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PICARD PRINCIPLE FOR FINITE DENSITIES ON SOME END

MICHIHIKO KAWAMURA*

Consider a parabolic end Ω of a Riemann surface in the sence of

Heins [2] (cf. Nakai [3]). A density P = P(z)dxdy (z — x + iy) is a 2-form

on Ω = Ω U dΩ with nonnegative locally Holder continuous coefficients

P(z). A density P is said to be finite if the integral

{ 1) f P(z)dxdy <
J Ω

The elliptic dimension of a density P at the ideal boundary point δ, dim P

in notation, is defined (Nakai [5], [6]) to be the 'dimension' of the half

module of nonnegative solutions of the equation

( 2) Lpu = Δu — Pu = 0 (i.e. d*du - uP = 0)

on an end Ω with the vanishing boundary values on dΩ. The elliptic

dimension of the particular density P = 0 at δ is called the harmonic

dimension of δ. After Bouligand we say that the Picavd principle is

valid for a density P at δ if dimP = l. For the punctured disk

V: 0 < \z\ < 1, Nakai [6] showed that the Picard principle is valid for

any finite density P on 0 < \z\ <; 1 at the ideal boundary 2 = 0, and he

conjectured that the above theorem is valid for every general end of

harmonic dimension one. The purpose of this paper is to give a partial

answer in the affirmative.

Heins [2] showed that the harmonic dimension of the ideal boundary

δ of an end is one if Ω satisfies the condition [H]: There exists a sequence

{An} of disjoint annuli with analytic Jordan boundaries on Ω satisfying

the condition that for each n,An+1 separates An from the ideal boundary,

and A1 separates the relative boundary dΩ from the ideal boundary? and
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(3) Σ mod An = co .
n = l

We shall prove the following

THEOREM. The Pίcard principle is valid at δ for any finite density
P on an end Ω with the condition [H],

The proof of the theorem will be given in no. 5 after three lemmas
in no. 2-4. Although the essence of the proofs of these lemmas is found
in Nakai [6], we include here their proofs for the sake of completeness.
However the lemma in no. 4 requires an entirely different considerations
for ends with infinite genus.

1. We always assume that an end Ω has a single ideal boundary
component δ and that dΩ consists of a finite number of disjoint closed
simple analytic curves on R. Let u be a bounded solution of (2) on Ω
with continuous boundary values on dΩ. We first note that

(4) sup \u\ — max \u\ .
Ω dΩ

In fact, since u2 is subharmonic on Ω and Ω is a parabolic end, by the
maximum principle for bounded subharmonic functions, we have the
identity (4). The P-unit e = eP is the bounded solution of (2) on Ω with
boundary values 1 on dΩ. By (4) such a eP is unique. Next consider the
associated operator LP with LP which is introduced by Nakai ([5], [6]);

(LPu)dxdy — d*du + 2d(log eP) Λ *du

for it e C2(Ω) where eP is the P-unit on Ώ. We say that the Riemann
theorem is valid for LP at δ if l im^ u(z) exists for every bounded
solution u of

on Ω. Nakai ([5], [6]), showed the following duality theorem (cf. also
Heins [2], Hayashi [1], Nakai [4]): The Picard principle is valid for
the operator LP at δ if and only if the Riemann theorem is valid for
the associated operator LP at δ.

2. Concerning the valuation of the Dirichlet integral of logeP we
shall first prove (Nakai [61):
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LEMMA. The P-unit eP of a density P on an end Ώ satisfies the

following inequality

( 6 ) Do(\og eP) = ί d log eP Λ *d log eP ^ f (1 - eP)P .
J Ω J Ω

Proof. Take a sequence {Ωn} of ends such that Ώn+1 C. Ωn (n — 1,2,

• •)> Πn=i ^ — 0 Let eTO be a continuous function on Ω such that LPen

= 0 on 42 — β n and en = 1 on flw U 9<0. Since βn is decreasing as w-» oo,

by the Harnack principle, βw converges to the P-unit eP on 5 uniformly

on each compact subset of Ώ, and the same is true for den and *den»

Observe that

d(e^*den) = e-λd*den + de~n

λ A *den

= P + d\ogenΛ*d\ogen

on Ω — Ώn. Since e~ι = 1 on Ώn U ̂ β, we deduce the identity

( 7 ) ί d l o g e n Λ * d l o g e n = f (1 - en)P
JΩ JΩ

from the Stokes formula. Observe that (1 — en)P is increasing as w-» oo.

On taking the inferior limit as n -> oo on the both sides of (7) and

applying the Fatou lemma and the Lebesgue theorem, we conclude that

DΩ(log eP) <: lim inf d log en Λ *d log en = | (1 — βP)P
Π-O3 Jβ " JΩ

Q.E.D.

3. Let ^ be a bounded solution of (5). The Dirichlet integral of u

is finite if the density P is finite, i.e. we state the following (Nakai [6]):

LEMMA // a density P is finite on Ω, then any bounded solution u

of LpU — 0 on Ώo has a finite Dirichlet integral on any end Ωo with

Proof. Let {Ωn}™ be a sequence as in no. 2 with Ωx c Ωo and un be

a continuous function on ΏQ such that LPun = 0 on ΩQ — Ώn, un — u on

3ΩQ and un = 0 on β n . Then we have the identity

d(un*dun) = dun Λ *d%w + und*dun

= dun Λ *d^n — 2̂ W(Z log e Λ *dun

on Ωo — Ώn9 where e is the P-unit of P on Ω. The Stokes formula yields
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DΩo(un) = un*dun + 2 und log e Λ *dun

where

D0o(un) = I dwn Λ *d^w .
J

The function ^w converges to w uniformly on every compact subset of Ώo

and *dun converges to *du uniformly on dΩQ. In fact, vn = eun is a

bounded solution of (2) on Ωo — Ώn and \vn\ <* supffo|w|. Then ^ n con-

verges to a bounded solution v of (2) uniformly on every compact subset

of Ωo. Since v and eπ are both bounded solutions of (2) with the same

boundary values on 3Ω0, we have that v = eu, i.e. un—>u as n—>oo

uniformly on every compact subset of ΩQ. Similarly we have the last

assertion. Since un is bounded and un — u on dΩQ1 by the Schwarz in-

equality, we deduce the inequality

( 8 ) f u*dun
J dΩ0

kDΰo(\og y / 2

for some constant k > 0. Observe that the first term of the right hand

side of (8) is bounded. On the other hand, since P is a finite density,

by Lemma in no. 2, DΩβog e) is finite. Therefore DΩϋ(un) is bounded.

The Fatou lemma yields

DΩo(u) ^ lim inf DΩo(un) < oo . Q.E.D.

4. Consider an end Ω with the condition [H], i.e. there exists a

sequence {An} of disjoint annuli on Ω with the condition (3). Let λ(γ)

denote the oscillation of u e C\Ω) on a set γ c Ω, i.e.

/K7-) = max u(z) — min u(z) .
r r

We prove the following

LEMMA. // a function u e C\Ω) has a finite Dirichlet integral on Ω

with the condition [H], then there exists a sequence {Ωn} of ends such

that λn = λ(Ωn) —> 0 as n—* oo.

Proof. Choose a strictly decreasing sequence {an} (n = 0,1,2, •)

of positive numbers an such that α0 = 1 and that

( 9) mod An = log (an^/an)
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for n = 1,2, . By the condition (3), we have that an->0 as w-» oo.

Take a sequence {Cn} of concentric circles \z\ = an (n = 1,2, •) on the

complex plane. A n is conformally equivalent to an < \z\ < an_λ (n = 1,2,

•••) by (9). Therefore the restriction of u to \Jζ=λAn is considered as

a function on 0 < \z\ < 1 by giving the values of u on C n as follows:

u(z0) = lim tί(«) («0 e Cn and αn < \z\ < an_^ .

Let λ(r) be the oscillation of u on |«| = r (0 < r < 1). Then we have

The Schwarz inequality yields

Λ2^

Jo
-°~ιι(reίθ)
dθ

dθ .

dθ .

Therefore we have

Λ(r)2 2 J
+

 r2 dθ
\rdθ .

We integrate the both sides of the above on (0,1) with respect to dr
and obtain

(10) JL Γ i ίrL dr ^ f duΛ*du=Σ Dn
2π JO T Jθ<|z |<l n = \

where Dn denotes the Dirichlet integral of u on An. By the assumption

of Lemma the r ight hand side of (10) is finite and then the same is

t r u e for the left hand side of (10). This shows that lim inf^o Λfr) = 0,

i.e. there exists a decreasing sequence rn such that λ(rn)-+0 as n—>oo.

Since the image set on Ω of \z\ = rn is a cycle of Ω separating dΩ from d,

there exist ends Ωn such t h a t 3Ωn a re the images of \z\ = rn (n — 1,2, •).

Q.E.D.

5. Proof of the theorem. In view of the duality theorem in no. 1,

we only have to show that any bounded solution u of LPu = 0 on Ω has

t h e limit at δ. Since P is a finite density on β, by Lemmas 2,3 and 4,

there exists a sequence {Ωn} of ends such that λn — λ(dΩn)—>0 as n—» oo.

Consider functions mwe, ilί^e and e^ on Ώn where mn = min 3 β n w(z), ikΓw

— max 3 i ? n ^(^) and e is the P-unit of P on ίλ These functions are solutions
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of (2) on Ωn with continuous boundary values on dΩn. Observe that

mne <L eu <L Mne

on 3Ωn. By (4), the same inequality is valid on Ωn. Therefore mn <̂  u

<: Mn on Ώn, i.e.

0 ^ sup u(z) — inf u{z) ^ Mn — mn — λn .

Since λn—>0 as τι->oo, ^ has the limit at δ. Q.E.D.
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