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PICARD PRINCIPLE FOR FINITE DENSITIES ON SOME END
MICHIHIKO KAWAMURA®*

Consider a parabolic end £2 of a Riemann surface in the sence of
Heins [2] (cf. Nakai [3]). A density P = PR)dxdy (z = x -+ 1Y) is a 2-form
on 2 =0 U dR with nonnegative locally Hélder continuous coefficients
P(z). A density P is said to be finite if the integral

(1) L P)dady < oo .

The elliptic dimension of a density P at the ideal boundary pecint 4, dim P
in notation, is defined (Nakai [5],[6]) to be the ‘dimension’ of the half
module of nonnegative solutions of the equation

{(2) Lu=d4u—Pu=0 (i.e. d*du — uP = 0)

on an end £ with the vanishing boundary values on 32. The elliptic
dimension of the particular density P =0 at ¢ is called the harmonic
dimension of 5. After Bouligand we say that the Picard principle is
valid for a density P at 6 if dimP =1. For the punctured disk
V:0<|z| <1, Nakai [6] showed that the Picard principle is valid for
any finite density P on 0 <|z] <1 at the ideal boundary z = 0, and he
conjectured that the above theorem is valid for every general end of
harmonic dimension one. The purpose of this paper is to give a partial
answer in the affirmative.

Heins [2] showed that the harmonic dimension of the ideal boundary
6 of an end is one if £ satisfies the condition [H]: There exists a sequence
{A,} of disjoint annuli with analytic Jordan boundaries on £ satisfying
the condition that for each n, A,,, separates A, from the ideal boundary,
and A, separates the relative boundary 92 from the ideal boundary, and
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(3) STmod A, = oo .
n=1
We shall prove the following

THEOREM. The Picard principle is valid at 6 for any finite density
P on an end 2 with the condition [H].

The proof of the theorem will be given in no. 5 after three lemmas
in no. 2-4. Although the essence of the proofs of these lemmas is found
in Nakai [6], we include here their proofs for the sake of completeness.
However the lemma in no. 4 requires an entirely different considerations
for ends with infinite genus.

1. We always assume that an end £ has a single ideal boundary
component § and that 02 consists of a finite number of disjoint closed
simple analytic curves on RB. Let u be a bounded solution of (2) on 2
with continuous boundary values on 2. We first note that

(4) sup |u| = max || .
a e

In fact, since #? is subharmonic on £ and £ is a parabolic end, by the
maximum principle for bounded subharmonic functions, we have the
identity (4). The P-unit e = ep is the bounded solution of (2) on £ with
boundary values 1 on 2. By (4) such a ep is unique. Next consider the
associated operator L, with L, which is introduced by Nakai ([5], [6]);

(Lpwdzdy = d*du + 2d(log ep) A *du

for e C¥f) where ep is the P-unit on 2. We say that the Riemann
theorem is valid for L, at & if lim,.,u(z) exists for every bounded
solution % of

(5) Lru=0

on £2. Nakai ([5],[6]), showed the following duality theorem (cf. also
Heins [2], Hayashi [1], Nakai [4]): The Picard principle is valid for
the operator Ly at 6 if and only if the Riemann theorem is valid for
the associated operator I:P at 4.

2. Concerning the valuation of the Dirichlet integral of loge, we
shall first prove (Nakai [6]):
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LEMMA. The P-unit ep of a density P on an end 2 satisfies the
following inequality

(6) D, (log ep) = j dlog ep A *dlog ep < f (1 — ep)P .
2 2

Proof. Take a sequence {2,} of ends such that 2,,,Cc 2, (n=1,2,
<)y, N 2, =0. Let e, be a continuous function on 2 such that Lpe,
=0on 2 —0, and e, =1 on 2,Ud2. Since ¢, is decreasing as n — oo,
by the Harnack principle, e, converges to the P-unit ¢, on 2 uniformly
on each compact subset of £, and the same is true for de, and *de,.
Observe that

d(e;**de,) = e;'d*de, + de;* N\ *de,
=P + dloge, A\ *dloge,

on Q2 — 0, Since ¢;' =1 on 2, U2, we deduce the identity
(7) f dlogen/\*dlogen=j 1 — e,)P
2 2

from the Stokes formula. Observe that (1 — ¢,)P is increasing as n — oo.
On taking the inferior limit as #— co on the both sides of (7) and
applying the Fatou lemma and the Lebesgue theorem, we conclude that

Dy(og ep) < liminf | dloge, N\ *dloge, = f (1 — ep)P
n—o (] [

Q.E.D.

3. Let u be a bounded solution of (5). The Dirichlet integral of «

is finite if the density P is finite, i.e. we state the following (Nakai [6]):

LEMMA. If a density P is finite on Q, then any bounded solution u
of Lpou=0 on D, has a finite Dirichlet integral on any end 2, with
Q2,C 9.

Proof. Let {2,}7 be a sequence as in no. 2 with 2, € £, and u, be
a continuous function on 2, such that Lyu, =0 on 2, — 2,, %, = % on
2, and %, = 0 on 2,. Then we have the identity
du,*du,) = du, N\ *du, + u,d*du,
= du, N\ *du, — 2u,d log e N\ *du,

on 2, — 2,, where ¢ is the P-unit of P on 2. The Stokes formula yields
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D, (u,) = f u*du, + 2J Uu,d log e A\ *du,
20 20
where
D, (u,) = du, N *du, .
Q0

The function %, converges to # uniformly on every compact subset of 2,
and *du, converges to *du uniformly on 92,. In fact, v, = eu, is a
bounded solution of (2) on 2, — 2, and |v,| < supg, |#|. Then v, con-
verges to a bounded solution v of (2) uniformly on every compact subset
of 2, Since v and eu are both bounded solutions of (2) with the same
boundary values on £, we have that v = eu, ie. u,—u as n— oo
uniformly on every compact subset of £,. Similarly we have the last
assertion. Since u, is bounded and u, = u on 92, by the Schwarz in-
equality, we deduce the inequality

J wrdu,
aRo

for some constant k> 0. Observe that the first term of the right hand
side of (8) is bounded. On the other hand, since P is a finite density,
by Lemma in no. 2, D, (loge) is finite. Therefore D, (u,) is bounded.
The Fatou lemma yields

(8) Dy (u,) =

+ kD, (log €)/2D,(u,)"*

Dy (w) < liminf D, (u,) < oo . Q.E.D.

-0

4. Consider an end £ with the condition [H], i.e. there exists a
sequence {4,} of disjoint annuli on £ with the condition (3). Let a(y)
denote the oscillation of e C'(2) on a set y C 2, i.e.

A) = max w(z) — min u(z) .

We prove the following

LEMMA. If a function uc C'(RQ) has o finite Dirichlet integral on £
with the condition [H], then there exists a sequence {2,} of ends such
that 2, = A(2,) — 0 as n— co.

Proof. Choose a strictly decreasing sequence {a,} (n =0,1,2,---)
of positive numbers a, such that a, = 1 and that

(9) mod A, = log (@,_,/a,)
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for n =1,2,.... By the condition (8), we have that a,— 0 as n — co.

Take a sequence {C,} of concentric circles {z|=0a, (n =1,2,.--) on the

complex plane. A, is conformally equivalent to a, <|z|<a,., n =1,2,

-++) by (9). Therefore the restriction of u to |z, A, is considered as

a function on 0 <|z| <1 by giving the values of 4 on C, as follows:
u(z,) = lim u(z) (2,eC, and a, <|z|<a,_,) .

2=20

Let A(r) be the oscillation of % on |z] =7 (0 < <1). Then we have

d 10
2 u(re
o (re)

Ar) = fz e .

The Schwarz inequality yields

27

Ay < znf “do .

0

d @0
~_u(re
7 (re*’)

Therefore we have
A on J " (
r 0

We integrate the both sides of the above on (0,1) with respect to dr
and obtain

ou

00

ou \2 1
or + r?

2
)Tdﬁ .

(10) 1A g, < du A *du = 3D,
2r Jo 7 0<12<1 7=l

where D, denotes the Dirichlet integral of © on A,. By the assumption
of Lemma the right hand side of (10) is finite and then the same is
true for the left hand side of (10). This shows that lim inf,_, A(r) = 0,
i.e. there exists a decreasing sequence 7, such that i(r,) — 0 as n— co.
Since the image set on £ of |z| = r, is a cycle of 2 separating 02 from g,
there exist ends 2, such that 62, are the images of |z] =7, (n =1,2, --.).

Q.E.D.

5. Proof of the theorem. In view of the duality theorem in no. 1,
we only have to show that any bounded solution % of Epu =0 on £ has
the limit at 6. Since P is a finite density on £, by Lemmas 2,3 and 4,
there exists a sequence {2,} of ends such that 2, = 2(32,) — 0 as n — oo.
Consider functions m,e, M,e and eu on 2, where m, = min,, u(z), M,
= max,, u(z) and e is the P-unit of P on £2. These functions are solutions
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of (2) on 2, with continuous boundary values on 9£,. Observe that

mpe < eu < M,e

on 02,. By (4), the same inequality is valid on £,. Therefore m, < u
<M, on 2, ie.

0 < supu(z) — iélf uzZ <M, —m, = 2, .
‘Qn n
Since 1, — 0 as n— oo, u has the limit at . Q.E.D.
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