PICARD PRINCIPLE FOR FINITE DENSITIES ON SOME END

MICHIHIKO KAWAMURA*

Consider a parabolic end Ω of a Riemann surface in the sence of Heins [2] (cf. Nakai [3]). A density P = P(z)dxdy (z = x + iy) is a 2-form on $\overline{\Omega} = \Omega \cup \partial \Omega$ with nonnegative locally Hölder continuous coefficients P(z). A density P is said to be finite if the integral

(1)
$$\int_{g} P(z) dx dy < \infty .$$

The elliptic dimension of a density P at the ideal boundary point δ , dim P in notation, is defined (Nakai [5], [6]) to be the 'dimension' of the half module of nonnegative solutions of the equation

(2)
$$L_p u \equiv \Delta u - P u = 0$$
 (i.e. $d^* du - u P = 0$)

on an end Ω with the vanishing boundary values on $\partial\Omega$. The elliptic dimension of the particular density $P \equiv 0$ at δ is called the *harmonic dimension* of δ . After Bouligand we say that the *Picard principle* is valid for a density P at δ if dim P = 1. For the punctured disk V: 0 < |z| < 1, Nakai [6] showed that the Picard principle is valid for any finite density P on $0 < |z| \leq 1$ at the ideal boundary z = 0, and he conjectured that the above theorem is valid for every general end of harmonic dimension one. The purpose of this paper is to give a partial answer in the affirmative.

Heins [2] showed that the harmonic dimension of the ideal boundary δ of an end is one if Ω satisfies the condition [H]: There exists a sequence $\{A_n\}$ of disjoint annuli with analytic Jordan boundaries on Ω satisfying the condition that for each n, A_{n+1} separates A_n from the ideal boundary, and A_1 separates the relative boundary $\partial \Omega$ from the ideal boundary, and

Received April 7, 1975.

^{*} The work was done while the author was a Research Fellow at Nagoya University in 1974 supported by Japan Ministry of Education. The author is grateful to Professor Nakai for the valuable discussions with him.

MICHIHIKO KAWAMURA

$$(3) \qquad \qquad \sum_{n=1}^{\infty} \mod A_n = \infty \ .$$

We shall prove the following

THEOREM. The Picard principle is valid at δ for any finite density P on an end Ω with the condition [H].

The proof of the theorem will be given in no. 5 after three lemmas in no. 2–4. Although the essence of the proofs of these lemmas is found in Nakai [6], we include here their proofs for the sake of completeness. However the lemma in no. 4 requires an entirely different considerations for ends with infinite genus.

1. We always assume that an end Ω has a single ideal boundary component δ and that $\partial \Omega$ consists of a finite number of disjoint closed simple analytic curves on R. Let u be a bounded solution of (2) on Ω with continuous boundary values on $\partial \Omega$. We first note that

$$\sup_{\overline{o}} |u| = \max_{u} |u|.$$

In fact, since u^2 is subharmonic on Ω and Ω is a parabolic end, by the maximum principle for bounded subharmonic functions, we have the identity (4). The *P*-unit $e = e_P$ is the bounded solution of (2) on Ω with boundary values 1 on $\partial\Omega$. By (4) such a e_P is unique. Next consider the associated operator \hat{L}_P with L_P which is introduced by Nakai ([5], [6]);

$$(\hat{L}_P u) dx dy = d^* du + 2d(\log e_P) \wedge ^* du$$

for $u \in C^2(\Omega)$ where e_P is the *P*-unit on $\overline{\Omega}$. We say that the *Riemann* theorem is valid for \hat{L}_P at δ if $\lim_{z\to\delta} u(z)$ exists for every bounded solution u of

$$(5) \qquad \qquad \hat{L}_P u = 0$$

on Ω . Nakai ([5], [6]), showed the following duality theorem (cf. also Heins [2], Hayashi [1], Nakai [4]): The Picard principle is valid for the operator L_P at δ if and only if the Riemann theorem is valid for the associated operator \hat{L}_P at δ .

2. Concerning the valuation of the Dirichlet integral of $\log e_P$ we shall first prove (Nakai [6]):

PICARD PRINCIPLE

LEMMA. The P-unit e_P of a density P on an end $\overline{\Omega}$ satisfies the following inequality

$$(6) \qquad D_g(\log e_P) \equiv \int_g d \log e_P \wedge *d \log e_P \leq \int_g (1-e_P)P$$

Proof. Take a sequence $\{\Omega_n\}$ of ends such that $\overline{\Omega}_{n+1} \subset \Omega_n$ $(n = 1, 2, \dots)$, $\bigcap_{n=1}^{\infty} \Omega_n = \emptyset$. Let e_n be a continuous function on $\overline{\Omega}$ such that $L_P e_n = 0$ on $\Omega - \overline{\Omega}_n$ and $e_n = 1$ on $\overline{\Omega}_n \cup \partial \Omega$. Since e_n is decreasing as $n \to \infty$, by the Harnack principle, e_n converges to the *P*-unit e_P on $\overline{\Omega}$ uniformly on each compact subset of $\overline{\Omega}$, and the same is true for de_n and $*de_n$. Observe that

$$egin{aligned} d(e_n^{-1*}de_n) &= e_n^{-1}d^*de_n + de_n^{-1}\wedge {}^*de_n \ &= P + d\log e_n \wedge {}^*d\log e_n \end{aligned}$$

on $\Omega - \overline{\Omega}_n$. Since $e_n^{-1} = 1$ on $\overline{\Omega}_n \cup \partial \Omega$, we deduce the identity

(7)
$$\int_{a} d \log e_{n} \wedge *d \log e_{n} = \int_{a} (1 - e_{n})F$$

from the Stokes formula. Observe that $(1 - e_n)P$ is increasing as $n \to \infty$. On taking the inferior limit as $n \to \infty$ on the both sides of (7) and applying the Fatou lemma and the Lebesgue theorem, we conclude that

$$D_{g}(\log e_{P}) \leq \liminf_{n \to \infty} \int_{g} d \log e_{n} \wedge *d \log e_{n} = \int_{g} (1 - e_{P})P$$

Q.E.D.

3. Let u be a bounded solution of (5). The Dirichlet integral of u is finite if the density P is finite, i.e. we state the following (Nakai [6]):

LEMMA. If a density P is finite on Ω , then any bounded solution u of $\hat{L}_P u = 0$ on $\overline{\Omega}_0$ has a finite Dirichlet integral on any end Ω_0 with $\overline{\Omega}_0 \subset \Omega$.

Proof. Let $\{\Omega_n\}_1^\infty$ be a sequence as in no. 2 with $\overline{\Omega}_1 \subset \Omega_0$ and u_n be a continuous function on $\overline{\Omega}_0$ such that $\hat{L}_P u_n = 0$ on $\Omega_0 - \overline{\Omega}_n$, $u_n = u$ on $\partial \Omega_0$ and $u_n = 0$ on $\overline{\Omega}_n$. Then we have the identity

$$egin{aligned} d(u_n^*du_n) &= du_n \wedge ^*du_n + u_n d^*du_n \ &= du_n \wedge ^*du_n - 2u_n d\log e \wedge ^*du_n \end{aligned}$$

on $\Omega_0 - \overline{\Omega}_n$, where e is the P-unit of P on Ω . The Stokes formula yields

MICHIHIKO KAWAMURA

$$D_{\mathcal{Q}_0}(u_n) = \int_{\partial \mathcal{Q}_0} u_n^* du_n + 2 \int_{\mathcal{Q}_0} u_n d \log e \wedge * du_n$$

where

$$D_{\mathcal{G}_0}(u_n) = \int_{\mathcal{G}_0} du_n \wedge * du_n$$

The function u_n converges to u uniformly on every compact subset of Ω_0 and $*du_n$ converges to *du uniformly on $\partial\Omega_0$. In fact, $v_n = eu_n$ is a bounded solution of (2) on $\Omega_0 - \overline{\Omega}_n$ and $|v_n| \leq \sup_{\overline{\Omega}_0} |u|$. Then v_n converges to a bounded solution v of (2) uniformly on every compact subset of $\overline{\Omega}_0$. Since v and eu are both bounded solutions of (2) with the same boundary values on $\partial\Omega_0$, we have that v = eu, i.e. $u_n \to u$ as $n \to \infty$ uniformly on every compact subset of $\overline{\Omega}_0$. Similarly we have the last assertion. Since u_n is bounded and $u_n = u$ on $\partial\Omega_0$, by the Schwarz inequality, we deduce the inequality

(8)
$$D_{g_0}(u_n) \leq \left| \int_{\partial g_0} u^* du_n \right| + k D_{g_0} (\log e)^{1/2} D_{g_0}(u_n)^{1/2}$$

for some constant k > 0. Observe that the first term of the right hand side of (8) is bounded. On the other hand, since P is a finite density, by Lemma in no. 2, $D_{a_0}(\log e)$ is finite. Therefore $D_{a_0}(u_n)$ is bounded. The Fatou lemma yields

$$D_{g_0}(u) \leq \liminf_{n \to \infty} D_{g_0}(u_n) < \infty$$
. Q.E.D.

4. Consider an end Ω with the condition [H], i.e. there exists a sequence $\{A_n\}$ of disjoint annuli on Ω with the condition (3). Let $\lambda(\gamma)$ denote the oscillation of $u \in C^1(\Omega)$ on a set $\gamma \subset \Omega$, i.e.

$$\lambda(\gamma) = \max_{r} u(z) - \min_{r} u(z) .$$

We prove the following

LEMMA. If a function $u \in C^1(\Omega)$ has a finite Dirichlet integral on Ω with the condition [H], then there exists a sequence $\{\Omega_n\}$ of ends such that $\lambda_n = \lambda(\Omega_n) \to 0$ as $n \to \infty$.

Proof. Choose a strictly decreasing sequence $\{a_n\}$ $(n = 0, 1, 2, \dots)$ of positive numbers a_n such that $a_0 = 1$ and that

$$(9) \qquad \qquad \operatorname{mod} A_n = \log \left(a_{n-1}/a_n \right)$$

38

for $n = 1, 2, \cdots$. By the condition (3), we have that $a_n \to 0$ as $n \to \infty$. Take a sequence $\{C_n\}$ of concentric circles $|z| = a_n$ $(n = 1, 2, \cdots)$ on the complex plane. A_n is conformally equivalent to $a_n < |z| < a_{n-1}$ $(n = 1, 2, \cdots)$ by (9). Therefore the restriction of u to $\bigcup_{n=1}^{\infty} A_n$ is considered as a function on 0 < |z| < 1 by giving the values of u on C_n as follows:

$$u(z_0) = \lim_{z \to z_0} u(z)$$
 $(z_0 \in C_n \text{ and } a_n < |z| < a_{n-1})$.

Let $\lambda(r)$ be the oscillation of u on |z| = r ($0 \le r \le 1$). Then we have

$$\lambda(r) \leq \int_{0}^{2\pi} \left| rac{\partial}{\partial heta} u(re^{i\, heta})
ight| d heta \; .$$

The Schwarz inequality yields

$$\lambda(r)^2 \leq 2\pi \int_0^{2\pi} \left| rac{\partial}{\partial heta} u(r e^{i \, heta})
ight|^2 d heta \; .$$

Therefore we have

$$rac{\lambda(r)^2}{r} \leq 2\pi \int_0^{2\pi} \Big(\Big|rac{\partial u}{\partial r}\Big|^2 + rac{1}{r^2} \Big|rac{\partial u}{\partial heta}\Big|^2 \Big) r d heta \; .$$

We integrate the both sides of the above on (0, 1) with respect to dr and obtain

(10)
$$\frac{1}{2\pi} \int_0^1 \frac{\lambda(r)^2}{r} dr \leq \int_{0 < |z| < 1} du \wedge * du = \sum_{n=1}^\infty D_n$$

where D_n denotes the Dirichlet integral of u on A_n . By the assumption of Lemma the right hand side of (10) is finite and then the same is true for the left hand side of (10). This shows that $\liminf_{r\to 0} \lambda(r) = 0$, i.e. there exists a decreasing sequence r_n such that $\lambda(r_n) \to 0$ as $n \to \infty$. Since the image set on Ω of $|z| = r_n$ is a cycle of Ω separating $\partial \Omega$ from δ , there exist ends Ω_n such that $\partial \Omega_n$ are the images of $|z| = r_n$ $(n = 1, 2, \dots)$. Q.E.D.

5. Proof of the theorem. In view of the duality theorem in no. 1, we only have to show that any bounded solution u of $\hat{L}_P u = 0$ on Ω has the limit at δ . Since P is a finite density on Ω , by Lemmas 2, 3 and 4, there exists a sequence $\{\Omega_n\}$ of ends such that $\lambda_n = \lambda(\partial \Omega_n) \to 0$ as $n \to \infty$. Consider functions $m_n e$, $M_n e$ and eu on $\overline{\Omega}_n$ where $m_n = \min_{\partial \Omega_n} u(z)$, M_n $= \max_{\partial \Omega_n} u(z)$ and e is the P-unit of P on Ω . These functions are solutions

MICHIHIKO KAWAMURA

of (2) on Ω_n with continuous boundary values on $\partial \Omega_n$. Observe that

$$m_n e \leq e u \leq M_n e$$

on $\partial \Omega_n$. By (4), the same inequality is valid on Ω_n . Therefore $m_n \leq u \leq M_n$ on $\overline{\Omega}_n$, i.e.

$$0 \leq \sup_{\overline{a}_n} u(z) - \inf_{\overline{a}_n} u(z) \leq M_n - m_n = \lambda_n \; .$$

Since $\lambda_n \to 0$ as $n \to \infty$, *u* has the limit at δ .

Q.E.D.

REFERENCES

- [1] K. Hayashi: Les solutions positive de léquation 4u = Pu sur une surface de Riemann, Kōdai Math. Sem. Rep., 13 (1961), 20-24.
- [2] M. Heins: Riemann surfaces of infinite genus, Ann. Math., 55 (1952), 296-317.
- [3] M. Nakai: Martin boundary over an isolated singularity of rotation free density, J. Math. Soc. Japan, 26 (1974), 483-507.
- [4] ----: A test for Picard principle, Nagoya Math. J., 56 (1974), 105-119.
- [5] ——: Picard principle and Riemann theorem, Tôhoku Math. J., 28 (1976), 277– 292.
- [6] ——: Picard principle for finite densities, Nagoya Math. J., vol. 70 (1978) (to appear).
- [7] ——: A remark on Picard principle II, Proc. Japan Acad., 51 (1975), 308-311.

Mathematical Institute Faculty of Education Fukui University

40