PICARD PRINCIPLE FOR FINITE DENSITIES ON SOME END

MICHIHIKO KAWAMURA*

Consider a parabolic end Ω of a Riemann surface in the sence of Heins [2] (cf. Nakai [3]). A density $P=P(z) d x d y(z=x+i y)$ is a 2-form on $\bar{\Omega}=\Omega \cup \partial \Omega$ with nonnegative locally Hölder continuous coefficients $P(z)$. A density P is said to be finite if the integral

$$
\begin{equation*}
\int_{\Omega} P(z) d x d y<\infty \tag{1}
\end{equation*}
$$

The elliptic dimension of a density P at the ideal boundary point $\delta, \operatorname{dim} P$ in notation, is defined (Nakai [5], [6]) to be the 'dimension' of the half module of nonnegative solutions of the equation

$$
\begin{equation*}
\left.L_{p} u \equiv \Delta u-P u=0 \quad \text { (i.e. } d^{*} d u-u P=0\right) \tag{2}
\end{equation*}
$$

on an end Ω with the vanishing boundary values on $\partial \Omega$. The elliptic dimension of the particular density $P \equiv 0$ at δ is called the harmonic dimension of δ. After Bouligand we say that the Picard principle is valid for a density P at δ if $\operatorname{dim} P=1$. For the punctured disk $V: 0<|z|<1$, Nakai [6] showed that the Picard principle is valid for any finite density P on $0<|z| \leqq 1$ at the ideal boundary $z=0$, and he conjectured that the above theorem is valid for every general end of harmonic dimension one. The purpose of this paper is to give a partial answer in the affirmative.

Heins [2] showed that the harmonic dimension of the ideal boundary δ of an end is one if Ω satisfies the condition [H]: There exists a sequence $\left\{A_{n}\right\}$ of disjoint annuli with analytic Jordan boundaries on Ω satisfying the condition that for each n, A_{n+1} separates A_{n} from the ideal boundary, and A_{1} separates the relative boundary $\partial \Omega$ from the ideal boundary, and

[^0]\[

$$
\begin{equation*}
\sum_{n=1}^{\infty} \bmod A_{n}=\infty \tag{3}
\end{equation*}
$$

\]

We shall prove the following
Theorem. The Picard principle is valid at δ for any finite density P on an end Ω with the condition [H].

The proof of the theorem will be given in no. 5 after three lemmas in no. 2-4. Although the essence of the proofs of these lemmas is found in Nakai [6], we include here their proofs for the sake of completeness. However the lemma in no. 4 requires an entirely different considerations for ends with infinite genus.

1. We always assume that an end Ω has a single ideal boundary component δ and that $\partial \Omega$ consists of a finite number of disjoint closed simple analytic curves on R. Let u be a bounded solution of (2) on Ω with continuous boundary values on $\partial \Omega$. We first note that

$$
\begin{equation*}
\sup _{\bar{\Omega}}|u|=\max _{\partial \Omega}|u| \tag{4}
\end{equation*}
$$

In fact, since u^{2} is subharmonic on Ω and Ω is a parabolic end, by the maximum principle for bounded subharmonic functions, we have the identity (4). The P-unit $e=e_{P}$ is the bounded solution of (2) on Ω with boundary values 1 on $\partial \Omega$. By (4) such a e_{P} is unique. Next consider the associated operator \hat{L}_{P} with L_{P} which is introduced by Nakai ([5], [6]);

$$
\left(\hat{L}_{P} u\right) d x d y=d^{*} d u+2 d\left(\log e_{P}\right) \wedge * d u
$$

for $u \in C^{2}(\Omega)$ where e_{P} is the P-unit on $\bar{\Omega}$. We say that the Riemann theorem is valid for \hat{L}_{P} at δ if $\lim _{z \rightarrow o} u(z)$ exists for every bounded solution u of

$$
\begin{equation*}
\hat{L}_{P} u=0 \tag{5}
\end{equation*}
$$

on Ω. Nakai ([5], [6]), showed the following duality theorem (cf. also Heins [2], Hayashi [1], Nakai [4]): The Picard principle is valid for the operator L_{P} at δ if and only if the Riemann theorem is valid for the associated operator \hat{L}_{P} at δ.
2. Concerning the valuation of the Dirichlet integral of $\log e_{P}$ we shall first prove (Nakai [6]):

Lemma. The P-unit e_{P} of a density P on an end $\bar{\Omega}$ satisfies the following inequality

$$
\begin{equation*}
D_{\Omega}\left(\log e_{P}\right) \equiv \int_{\Omega} d \log e_{P} \wedge^{*} d \log e_{P} \leqq \int_{\Omega}\left(1-e_{P}\right) P \tag{6}
\end{equation*}
$$

Proof. Take a sequence $\left\{\Omega_{n}\right\}$ of ends such that $\bar{\Omega}_{n+1} \subset \Omega_{n}(n=1,2$, $\cdots), \bigcap_{n=1}^{\infty} \Omega_{n}=\emptyset$. Let e_{n} be a continuous function on $\bar{\Omega}$ such that $L_{P} e_{n}$ $=0$ on $\Omega-\bar{\Omega}_{n}$ and $e_{n}=1$ on $\bar{\Omega}_{n} \cup \partial \Omega$. Since e_{n} is decreasing as $n \rightarrow \infty$, by the Harnack principle, e_{n} converges to the P-unit e_{P} on $\bar{\Omega}$ uniformly on each compact subset of $\bar{\Omega}$, and the same is true for $d e_{n}$ and ${ }^{*} d e_{n}$. Observe that

$$
\begin{aligned}
d\left(e_{n}^{-1 *} d e_{n}\right) & =e_{n}^{-1} d^{*} d e_{n}+d e_{n}^{-1} \wedge * d e_{n} \\
& =P+d \log e_{n} \wedge * d \log e_{n}
\end{aligned}
$$

on $\Omega-\bar{\Omega}_{n}$. Since $e_{n}^{-1}=1$ on $\bar{\Omega}_{n} \cup \partial \Omega$, we deduce the identity

$$
\begin{equation*}
\int_{\Omega} d \log e_{n} \wedge * d \log e_{n}=\int_{\Omega}\left(1-e_{n}\right) P \tag{7}
\end{equation*}
$$

from the Stokes formula. Observe that $\left(1-e_{n}\right) P$ is increasing as $n \rightarrow \infty$. On taking the inferior limit as $n \rightarrow \infty$ on the both sides of (7) and applying the Fatou lemma and the Lebesgue theorem, we conclude that

$$
D_{\Omega}\left(\log e_{P}\right) \leqq \liminf _{n \rightarrow \infty} \int_{\Omega} d \log e_{n} \wedge * d \log e_{n}=\int_{\Omega}\left(1-e_{P}\right) P
$$

Q.E.D.
3. Let u be a bounded solution of (5). The Dirichlet integral of u is finite if the density P is finite, i.e. we state the following (Nakai [6]):

Lemma. If a density P is finite on Ω, then any bounded solution u of $\hat{L}_{P} u=0$ on $\bar{\Omega}_{0}$ has a finite Dirichlet integral on any end Ω_{0} with $\bar{\Omega}_{0} \subset \Omega$.

Proof. Let $\left\{\Omega_{n}\right\}_{1}^{\infty}$ be a sequence as in no. 2 with $\bar{\Omega}_{1} \subset \Omega_{0}$ and u_{n} be a continuous function on $\bar{\Omega}_{0}$ such that $\hat{L}_{P} u_{n}=0$ on $\Omega_{0}-\bar{\Omega}_{n}, u_{n}=u$ on $\partial \Omega_{0}$ and $u_{n}=0$ on $\bar{\Omega}_{n}$. Then we have the identity

$$
\begin{aligned}
d\left(u_{n} * d u_{n}\right) & =d u_{n} \wedge * d u_{n}+u_{n} d^{*} d u_{n} \\
& =d u_{n} \wedge * d u_{n}-2 u_{n} d \log e \wedge * d u_{n}
\end{aligned}
$$

on $\Omega_{0}-\bar{\Omega}_{n}$, where e is the P-unit of P on Ω. The Stokes formula yields

$$
D_{\Omega_{0}}\left(u_{n}\right)=\int_{\partial \Omega_{0}} u_{n}^{*} d u_{n}+2 \int_{\Omega_{0}} u_{n} d \log e \wedge * d u_{n}
$$

where

$$
D_{\Omega_{0}}\left(u_{n}\right)=\int_{\Omega_{0}} d u_{n} \wedge * d u_{n} .
$$

The function u_{n} converges to u uniformly on every compact subset of $\bar{\Omega}_{0}$ and $* d u_{n}$ converges to $* d u$ uniformly on $\partial \Omega_{0}$. In fact, $v_{n}=e u_{n}$ is a bounded solution of (2) on $\Omega_{0}-\bar{\Omega}_{n}$ and $\left|v_{n}\right| \leqq \sup _{\bar{\Omega}_{0}}|u|$. Then v_{n} converges to a bounded solution v of (2) uniformly on every compact subset of $\bar{\Omega}_{0}$. Since v and $e u$ are both bounded solutions of (2) with the same boundary values on $\partial \Omega_{0}$, we have that $v=e u$, i.e. $u_{n} \rightarrow u$ as $n \rightarrow \infty$ uniformly on every compact subset of $\bar{\Omega}_{0}$. Similarly we have the last assertion. Since u_{n} is bounded and $u_{n}=u$ on $\partial \Omega_{0}$, by the Schwarz inequality, we deduce the inequality

$$
\begin{equation*}
D_{\Omega_{0}}\left(u_{n}\right) \leqq\left|\int_{\partial \Omega_{0}} u^{*} d u_{n}\right|+k D_{\Omega_{0}}(\log e)^{1 / 2} D_{\Omega_{0}}\left(u_{n}\right)^{1 / 2} \tag{8}
\end{equation*}
$$

for some constant $k>0$. Observe that the first term of the right hand side of (8) is bounded. On the other hand, since P is a finite density, by Lemma in no. 2, $D_{\Omega_{0}}(\log e)$ is finite. Therefore $D_{\Omega_{0}}\left(u_{n}\right)$ is bounded. The Fatou lemma yields

$$
D_{\Omega_{0}}(u) \leqq \liminf _{n \rightarrow \infty} D_{\Omega_{0}}\left(u_{n}\right)<\infty
$$

4. Consider an end Ω with the condition $[H]$, i.e. there exists a sequence $\left\{A_{n}\right\}$ of disjoint annuli on Ω with the condition (3). Let $\lambda(\gamma)$ denote the oscillation of $u \in C^{1}(\Omega)$ on a set $\gamma \subset \Omega$, i.e.

$$
\lambda(\gamma)=\max _{\gamma} u(z)-\min _{\gamma} u(z)
$$

We prove the following
Lemma. If a function $u \in C^{1}(\Omega)$ has a finite Dirichlet integral on Ω with the condition $[H]$, then there exists a sequence $\left\{\Omega_{n}\right\}$ of ends such that $\lambda_{n}=\lambda\left(\Omega_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Choose a strictly decreasing sequence $\left\{a_{n}\right\} \quad(n=0,1,2, \cdots)$ of positive numbers a_{n} such that $a_{0}=1$ and that

$$
\begin{equation*}
\bmod A_{n}=\log \left(a_{n-1} / a_{n}\right) \tag{9}
\end{equation*}
$$

for $n=1,2, \cdots$. By the condition (3), we have that $a_{n} \rightarrow 0$ as $n \rightarrow \infty$. Take a sequence $\left\{C_{n}\right\}$ of concentric circles $|z|=a_{n}(n=1,2, \cdots)$ on the complex plane. A_{n} is conformally equivalent to $a_{n}<|z|<a_{n-1}$ ($n=1,2$, \cdots) by (9). Therefore the restriction of u to $\cup_{n=1}^{\infty} A_{n}$ is considered as a function on $0<|z|<1$ by giving the values of u on C_{n} as follows:

$$
u\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} u(z) \quad\left(z_{0} \in C_{n} \text { and } a_{n}<|z|<a_{n-1}\right) .
$$

Let $\lambda(r)$ be the oscillation of u on $|z|=r(0<r<1)$. Then we have

$$
\lambda(r) \leqq \int_{0}^{2 \pi}\left|\frac{\partial}{\partial \theta} u\left(r e^{i \theta}\right)\right| d \theta .
$$

The Schwarz inequality yields

$$
\lambda(r)^{2} \leqq 2 \pi \int_{0}^{2 \pi}\left|\frac{\partial}{\partial \theta} u\left(r e^{i \theta}\right)\right|^{2} d \theta
$$

Therefore we have

$$
\frac{\lambda(r)^{2}}{r} \leqq 2 \pi \int_{0}^{2 \pi}\left(\left|\frac{\partial u}{\partial r}\right|^{2}+\frac{1}{r^{2}}\left|\frac{\partial u}{\partial \theta}\right|^{2}\right) r d \theta .
$$

We integrate the both sides of the above on $(0,1)$ with respect to $d r$ and obtain

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{1} \frac{\lambda(r)^{2}}{r} d r \leqq \int_{0<|z|<1} d u \wedge * d u=\sum_{n=1}^{\infty} D_{n} \tag{10}
\end{equation*}
$$

where D_{n} denotes the Dirichlet integral of u on A_{n}. By the assumption of Lemma the right hand side of (10) is finite and then the same is true for the left hand side of (10). This shows that $\lim _{\inf }^{r \rightarrow 0} \boldsymbol{} \lambda(r)=0$, i.e. there exists a decreasing sequence r_{n} such that $\lambda\left(r_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Since the image set on Ω of $|z|=r_{n}$ is a cycle of Ω separating $\partial \Omega$ from δ, there exist ends Ω_{n} such that $\partial \Omega_{n}$ are the images of $|z|=r_{n}(n=1,2, \cdots)$.
Q.E.D.
5. Proof of the theorem. In view of the duality theorem in no. 1 , we only have to show that any bounded solution u of $\hat{L}_{P} u=0$ on Ω has the limit at δ. Since P is a finite density on Ω, by Lemmas 2,3 and 4, there exists a sequence $\left\{\Omega_{n}\right\}$ of ends such that $\lambda_{n}=\lambda\left(\partial \Omega_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Consider functions $m_{n} e, M_{n} e$ and $e u$ on $\bar{\Omega}_{n}$ where $m_{n}=\min _{\partial \Omega_{n}} u(z), M_{n}$ $=\max _{\partial \Omega_{n}} u(z)$ and e is the P-unit of P on Ω. These functions are solutions
of (2) on Ω_{n} with continuous boundary values on $\partial \Omega_{n}$. Observe that

$$
m_{n} e \leqq e u \leqq M_{n} e
$$

on $\partial \Omega_{n}$. By (4), the same inequality is valid on Ω_{n}. Therefore $m_{n} \leqq u$ $\leqq M_{n}$ on $\bar{\Omega}_{n}$, i.e.

$$
0 \leqq \sup _{\overline{\bar{n}}_{n}} u(z)-\inf _{\overline{\bar{D}}_{n}} u(z) \leqq M_{n}-m_{n}=\lambda_{n}
$$

Since $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty, u$ has the limit at δ.
Q.E.D.

References

[1] K. Hayashi: Les solutions positive de léquation $\Delta u=P u$ sur une surface de Riemann, Kōdai Math. Sem. Rep., 13 (1961), 20-24.
[2] M. Heins: Riemann surfaces of infinite genus, Ann. Math., 55 (1952), 296-317.
[3] M. Nakai: Martin boundary over an isolated singularity of rotation free density, J. Math. Soc. Japan, 26 (1974), 483-507.
[4] -: A test for Picard principle, Nagoya Math. J., 56 (1974), 105-119.
[5] -: Picard principle and Riemann theorem, Tôhoku Math. J., 28 (1976), 277292.
[6] -: Picard principle for finite densities, Nagoya Math. J., vol. 70 (1978) (to appear).
[7] -: A remark on Picard principle II, Proc. Japan Acad., 51 (1975), 308-311.

Mathematical Institute
Faculty of Education
Fukui University

[^0]: Received April 7, 1975.

 * The work was done while the author was a Research Fellow at Nagoya University in 1974 supported by Japan Ministry of Education. The author is grateful to Professor Nakai for the valuable discussions with him.

