of SL(n + 1,R) (§3). The
relation between these two representations is given by

U, - RTQR-' ,

where g is tg'1 in the standard matrix form (40), (the main theorem).
Thus our approach may be illustrated by the following diagram:

Brownian motion — White noise

= p.v. Γf - f

Projective invariance Fundamental structure group
II II

Fn 9 g SL(n + l,R)sg

Intertwining operator R

P. Levy has presented in his book "Problemes concrete d'analyse
fonctionnelles" an approach to construct a theory of non-linear functional
analysis in which we can find close connections with probability theory.
While T. Hida is, in his theory "white noise analysis'9, realizing the idea
of Levy. The present work, being in line with them, aims at investiga-
tions of the multiparameter case. The author hopes that our work is a
first step to that proposed approach. In the Hida theory, the properties
1) — 3) of the Brownian motion B(t) play essential roles. Those prop-
erties become much complicated, but tell us interesting probabilistic
structures in our "multi-parameter white noise analysis". Our main in-
terest is, of course, the multi-parameter theory, however we can reach
deeper understanding in the one-parameter case that can be viewed as
a special case.

The author expresses his thanks to Professor T. Hida and Professor
H. Nomoto for their suggestions and encouragements without which he
could not have accomplished this work.
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§ 1 . Random measure

Let (E,B,μ) be a σ-finite measure space, where E is a set which is

to be a parameter space of random phenomena discussed in this paper,

B is a σ-field of subsets of E and μ is a σ-finite measure defined on B.

Set Bo = {B e B μ(B) < oo}. It forms a sub-ring of B. Another measure

space (Ω, P) with P(Ω) = 1, that is a probability space, is provided so

that we can describe random events. A member of Ω is denoted by ω

and is called a random parameter.

A Gaussian system is a collection of random variables such that

any finite linear combination of the random variables in the system is

always Gaussian in distribution. Such a system is viewed as a subset

of the Hubert space L2(Ω,P) and the closed linear subspace spanned by

the system is again a Gaussian system.

We shall start with a particular Gaussian system given by the fol-

lowing :

DEFINITION 1. A Gaussian system X = {X(B, ώ) B e Bo, ω e Ω} is

called a Gaussian random measure if it satisfies the following conditions

1) and 2):

1) X(B, ω) ~ N(0, μ{B))9 for any B e Bo, that is, X(B, ώ) is subject to

the Gaussian law N(0,μ(B)) which has mean zero and variance μ(B).

2) X{Bι U B29 ω) = X(B19 ω) + X(B2, ω) with probability one, for any

disjoint pair B19B2 in Bo.

The conditions 1) and 2) imply that X(B19 ω) and X(B2, ώ) in X with

i ^ Γ) 2?2 = 0 are mutually independent and that X(Bk,ω) converges to

X(B, ω) for almost all ω, if B1 C B2 c , (J* Bk = B e Bo.

Set

Seo = |fe = Σ (iiXBi {Bt} is a mutually disjoint family of Bo, n e N, at e R\ ,

where χB. denotes the caracteristic function of the set Bίt

Then Jδfo is a dense subspace of the Hubert space L2(E,μ) consisting of

square summable real functions. With each element h — 2] ̂ iXB. of JS?O

we associate a random variable

( 1 ) /(Λ,αι) = Σ

Then I(h, ω) is a Gaussian random variable with mean zero and variance
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( 2) E(/(fe, ω)Y = Σ a>MBt)

Therefore /(•) gives an isometric linear map from «Sf0 to L\Ω,P), the
space of random variables with finite variance. Since Jδ?0 is dense in
L\E,μ), we can extend the map /(•) to an isometry from L2(E,μ) into

L2(ΩyP). We denote /(/,ω) by f f(ά)dX(a9ώ) and call it the stochastic

integral of / e L\E, μ) with respect to the random measure 9£. It is more
suggestive to use the notation

( 3 )

with this we can regard {ξa a e E) as a system of random variables which
is independent at every point where each ξa is subject to the same
probability law 2V(0,1).

Let μf be a measure which is absolutely continuous with respect to
the measure μ. Denote by p the Radon-Nikodym derivative dμfjdμ.
Then V^ZB is an element of L2(E,μ) for B e Bo' = {B e B; μ\B) < oo}.
Put

(4) Z/(B,ω)

Then X'(B,ω) is a Gaussian random variables with variance

= f

and for any disjoint pair Bλ and JB2 of B,/ it holds that

Γ(ί f , U B2) = lW~P(χBl + χBt)) =

Therefore the system 2Cf — {X'(B, ώ) B e Bo'} is a Gaussian random meas-
ure on (E,B,μ').

Suppose that a group G acts on E and that the measure μ is invari-
ant under the action of G. In this case we call the Gaussian random
measure 3C on E a G-whίte noise (or simply a wftiίe noise). If μ is quasi-
invariant we call 9C a G-quasi-white noise.

§ 2 . Construction of random measure

In this section we will construct a Gaussian random measure 3F on
£ as a function on a certain function space on E.
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I. The case where μ(Έ) is finite

step 1°. Let Jί be the totality of non-null finite Borel partitions of

E, that is,

v = {B19 , Bn), Bi e B, B/s are mutually disjoint,!
( 5 ) Jf = v\

E = US{, μ(B*) > 0, n is a positive integer J

and set \ι>\ = number of elements of B-sets of v.

The notation v < v1 means that vf is a refinement of v. With this nota-

tion we can consider a directed set {Jί9 <}. Let

( 6 ) Ωv = | Σ α,χΰί B, e B, αt e i?}

denote the set of y-step functions. In an obvious manner we identify

Ωv with Rlvl and we introduce the topological tf-field F" together with a

probability P M which is subject to the M-dimensional normal distribu-

tion (N(0,l))M.

For any pair of partitions 0, ι/) with v < v', we define a projection

7ryfl/ from the space Ωv> onto β υ :

( 7) Σ aiΛBtJ - ^ ^ ( Σ dijXnJ = Σ ( Σ "

where 1/ = {£*,}, y = {BJ such that J5, = Uj ̂ , .

LEMMA 1. The system {(Ω%Έ%Pv),πvy,Jf} is a protective system of

probability spaces.

Proof. 1) Suppose that v < 1/ < i/' where v and y7 are as above and

where ι>" = {βίifc}, J?^ = U* BiJk. Then for any element ωv" = Σ

we have

/ υ " \ ^-i

and
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These show the following relation:

2) Set Av = {ωv = Σ α ^ . α« e V*}, where 7/s are Borel subset of

R. By the definition of (Ω% Pv), {αj and {α^ } are systems of mutually

independent random variables with the same probability law N(0,1).

Then

P\AV) = Π Q(α* ̂  V«)> where Q is the 1-dimensional distribution

iV(0,1). On the other hand we see that

) a n d

^J
 e γ ) ^

Kl

where JB< = \J Bυ.
j

Therefore

Thus we have

PV(BV) = P^^-^CJSO), for any Borel subset J5υ of Ω\ q.e.d.

By Bochner's extension theorem (S. Bochner [1]) the projective

system {(Ω%Pv),πvy} defines a projective limit probability space. We

denote the projective limit by (Ω, F, P) and let

be the canonical projection.

step 2°. Consider a random variable Xv defined on Ωv given by

( 8 ) Σ atXBt -> ̂ υ ( Σ αtZiii) = Σ

Furthermore let f'"' be the dual map of πvy

(9) τrυ'υ'(Zv) = Z υ o ^ v .

Then, we have the following lemma.

LEMMA 2. The relation
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holds. That is, {X% πvy) is an inductive system of random variables

defined on the projective system {(Ω% F% Pv), πvy}.

Proof. Let ωv' = 2] ^alBiS be an element of Ωv. Then

= Σ

On the other hand

X-('.,ΛΣ "«z

and we have

Denote by X the inductive limit random variable of the inductive

system of random variables {X%πvy} defined on Ω.

step 3°. For any element B of B, denote by Projβ the projection

(10) ωv = Σ atf5t π-> Proj^ (ωυ) = Σ aiXBiC]B

for any p > {B, B0}, and set

(11) X(B, ω) = ProjB X(ω) = lim Xv

THEOREM 1. The system of random variables {X(B, ώ) B e B} is a

Gaussian random measure defined on (E,B,μ).

Proof. 1) Let v = {5, βc} be an element of Jf. Then,

X(B, ω) = Proj 5 l(ω) = X^Proj* (ω )) - C 5Λ//^) ,

where c 5 is a standard Gaussian random variables. That is

X(B,ω)~N(0,μ(B)) .

2) Take any disjoint pair (B19 B2), and set v = {Bx, B2, (B, U -B2)
c}.

Then by the definition (10), we have

X{BX U B29ω) = Xv(PτojBlΌB2 (ωv)) = Xv(PτojBl (ωv)) +

= X(B19ω) + X(B2,ω) . q.e.d.
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II. The case where μ(E) is infinite

Take a sequence {Et i = 1,2, •} of subspaces of E such that

Ei c Ei+1, μ{Et) < oo and (J< #« = #• Put B* = B|^. and μt = μ|^. For

each finite measure space (Ei9Jίuμ^9 we find the inductive limit random

variable X1 on Ωι constructed in the steps 1° and 2° in I. Define the

projection πij9 j < i, which maps space Ωj onto Ωι such that

(12) ωj H-> πίfj(ωj) = ωj o %_B< .

Then we get

THEOREM 2. The collection {(Ωj,Pj),πίfj} is a protective system

determining a probability space (Ω,P) as its protective limit. And the

system {X\ πUj) is an inductive system of random variables which defines

a random variable X as its inductive limit. The system

(13) X = {X(B, ω) - Proj* X(ω) B e Bo}

is a Gaussian random measure on (E9B,μ).

The proof is obvious, since {(Ωj,Pύ),πί>3) is a sequencially maximal

topological projective system of probability spaces.

In general, given a stochastic integral /(•) we can get the Fock

decomposition of the Hubert space L\Ω,P), the space of random vari-

ables with finite variance:

(14) LXΩ,P) = ΈxvLXE,μ)

(N. Wiener [14]). For example, the inclusion map of the element f ® g

of L\E, μ) (x) L2(E, μ) into L\Ω9 P) is defined as

(15) /(/ (x) g, ω) = /(/, ω) X I(g, ώ) - </, <7> ,

and its norm is

(16) E(I(f®g,ω)Y = \\f\\2

The inclusion L2(β, P) c Exp L\E9 μ) can be proved by using the fact

that {exp(/(/,ω) - 11|/||2) / e L\E9μ)} is dense in L\Ω9P) (T. Hida [5c]

and N. Kόno [8]).

§3 . White noise and group action on it

Let S£ be a quasi-white noise on a measure space {E9 B, μ) on which
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a continuous group G acts, and let /(•) be the stochastic integral with

respect to the measure #".

Since the probability space Ω, on which the random measure 9£ is

defined, is a space of functions on E, we can define the action G on Ω

in such a way that

(17) goω = (goω

v) , for ω = {of = Σ α ^ , vsJT)

where # o ω " = £ aaBiQ-x.

Put

(18) jfr(β,ω) = X(β,ίfocϋ), for JS in Bo .

Then we can easily obtain the following proposition.

PROPOSITION 1. The system 2tg = {Xg(B, ώ)} is a Gaussian random

measure on (E,μg), where μg(B) = μ(Bg~ι) for B e B .

Let ϊg{-) denote the stochastic integral with respect to the random

measure $tg. Then,

LEMMA 3.

(19) Iΰ(f(x),ω) = I(f(xg),ώ) ,

where f eL2(E,μg).

Proof. It is sufficient to prove the statement in the case of a step

function φ(x) = Σ αtχβ.(x).

ϊg(Σ a,iχBt, ω) = Σ dJ'lXBo ω) = Σ a>ιX9Φ» ω) = Σ α ^ ( β - ί/ ° ω)

= Σ aiX&ig-^ω) = / ( Σ atfB<(,-x, ω)

That is,

I^(^(^), ω) = I(φ(xg), ώ) . q.e.d.

On account of (19) the system of random variables %Q = {Xg(B, ώ) B e Bo}

defined by

(20)

is a Gaussian random measure on (E, B, ω).

Let us apply this map to the stochastic integral and the Fock decomposi-
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tion.

Set I°(f, ω) be the integration of / e L\E, μ) with respect to the

random measure S£g. Then we have Theorem 3.

THEOREM 3. Let f be an element of L2(E,μ), then

(21) I'(f(x), ω) =

Proof. It is sufficient to prove the relation (21) for a step func-

tion φ{x) =

Ig(Σ atXBo ω) = Σ atXKBt, ω) = Σ aj^jj^χ^ ω}

Σ «,/ ((7f,..)«.») = Σ
q.e.d.

We will write the equation (21) in the following convenient form:

(22) f f(x)ξlVdiΛxj = f J^f-
J E J E v dμ

The unitary operators defined on L\E,μ)

(23) (17,/) - J^p(x)f(xg) , flr e G ,
v aμ

is called a quasi-regular unitary representation of G on L2(E), (but this

representation is not necessarily continuous).

This representation Ug is lifted up to the unitary representation Ug

of G on L\Ω,P)

(23) U0

We express this fact by the formula

(24) Ug = Exp E7, .

§ 4. White noise and Brownian motion

It is well known that the ordinary Brownian motion B{t), where t

runs over the whole real line, can be represented by an integration of
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the characteristic function χCM) with respect to the white noise {ξxVdx}
on (R\ dx):

l*t.

dx .(25) B(t) = Γ ξxVdx
JO

We will, in this section, extend the relation (25) to the /^-parameter case.
I. Let (M, d) be a metric space with metric d( ) and fix a point Or

call it the origin, in M.

DEFINITION 2 (P. Levy [10b]). A Gaussian system {B(m9ω);meMr

ω e Ω) is called a Brownian motion with parameter space (M, d), if the
conditions 1) and 2) hold:

(26) 1) B(O,ω) = 0 ,

(27) 2) B(m, ω) - B(w, ω) ~ 2V(0, dim, n)) .

By the definition the covariance function is given by

E(B(m)B(n)) = ME \B{m)f + E \B{n)f - E |B(m) - B(n)\>}

, 0) + <Z(w, 0) — dim, n)} .

Existence of such a Gaussian system is guaranteed by the following
theorem.

THEOREM 4 (Schonberg-Schwartz c.f. P. Levy [10b]). A necessary
and sufficient condition for the existence of the Brownian motion with
parameter space (M, d) is that for any neN and for any x of n-tuple
x = (χlf χ29 . . . , χn) of elements of M, the function Qin9 x)

(29) Q(n, x)(a19 , an) = Σ [d(xi9 O) + d(xj9 O) - dixi9 x^a^j
id

is positive definite on Rn.

Familiar examples are Brownian motions with parameter space Sn

and with parameter space Rn.
II. Let Pn be the ^-dimensional real projective space, and let

x =z (x19x2, -,xn,x0) be a point in Pn expressed in terms of the homo-
geneous coordinate. We introduce a local coordinate π of Pn

9 which is
defined as follow:

π is a coordinate of Pn — {x xQ = 0} such that
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(30) π(x) = f
\x0 x

Set x = π~\x), x e Rn, and let * denote the inversion mapping of Pn, that

is, * maps Pn onto

31 = {(% — l)-dimensional hyperplane in Pn} in such a way that

(31) x »-> #* = {i/ePn aj-'y = a ^ + + xnyn + xoyo = 0}, a e P .

For convenience we introduce another coordinate system of Pn. Let Sn

be viewed as a two folded covering space of Pn. For an element x of

P n , we define the polar coordinate (q φ) of x in the following manner:

qeS71'1 is the direction of the vector (xί9 -,xn)

and

cos φ = £0/0*α2 + + avT/2 , 0 < φ < π .

With this notation π(x) and π(x*) may be expressed in the form

(32) π(x) = (g, tan 95) ,

and

Γthe hyperplane which contains a point (—q, cotφ))
(33) π(x*) = { > .

[and is perpendicular to the vector (—q, cot0)J

III. We start with a simple construction of the S^-parameter

Brownian [motion. Let 0 be the origin of Sn and let ds be the geodesic

metric. Associate with a point A of Sn is a semi-sphere S(A) defined

by

(34) S(A) = [β e Sn d,(A, B) < |-} .

Let dS denote the uniform measure on Sn, and let {ξVdS} be a white

noise on (Sn, dS). We define a random variable B5(A) for any point A

of S% as follows:

(35) BS(A) = /JL f fMVSS(M) ,

where σn = dS, and define a new random variable
JSn
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(36) BS(A) = BS(A) - BS(O) .

Then we get easily the following theorem.

THEOREM 5. The Gaussian system {BS(A) A e S71} is the Brownian

motion with parameter space (Sn,ds).

The domain of the integral (35) never contains any set of antipodal

pairs of positive measure. So we may take a new random measure

{fV5S} on Pn = Snl ~ (where A ~ B means that A and B is an anti-

podal pair) as

(37) & - -J=(£M ~ £*) ,

where M ~ M.

Then the integral (35) is expressible as

(350

- f ξxVdSζffi) .
S(A)

The meaning of the first integral of (350 is that the domain of integration

is Pn — A* and the orientation of Pn — A* is given by continuation from

that of the origin 0 of Sn.

We can easily get the following symmetry of the Brownian motion

{BS(A) A e Sn} that can be described by the rotation group.

THEOREM 6. It holds that

(38) B8(Ag,ώ) = Bt(A,goω),

for any element g of the rotation group SO(n + 1,R).

Observe the expression (350 restricting A to the space Pn — 0*, and

apply the local coordinate map. Then we can rewrite the formula (350

in the form

(39) Bs(d) = J— f ξUdSΪM) , aeR".
> Gn J Pn(a*)

The process {B8(a) a e Rn} defined by (39) is the Brownian motion

with parameter space (Rn, dπ = π%(ds)). We want to form a Brownian
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motion with parameter space (Rn, || ||) from this process Bs( ) by a change
of the associated measure. We note that the Euclidean metric || || is
invariant under the action of the Euclidean motion group M(ri), while
dπ is invariant under the action of SO(n + 1). We, then, observe that
a matrix representation of M(ri) as follows:

M(n) = (

(40)

^\e SL(n + 1, R),
1/

heSO(ri),aeRn,Q = «(0, ••-,0)1 .

where the action by g = ( ) on xeRn is such that
V a 1/

χ.g = χ h

SO(n + 1) and M(ri) have SO(n) as a common subgroup under which
both dπ and || || are invariant. We further notice that the relation (31),
<κ->α*, links the parameter space of a Brownian motion and the para-
meter space of a white noise. Thus, so far as a Brownian motion de-
fined by the analogous formula (350 is invariant under the action of
M(n), the measure dM by which the Brownian motion with parameter
space (Rn, || ||) is defined, has to be invariant under the action of M*(n)»
In our case

By a short calculus the measure cM on Pn must become the following
form on Rn:

(41) ξ

where C is a normalizing constant which is to be given in the proof of
the next theorem. For notational simplicity, we write TΓ̂ CWO simply as
cM again.

Set,

(42) B(a) = p.v. (T - ί W V d T O .

Then holds the next theorem.

THEOREM 7. A Process {B(a) aeR71} given by the form (42) is the
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JRn-parameter Brownian motion in the sense of Levy, that is, {B(a) a e Rn}

hold the conditions (26) and (27).

Proof. The domain of the integral (42) does not contain a non-trivial

disc Dε with center 0 and radius ε. Then

E\B(a)f < ^χiDε)cd = C

The integral (42) is therefore well defined.

By the construction of {ξVdH} the variance E \B(a) - Bφ)f of the

difference is a function only of the distance between a and b. It is now

enough for us to prove that the variance Έ\B(a) — B(b)f is proportional

to the distance \\a — 6||.

Take such a and b as

a = (r, r tan ψα, 0, , 0) ,

b = (r,r tan ψδ,0, •••,()).

Then α = r/cos ψα, δ = r/cos ψb and

α* Π 6* = {x — (x19 - , xn) xx = r0 = 1/r, #2 = 0} .

The solid angle of the domain limited by two coaxial cones of vertical

angle θ and θ + dθ is proportional to d# and is as large as 2Qθdθ. We

therefore have

E \B(a) - B(6)|2 = — I - [Q,(W ^ f

Qe
COS (6> — ψ δ ) COS (θ — ψa)

COS ψb COS

1 C Cπ/

Λvhere C is the normalizing constant such that

r*/2
Qθ\smθ\dθ = 1. q.e.d.

We are now ready to show the symmetry of the above constructed

Brownian motion that comes from the structure of β-space.

THEOREM 8. For any element g of M(ri), we have
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(43) B(ag, ω) == B(a, goω) - B(O, goω) .

where g is the transposed inverse matrix of g in the matrix representa-

tion (40) of M(n).

Let V(a) be the domain of the integral (41). Then we can see that

/-\y Γthe collection of hyperplanes of Rn whichi
(44) π(V(a)*) = • In A

[separate two point O and a )

That is, our white noise representation of the /^-parameter Brownian

motion is equivalent to that of HΘHUOB ([16]).

§ 5 . Radon transform and Wiener integral

In the following, the dimension n is always assumed to be odd.

DEFINITION 3. Let y(Rn) be the Schwartz space of rapidly decreas-

ing real C°°-functions. The Radon transform f of / in Sf(Rn) is the

function on Rn x R defined by:

(45) Γ

where / is the Fourier transform of / :

= (±)n/2 ί

the bracket < , •> being the inner product in Rn.

For notational convenience, we write the Radon transform simply

as

fP)= f f(x)dx .

Here is an important remark that should be emphasized. One can

see an interesting and beautiful similarity, in expression by integral,

between the Radon transform of a function on Rn and the white noise

representation of ^-parameter Brownian motion through the relation

(46) *(!*) = {a ;<*,£>= - 1 } .

THEOREM 9. (H. M. Γejihφanji, M. H. ΓpaeB H H. H. BHJIΘHKHH [2b]). In

case the dimension n is odd, setting m = (n — l)/2, we have
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(47) ί f(x)h(x)dx =-±—{ Γ βp

m\q,p)Km\q,p)dqdp ,
jRn 2σn_1 Jsn-lJ-^

f,he^(Rn), where βp

m) = ( _ ) / , qeS71'1 and dq is the uniform measure
\dp/
(
\dp

on S71'1.

Proof. Notice the fact that the function /(£, p) is real.

ί Γ fif\q,p)fί?Kq,P)dqdp
JS»-1 J -oo

= ~ f Γ ΓΓ (-ia)mf(aq)e-ίapda\\Γ (iβ)mh(βq)eίβpdβ\dqdp
2π J sn-i J -oo LJ -oo JLJ-°° J

= f Γ Γ (^)m/(««)^)^(a - β)docdpdq
J S™-1 J - o o J - c o

= f Γ an-ιf(aq)K{aq)docdq = 2σn_λ f f{ξ)%(ξ)dξ
J Sn-i J -oo J/2«

= 2<7n_! f(x)h(x)dx . q.e.d.

Set

(48)

Then the equation (47) is expressible as

(49) f f(x)h(x)dx = f (Rf)(Rh)dm , where <W =
J Rn Jp*H0*)

THEOREM 10. The map R can be extended to an isometry between
L\Rn, dx) and L\Rn, dψ).

Proof. By the equation (490 the map R is an into isometry. Let
Dv be a space of all C°°(i?7l)-functions F with compact support KF and
let Q be an operator on Dy defined by

* (QF)(y) = _ i - ( i y w + 1 ) / 2 £ r a i J ^ j ^ (iβT

X F(q, r) exp ( - ^ - i/3<>, g> )-^

where (q,r) is the polar coordinate of ξ. The operator Q takes values
in L\Rn, dx). If F, G are in J5V, then
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f (QF)(y)(QG)(y)dy

1 / I \n + 1 C C
= ( — ) ' * * Wβ)(—ψ)]mF(Q>r)G(q',',

X exp ( —-^- + %- - Kv, βq - β'qf)

= -r±— f ί F(q>, r)G(q\ r>) exp (-iβf(~ ~ -\)% %dβ'
4 τ τ < 7 n _ 1 J J \ \r r'// r2 rn

r2 J

This shows that Q can be extended to an isometry from L2(/?n, ΦA') into
I/2(i?w, ίte). For / e L2(Rn, dx)

(QRf)iy) - 2^~(έ) ( m + 1 ) ί

X /(αg) exp {^

= ( ~ ) W / 2 f
\27Γ/ J Λra

That is, Qi2 is the identity map of L2(Rn, dx). Hence the operator R is
an onto map. q.e.d.

We use the same symbol to express this extension of R. The next
proposition can be easily be proved.

PROPOSITION 2. For any nonzero real number a, we have

(50) /(α

and

DEFINITION 4. For any element / of L\Rn, dx), the Wiener integral
of / is defined by:

(52) W<J, a) - f (Rf)(η)ξWMϊίy) > & e R« .

PROPOSITION 3. For any f and h of L\Rn, dx), we have
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(53) E(WXΛ a)W(h, a)) = ί f(x)h(x)dx .
J Rn

The special linear group SL(n + 1,R) appears as the structure group

of the quasi-white noise by which we define the Brownian motion. We

will study this group as the symmetry group of the Wiener integral (52)

in the following two section.

§ 6. Infinite dimensional rotation group O and its finite dimensional subgroup

Let j(? be a real Hubert space and 2 be a dense nuclear subspace

of Jf. Consider the collection O{0) given by

(54) O{0) = {T orthogonal linear operator on jf, T@ c 3} .

It forms a group under the usual product, indeed it is a transformation

group action on Q).

DEFINITION 5. The group O(β) is called the infinite dimensional

rotation group.

We sometime write it as O°° instead of 0(0). This group 0°° plays

a very important role when we discuss the so-called Fock decomposition

of the Hubert space L2(@*,P):

(14) L2(@*,P) = E x p ^ ,

where S* is the dual space of 3f (c.f. T. Hida [5c] and Y. Umemura [13]).

The protective limit of the finite dimensional rotation group S0(n)

(55) CL = Km S0(n) ,
n

is merely a small subgroup of 0°°. We are not concerned with this group

0°° itself, but we investigate an important subgroup of 0°° which is not

contained in 0^.

I. The case of ordinary Brownian motion

In this subsection we summarize what is known concerning the rela-

tionship between a certain subgroup of 0°° and the protective invariance

of the ordinary Brownian motion.

A finite dimensional subgroup i*\ of 0°° comes from the Brownian

motion in the following manner. Set,
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(56) Sx = {/ / e C~{Rι), <Ux)f<Xlx) e C-iR1)} .

Consider the following two one-paramer subgroups of 0{βx Π L2(R\ dx)):

(S) S(ί): Shift,

(S(ί)/)(a?) = /(a; + t) , ί e Jf ,

(D) D(ί): Dilation (or Tension),

(D(t)f)(x) = ewfie'x) , teR .

The infinitesimal operators correspond to the one-parameter groups (S)

and CD) are (s) and (d) respectively:

(s) s = 4~>
dx

(d) τ = — I + x— ,
2 dx

where / is the identity operator on L\R\dx). The Lie product [s,τ] of

s and τ is equal to s, so that {s, τ} forms a base of a Lie algebra gen-

erated by them.

Consider the map / given by

(/) (JfXx) = - / ( - - ) for feD19

x \ x /

and introduce the adjoint operators of s and τ with respect to / :

(57) Ad (J)s = (J-'sJ) = xl + x2—
dx

and

(58) Ad(/)r = - τ .

Then we are given a new operator

(fc) K = xl + x2- Ί

dx

Since [s, /c] = 2r and [r, Λ:] = Λ: hold, {s, τ, /c} is a base of a Lie algebra of

differential operators on Dλ. Corresponding to K we consider a new one-

parameter subgroup K(t) of O°° such that



BROWNIAN MOTION 111

(K) (K(t)f)(x) = ((J-'SitWfXx) = —L^f(—LΔ , t e R .
1 — tx \1 — tx)

Then the operator K is the infinitesimal generator of the operator (K).

The one-parameter subgroup (S), (D) and (K) give an unitary repre-

sentation Tg of # SL(2,R) such that:

(59) f
/3x + δ \βx +

where g = ( α ' Q e SL(2, i?) and / e L\Ry dx).

With the operators (S), φ ) and (Z), we can associate one-parameter

subgroups of SL(2,R) in such a manner that:

(60,

In addition we have

By the Bochner-Minlos theorem (c.f. [2a]) one can introduce a

paobability measure P on ^ * , with respect to this probability measure

(62) Bit, ω) = <χ[(M), ω} , α i e ^ * ,

is a version of the ordinary Brownian motion. Then each one of the

one-parameter group (S), (D) and (K) defines a flow on {^^9P). These

three flows, acting on β-space, can be switched to the transformations

acting on the sample paths through the above expression (62). With

this, the projective invariance, due to P. Levy, of the Brownian motion

can easily be interpreted (c.f. T. Hida, I. Kubo, H. Nomoto and H.

Yoshizawa [6]).

II. Let 3f c L\Rn, dx) c 3* be any Gelfand triple. By the definition

of the Wiener integral (52) we get a probability space (S*,P) which is

taken to be an β-space for the Brownian motion with parameter space

(flMI ll).
We wish to extend the results in I to the multi-parameter cases.

As soon as we come to the higher dimensional space, say Rn, one meets

very much complicated structure and finds that Rn would be better to
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be viewed as P w by the use of the local coordinate π. Under such a

view point the relationship between the parameter space structure and

the projective invariance of the Brownian motion can be well be recog-

nized.

1°. The first problem to be discussed here is how to generalize the

operator J to the multi-parameter case. If directions in Rn are taken

into account, one is naturally led to such operators J/ s that

(J) Jifixu - , x„) = (-±-Y+1)/2f(^-> , - ^ , — , ^ ,
\ Xi / \ Xi Xi Xt Xt X

The nuclear space on which the Jt act must be

(63) 9n = {/ / e C~(Rn), JJ e C~{Rn) for i = 1, . . . , n) .

This space @n can be identified with the space C°°(PW) in the usual manner.

Now consider the following operators defined on @n;

(s) st = •— , i = 1, , n ,
dXi

{d) ti = —I + Xi—- , i = 1, , n .

2 dxt

Then their Lie products are the following:

[si9 TJ] = 0 , if i φ j .
= Si , if i = j .

The adjoint operators of the sΛ with respect to Jt are introduced and

are of the form

Ad (Ji)Sj = Xi—- , if i Φ j ,

= ^ 4 ^ ^ 7 + «iΣ»*r- , if < = .
2 *=i d£fc

Define new operators

(fc) κι = Ad (/,)§, .

(sθ s o = Ad (Ji)^ , for ίΦ j .

The commutation relations of the operators (s), (d), (k) and (§0 immediately

prove the following.

PROPOSITION 4. Tfee operators {si9 τί9 κu stj} generate a Lie algebra

\n ίsomorphic to §t(n + 1,R).
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2°. Now we give the explicite form of one-parameter subgroups
(S),CD),(2O and (S") with infinitesimal generators (s),(d),(fc) and (s')
respectively, and express them by (n + l)-dimensional matrices as fol-
lows:

(S) Si(t): Shift

(Si(t)f)(x) = / t o , , x t _ l 9 Xt + ί, α ί + 1 , , xn) , t e R , f e L \ R n , dx) ,

1,

6,
LO,

O,N

N
S

s

,0,

s

t,

s

\ \

)

0,

,o

oίi
,o

0 '

ό
l j

i

(P) Di(f): Dilation

Φi{t)f)(x) = e"2f(x19 , xt_u e%, xi+ι, •, xn) ,

D t { t ) ~

o,\\
S \ N

S \ N

: \ \ N

N

o
^ v,

* * " 9

\
N

y

0

δn

0,

0

ό
δo_

δk = e-
ί / ( n + 1 ) for k Φ i ,

= f( a ' 1 . . . ®i-i — 1 ^< + i Φ _ _ ^ π \

1 — txt V1 — ίa;*' ' 1 — tx/ 1 — tx/ 1 — tx/ ' 1 — ίXϊV

0,1,0,
,o

Kt{t) ~
-t\

0

Lo, ,o



114

(SO

SHIGEO TAKENAKA

f(rv> sv* of

o!i|o,

iφj,

Suit)

, o

o,
o, ., o

And the matrix representation of the inversion operators (/) are

(J) J i ~

Obviously (S), (D), (K) and (SO are elements of SL(n + 1,R) and gen-
erate the entire group SL(n + 1, R). The space £>w Π L\Rn, dx) is nuclear
and is invariant under these unitary operators. Then it holds that

where Fn is the operator group which is generated by the operator (S),

(D),(K) and (SO.
Let Tg be the unitary representation of SL(n + 1, R) defined by Fn.
3°. We have so far obtained a quasi-regular (continuous) unitary

representation Tg of the group SL(n + l,R) on L2(Rn,dx). One may
now ask probabilistic meanings of this representation Tg. As we
have observed in § 4, the white noise {c } on Pn is invariant under
the action of the Euclidean motion group M(n). The group M(n) is only
a subgroup of SL(n + 1, R) (see (40)) under which the relation between
x and x* (see (31)) in Pn is kept invariant. Accordingly it is natural
to consider the system {ξx^dH} as an SL(n + l,i?)-quasi-white noise on
Pn. We, therefore, consider the unitary representation Ug of SL(n + 1,R)
on L2(Pn, cZM) by using the procedure in § 3. On the other hand, we
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have considered in § 5 that the modified Radon transform R gives us the

relation between the quasi-white noise {ξxVdλi} and the Brownian motion

{B(ά)}. Combining these facts we get our main result asserting that this

operator R links these two representations Tg and Ug in the following

manner.

MAIN THEOREM. In the case of odd dimension

(66) RTg = ϋfjR , for any g in SL(n + 1, R) ,

where g is ιg~ in the matrix form (40).

That is, the modified Radon transform R is nothing but the inter-

twining operator between two representations Tg and Utg_1 of SL(n + 1,2?).

We shall prove the main theorem in the next section.

In the one-dimensional case, the Radon transform is rather trivial,

namely

(Rf)(x) = / ( - - )
\ x /

If we consider it together with the density dm jdx = l/(x2), R be-

comes equal to /. Therefore it is difficult to grasp the beautiful relation

(66) in the case of the ordinary Brownian motion. Our main theorem

ties up three fact, the representation of the Brownian motion by the

integral with respect to the white noise, the Wiener integral and the

subgroup Fn of O°°. So it should be, the author hopes, a key point of

the theory of multi-parameter white noise analysis.

§7. Proof of the main theorem

Since the full group SL(n + 1, R) is generated by (S), (D) and (J),

it is sufficient to prove our theorem only for the subgroups (S) and (D)

and for the map (/). Observing the matrix forms of (S), (D), (K) and

(SO it is not difficult to obtain the explicit expression of the represen-

tion Tg as follows:

/ | ( ) /
(67) (Tgf)(x) = ί—V) f(π(xg)) , / € L\R\ dx) ,

\ (xg\ /
where xg = (x19 , xn, ϊ)og and (xg)t is the ΐ-th coordinate of the vector

xg. By the definition of Ug in (23), a short calculation shows that
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(68) (Ugh)W = (—T+1)/2h(π(xg)) , h e L\R«

where r = (x? + + xn

2)y2 and

(69) f = ((π(xg))ΐ + ••• + (π(xg))nΨ
2

S e t

(70) (£/)(£, p) = (-^-YAξ, P), ξeRn

9peR\m = (n- l )/2 .
\3p /

Then we have

(71) Rf(η) = 0R/)(g, -1/r) , η e Rn ,

where g = (g1? , qn) is the direction of η and r is the length of η, that
is, (g r) is the polar coordinate of η.

For simplicity we shall prove the theorem in the case i = 1.

(S) Shift. For any element / of L2(Rn, dx),

and

(RTSlU)f)(ξ, p) = (-^T ί ffri + tfx2,.. , xn)dx
\dp/ J<t,χ>=P

f f(x)dx
J<ς,χ>=p-ξitdp

Therefore, we have

{RTSiWf){η) = (RTSι(t)f)(q, -1/r) = (Rf)(q, (-1/r) - qxt)

= USιW(.Rf)(.η),

where A means 'A"1 in the matrix form of M(n) (see (40)),

= ( ?' K .. ?»

\ l + Vιt' l + 7 l t ' Ί + 7

and
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i,o, ..,o

0,1,0, ,0
: W\: o i o
o, ,o,i

ί l

ό
L0,0, ,0

(D) For any element / of L\Rn, dx), we have

(TDlU)f)(x) = e?'%f{e?xux2, ,a;.) ,

and

(RTDιΦf)(ξ,p) = (J-Y ί
\dp/ J<ζa>

^,x2,-- ,xn)dx

(xx: =z e^j the notation y:=z means t h a t we change the variable z of

the integral into y)

, ξ2f ., fn, p) .I U \ — 119 \

Therefore,

= e~t/2(

= e-wf-Z—Y*
\\\vg\\/

q2

2 r 4

RfW)

where ^ = , )?2, , jyre). Since

e~nt/(n + D

o,

0

o, , o i

n

where In in the (n, n)-identity matrix,

( r \(n + l)/2

11̂ 11/

Thus we have

V9 /
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(/) We note that

( I \(n+i)/2 / -I Ύ r

-) f[--,^, Ά , feL\R\dχ),
xj \ xx xλ j

x

(73)

F e L2(Rn, dW

and

-i JJ (-i

where π(̂ Λ) = ̂  = (—l/CrgJ, ft/^, , gn/^). Put r' = [[^ ||, then the

polar coordinate of the vector rf is (—l/ίrV^), q2/(r'q1), ,qnl(r'qύ\ r').

Therefore,

= (Λ)W + 1-t- Γ (-

= ( ) (—^r'g1α)mF( — —,
\ qxr

f J γ 2 π J - ^ \ r

On the other hand

r

) f f ( I ) > ( - l , ^, ..., *A exp (ί<a;, f> -
2τr/ JJ \α?i/ V a? a? ^ /

X exp [(ΐ^if x + αJi(a52?2 + + »«f«))« — iapldxda

X exp Uaίξi + x2ξ2 + + xnξn - — j^dxdanξn - — j ^
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\F is the Fourier transform of F with respect to the variables x29

,xn, and x1: = . — l/x1)

= £- ί ί (~— Yi&ϊFKXi aξ29 , αfn) exp [ia(ξ, + pxjldx1da .
2πJJ \ xj

Hence we obtain

- I f f (ίaxι)
m(--Y(^ίF)(x1 aξ2, , α£n2ττ JJ V xj n )

X exp Kα(f! +

= -^- ί (-^)mF(«p, aξ2, , αf Je'^-

Γinaly we have

(75) (RTjfXη) = - ^ f ( - ^ ) - # ( _ ^ , aq29

Thus comparing (75) with (74), we have

(76) RTJχ = C/̂ β .

A

Noting that JΛ = Jlf we complete the proof of the main theorem.
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