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SCALAR EXTENSION OF QUADRATIC LATTICES
YOSHIYUKI KITAOKA

Let E/F be a finite extension of algebraic number fields, Oz, Oy the
maximal orders of F, F' respectively. A classical theorem of Springer [6]
asserts that an anisotropic quadratic space over F remains anisotropic
over E if the degree [F:F] is odd. From this follows that regular
quadratic spaces U,V over F are isometric if they are isometric over F
and [E: F] is odd. Earnest and Hsia treated similar problems for the
spinor genera [2,3]. We are concerned with the quadratic lattices. Let
L, M be quadratic lattices over Oy in regular quadratic spaces U, V over
F respectively. Assume

(x) there is an isometry ¢ from OzL onto OzM, where OzL,0,M
denote the tensor products of Oy and L, M over Oy respectively. Then
our question is whether the assumption implies ¢(L) = M or not. The
affirmative answer would imply that L, M are already isometric over Oj.
Obviously the answer is negative if the quadratic space EU (=EV) is
indefinite. Even if we suppose that EFU is definite, the answer is still
negative in general. However there are many cases in which the answer
is affirmative if EU is definite. We give such examples in this paper.

Through this paper Q(x), B(x,y) denote quadratic forms and cor-
responding bilinear forms 2B(z,¥) = Qx + ¥) — Q(x) — Q(¥)). Notations
and terminologies will be those of O’Meara [5].

THEOREM 1. Let m be a natural number > 2, and E be a totally
real algebraic number field with degree m, and assume that L,M be
definite quadratic lattices over the ring Z of rational integers. Then
the assumption™ (x) implies o(L) = M if E does not intersect with a
finite set of (explicitely determined) algebraic integers which are not
dependent on L,M, but on m.

THEOREM 2. Let E be totally real, and L,M be definite quadratic
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lattices over Z with rank L = rank M < 5. The assumption® (x) implies

o(L) =M if E does not contain any of v 2, v3 and +5 in case of
rank L = rank M = 5.

COROLLARY. Let E,K be a totally real algebraic number field and
an tmaginary quadratic field respectively whose discriminants are rela-
tively prime. Then an ideal of K is principal if it is principal in the
composite field KE.

THEOREM 3. Let E be a totally real algebraic number field with
[E:Ql <5, and L,M be definite quadratic lattices over Z. Then the
assumption™ (x) implies o(L) = M.

In case that L = M and ¢ is associated with an orthogonal decom-
position of OzL we have

THEOREM 4. Let E/F be a Galois extension of totally real algebraic
number fields. Assume that F is the only field between E and F which
is unramified over F. If a definite quadratic lattice L over Oy is de-
composable over Og, t.e., OgL = L; | L;, then there is a decomposition
of L,L =L, | L,, with L, = OzL; (1 =1,2), in other words, a definite
indecomposable quadratic lattice over Op remains indecomposable over Og.

COROLLARY. Let E be a totally real algebraic number field, and L
be a definite indecomposable quadratic lattice over Z. Then OzL is also
indecomposable.

We give some other sufficient conditions to the affirmative answer
of our question.

THEOREM 5. Let F be totally real and E = F(y/a) be a totally real
quadratic extension, and let L, M be definite quadratic lattices over Og
and suppose that there is an isometry o from OgL onto OgM. Then,
one of the following conditions on Op:

(i) Oz =0z + Ay a, where A is an ideal of F such that A% # Op,

(i) Oz = Oy + Az, where A is an ideal of F, 2*e¢ F, and Ng x is
totally negative,

implies o(L) = M.

THEOREM 6. Let E/F be a Galois extension of totally real algebraic
number fields, and assume that F is the only field between E and F
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which is unramified over F. Let L,M be definite quadratic lattices over
Oy and let ¢ be an isometry from OzL onto OgM. Then we get o(L)
=M if o(L) C M + 20:M.

1.1. Let E be a totally real algebraic number field with degree m,
and L be a positive definite quadratic lattice over Z with rank n < m.

LEMMA. Let v, be an element in OzL such that Q(v,) = min Q(v),
where v runs over non-zero elements of OzL with Q) e Q. Then v, is
in L if E does not intersect with o finite set of (explicitely determined)
algebraic integers which are not dependent on L but m.

Proof. We denote by B(, ) the bilinear form associated with L as
indicated in the introduction. There exists a Z-basis {e;} of L such that

d 0 1t
(B(es, ;) = DIT], where D =| - |, T=| "- satisfy d; < $d;.,,
0 d, 0 1
G=1,--,n—1), [ty] <} G<7), @ 20 in [1). Put v, =3 ze, (2;
% 1 i\ (%
Op), and y=\|:]=| " : | = Tx. Then Q(v,) =} d;y? < d, since
Yn 1/ \x,

d, = Q(e,) is a rational number. This implies |y;| < vd;/d; and so x =
T-'y implies |2;] < ¢, where c¢ is explicitely calculated. Since B(e;e;) €
Q, taking a conjugate of the equation Q(v) = (B(e;,e;)) [x], we see |z{|
< ¢, where z is a conjugate of z,. Denote by S the set of algebraic
integers x with 1 < [Q(x): Q] < m such that the absolute values of con-
jugates of x is smaller than ¢. Then S is a finite set. If E contains
no element of S, x, is rational. Hence v, is in L.

For simplicity we call v, in Lemma an element which gives the ra-
tional minimum of OgzL.

1.2. Proof of Theorem 1. We may suppose that L, M are positive
definite by scaling if necessary. We assume that E contains no element
of S. We take an element v, of OzL which gives the rational minimum
of OzL. Let o be an isometry from OzL onto OzM ; o(v,) is an element
which gives the rational minimum of OzM. Let Oy = Zlo,, ---,0,] and
put v, = > 0w, and L, = Z[v,, --+,v,]; the rank L, < m and v,€ OzL,
is an element which gives the rational minimum of OzL,. Hence Lemma
in 1.1 implies v,e Ly C L. Similarly we get o(v,) ¢ M. Now we have
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d(Og(v¢ in L)) = o(vd in OzL) = a(vy)* in OzM = Og(e(vy)*+ in M). Theo-
rem 1 is inductively proved.

2.1. The following lemma (Theorem 2.1 on p. 47 in [4]) is funda-
mental to prove Theorems 2, 3.

LEMMA. Let a be a totally real algebraic integer such that the
absolute values of the conjugates over Q are less than 2. Then a is of
the form 2cosrr (re Q).

Proof. Put b = +/a’/4 — 1; then the assumption implies that b* is
totally negative. Since a/2 + b satisfies the equation 2! —ax + 1 =0,
a/2 + b is an algebraic integer and the absolute values of the conjugates
are 1. Hence a/2 + b is a root of the unity. This completes the proof.

COROLLARY. Let a be a totally real algebraic integer such that the
absolute values of the conjugates are less than 8. Then a =0, +1,

+v2, £+0 £ V5)/2 or £/ 3.

Proof. Lemma implies Corollary immediately.

2.2, Let E be a totally real algebraic number field and L be a
positive definite quadratic lattice over Z with rank L < 5.

LEMMA. If v, is an element of OzL which gives the rational mini-
mum of OzL, then v, is in L if E does not contain any of v 2,4/ 3 and
V5 in case of rank L = 5.

Proof. Put n = rank L; then there is a basis {u;} of L such that
d,
(B(u;, u;)) = D[T], where D=| - with d,/d;,, <4 QA <i<n—1),
d,
1 17 x, ,
T=| -, (1< . Putwvy=ou,x=|:|=T|:|; then > du?
0 1 z, Wy
= Q) £ d, = Q(u). Since Q(v,) and B(u; u;) are rational, we have
@ @]
> diat = Qv) < d,, where =T and {o;} is any conjugate of
@, @y
{o). Let m=2; then we get dal<d, Hence |o)|= |7 < Vd,/d, <
2/4/8. Corollary in 2.1 implies w, =0 or +1. If w, =0, then o, =z,
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and de? < d,. Therefore w;, =0 or +1, and v,eL. If w,= 41, then
da} < d, — d,. This yields |2,| < VI = d,/d, < }, and o] = |2, — t,2,] <
34+ 1=1. Hence o, =0 or +1 and v, is in L. Let n =3; then d,z}
< d, implies |y = |#;| < ¥/d,/d; < 4. Hence w,=0 or +1. If w,=0,
then v, is a vector which gives the rational minimum of Oglu,, u,], and
80 v, is in Z[u,, u,JC L. Suppose o, = +1; then d,x! < d, — d, implies
|2, < Vd[d, — dofd, < VE— § = W/TTE: Since w, = @, — by, |0,] < \/% +
3. Hence we get w, =0 or +1, and v, is a vector which gives the ra-
tional minimum of Ogzlu,, wu, + wu,]. Henece v,¢e Z[u,, wu, + wu,] < L.
Let n = 4; then |o,| < vd,/d, < V(#)°. Hence w, =0, +1 or +/2. As
above we may assume o, # 0. Since |2;| < vVd,/d, — d,0i/d; < VL& — 30,
we have |0, < viE — 30? + {|w,]. Hence o, = +1 implies w; = 0, =1 or
++4/2, and o, = ++/2 implies w; = 0 or +1. As above we may exclude
the cases w, = 0, and |w,] = |w,] = 1. Therefore we assume either |o;] =
V2, o =1or |o =1, |o =+/2. Since %< d,/d, — dya}/d, — d2/d,
< 4 — 3w, + tyo) — SHol, we get 23 < —11 + 34/2. Hence |0, = |z, —
tow; — oy < «/%«/_ — 4 4+ 11 +v/2)<1.59. This implies w, = 0, +1
or +4/2. If w,=0 or +1, then v, is a vector which gives the rational
minimum of Ogz[u;, wu, + wyus, u,] (o, = V' 2) or Ogluy, wu, + ou, U] (o
=1), and so v, is in L. If || = v/ 2, then v, is in Oglu,, 4y, 1/v/ 2 (wu,
+ o)) (o] = Vv2) or Oglu,, 1/\/_2—(a’zuz + wuy)] (o] = 1), and v, is in
L. Let n =5; then d; i < d, implies |o;| = |2;] < 4&. From the assump-
tion follows w; = 0 or 1. We may exclude o; = 0. Hence z} < d,/d,
—dy/d, < (%) — S and |o,| < |2, — tyoy] < V@ — 2 + 1 <18, and sow, =0
or +1. This yields v,e L. Thus, we have completed the proof.

2.3. Proof of Theorem 2. Without the loss of generality we may
assume that L, M are positive definite. If v, is an element which gives
the rational minimum of OzL, then ¢(v,) is an element which gives the
rational minimum of OzM, where ¢ is an isometry from OzL onto OzM,
80 that Lemma in 2.2 implies v, € L, ¢(v,) € M. By induction with respect
to rank I = rank M as in the proof of Theorem 1, we complete the proof
of Theorem 2.

2.4, Proof of Theorem 3. Let E be a totally real algebraic number
field with [E: Q] < 5, and L, M be definite quadratic lattices over Z. As
in 2.3 we may assume that L, M are positive definite. To prove Theorem
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3 it suffices to show that an element which gives the rational minimum
of OzL,0z;M is in L,M respectively. Let N=L or M and v, be an
element which gives the rational minimum of Oz;N. Take a Z-basis
{w, «+,0,} of Oz and put v, = 3 0;v;, where v;e N. Since v, is an ele-
ment which gives the rational minimum of OzN,, N, = Z[v,, ---,v,], and
rank N, < 5, Lemma in 2.2 implies v,€ N,CN.

2.5. Remark. If Lemma in 2.2 is true without the restriction on
the rank of L, our assumption (x) implies ¢(L) = M under the situation
that F is totally real, F' is the field @ of rational numbers, and L, M
are positive definite quadratic lattices over Z. The author knows no
counterexamples.

2.6. Proof of Corollary of Theorem 2. Let A be an ideal of K
such that A is principal in the composite field KE. Since discriminants
of K,E are relatively prime, Ogz = OxOz. Hence we get OgzA = OzA
= 1050k, where 1 is an element of KE. Putting 4 = Z[u,, u,], O =

Zlv,,v,], we have (Av,, v,) = (ul,uz)(g 3)’ where (g 2) e GL(2, Og). Let

z,y€Ox and NA be the norm of A in K; then

NA~ [(wa + yD)u, + (xc + yd)u,f
= NAYA(v@ + v = [ALNA o2 + vyf .

On the other hand, the disecriminants of binary quadratic forms NA™! |xu,
+ yu,P, |v.@ + vyl are equal to the discriminant of K. Comparing the
both sides of the above equation, we have (ad — bc)* = (AF NA™Y)%. Put
(‘;f Zﬁ) - ¢|”—“z|—zNA(g 2); then o/d’ — b'¢’ = +1 and NA|(@a’ + yb')u,
+ (x¢ + yd)u,? = |vie + vyP. Moreover 2] is totally positive since |1}
= + 6p* where 1=a + v—08, K= Qw—5). In other words, the
binary positive definite quadratic forms associated with the ideal A4, Ox
are equivalent over Og /umwi=y. From Theorem 2 follows that they are
equivalent over Z. This means that A is principal.

3. Proof of Theorem 5. Without the loss of generality we may
assume that L, M be positive definite at each infinite place by scaling.

Suppose that Oy satisfies the first condition (i). Regarding OzL as
a quadratic lattice over Oy with bilinear form trg,» B(x,y), OzL has the
orthogonal decomposition to indecomposable quadratic lattices OzL = L,
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l+-1L,|1AJyaL | --- | AYyaL,, where L=0L, | --- | L, is the
orthogonal decomposition of L to indecomposable quadratic lattices. Let
M=M, | --- |1 M, be the orthogonal decomposition of M to indecom-
posable quadratic lattices. The isometry ¢ gives an isometry from OzL
onto OzM, which are regarded as definite quadratic lattices over O, as
above, and so n = m. If ¢L, = M,;, then o(Og (| 52 L)) = Og (| ;2. M),
and Lemma is inductively proved. Hence we may assume o(L;) =
Ay aM,,, where a(t) is a permutation of the set {1,2,.-.,m}. Thus
we have o(L) = Ay aM. Comparing the volumes of the both sides,
(Ay @)= Op. This is a contradiction. Next we suppose the second
condition (ii) on Oz Put o() = ¢,(v) + 2e,(v), where ve L, ¢,v)e M,
o,(v)eAM. We may assume =@ +b (0= beF). Since Q) =
Q(e(v) = Qp,(v)) + 22B(p,(v), p,(v)) + ¥*Q(p(v)) € F, we get Q(v) = Q(p,(v))
+ 20B(p,(v), 9,(v)) + (@ + D)Q(p,(v)), Blp(v), 9,(v)) + bQ(px(v)) = 0. Thus
QW) = Qe:(v) + (@ — BIQ(p(v)) = Qp:(V)) — Ng/p(2)Q(p(v)), and we see
that ¢, is injective. From our assumption follows that Q(v) — Q(g,(v))
is zero or totally positive. Similarly we get an injective mapping ¢]
from M to L such that Q(v) — Q(¢i(v)) is zero or totally positive if v e M.
Put ¢ = ¢lp,; then ¢ is an injective endomorphism of L such that Q(v)
— Q(p(v)) is zero or totally positive. Let {v;} be elements of L such that
[L:Ogl--+,v; --+11 < co. From the property of ¢ follows that there is
a natural number k& such that Q(p*(v;) = Q(p**'(v;)) for any index 1.
Since ¢ is monomorphism, we may suppose that v, themselves satisfy
[L; Opl--+,v;++-1]1 < 0 and Q(w;) = Qp(v,)) instead of ¢*(v;). Thus

Q,;) — Qlp() = Q) — Qp(vY)) + Q) — Qpip:(vy)) = 0

implies Q(v,) = Q(p,(v,)) and Q(p,(vy)) = 0. Hence we get ¢,(v)) =0 and
¢, = 0. This means o(L) C M. Similarly we get ¢7'(M) C L. Hence
o) = M.

4. Proof of Theorem 4. Let E/F be a Galois extension of totally
real algebraic number fields satisfying the assumption in Theorem 4, and
L be an indecomposable definite quadratic lattice over Op. It suffices to
prove OzL is still indecomposable. Suppose that OzL is not indecom-
posable, i.e., OzgL =1L, | --- | L, (m > 1), where each L; is indecom-
posable. Denote by G the Galois group G(E/F) and operate G on OzL
as follows: g(av) = g(a)v for a € Oy, ve L, g€ G. Then gB(z,y) = B(g(x),
9@) (x,y € OzL) implies OzL = gLy | --- | g(L,) for ge G. From the
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uniqueness of the orthogonal decomposition of a definite quadratic lattice
to indecomposable lattices follows ¢g(L;) = L,,,, where g(i) stands for a
permutation. If G does not operate on the set {L;} transitively, then
there is a decomposition OzL = L] | L;, where L, is G-invariant as a
set. Let v be an element of L; then v = v, 4+ v, (v, € L{, v,e L;). Since
v=gv=9g®) + g, and g(v,) e L, for any g in G, gv, = v, for any g
in G. This implies v;e L. Hence L= (LN L) | (I; N L). This con-
tradicts our assumption. Thus G operates on the set {L;} transitively.
Put H=1{9eG;9L, =L} and 9;,L, =L;, G=r,9;H. From our as-
sumption m > 1 follows H #+ G. Put K = {a e E; h(a) = o for any h in
H}, and M, ={veL;; h(v) =v for any h in H}. Let v =19, + 7, be an
element in OxL (9, € L,, 7,€ | ;55 L;); then v = h(v) = h(d,) + h(d,) implies
h(®;) =9, ¢ =1,2) for any hin H. Hence OxL = M, | (OxL N | ;5. L,).
This implies L, = OzM,. Let M, = Ozv,® -+ ® Oxv,_, P Av,, where A
is an ideal of K such that A and the relative discriminant D(E/F) of
E/F are relatively prime. Similarly let L = Opu,® --- @ Opu,_, ® Bu,
(n = mr), where B is an ideal of F' such that B and D(E/F) are rela-
tively prime. Put v, = 37.,a,u; (a;;€ E), and u, = 2 7, 9,(w;,;), where
w;,; is an element of L,. Since v, is fixed by H and gu; = u; (9 € G), ay;
is an element of K, and w, = >, 9,(w;,)) = 25, 99,(w;,) (9 € G). Compar-
ing the components in L,, we get w,; = Mw;,) (heH). Thus u; is
written as > 7, gx(w;) (w;e M,). Putting w; = >3_,b,v, (b;;€ K), we
have v, = 377 @y = D 7a1 Daies @u9u(Wy) = 23501 207 2t 0390039 (0,).
Thus v; = 2% D 1rey @DV D o5a1 Direr 03910509, (v) = 0 if k> 1. If we
put a; =a,; b; =0,,, then 37 ,a;b; =1 and > 3., 9(a)b, =0 if ge H.
From our assumption on ideals A, B follows that a;, b; are p-adic integers
of K if p|D(E/F). Let Ox = Ope, @ - - - @ Opwy_ ® Co,, where Cis an
ideal of F such that C and D(E/F) are relatively prime, and a; =
DGy, by =2 m dye, and iy = 37 ¢dy; then 37 fuew, =1,
> fi9(w)o, = 0 (9 ¢ H), and f;; is a p-adic integer of F if p|D(E/F).
Putting Q2 = (0, **+,0n), 2 = QoM S1wss »+ 5 2ar1 fmi®), We have Q22
=1, g2 =0 if ge H. Hence we get

9:(2) 1

. 0

: Q/ = : =e.
9n(2) 0

We define a permutation matrix M; by
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9:9:(2) 9:(2)
C | =M
9:(2)
Then M| : |9.2) = e implies
9,.(2)
9,(2)
: (gl(Q,)y tt gm(Q/)) = (Mi-le’ b ',M;zle) .
9In(2)
If g(2)) = £, then ge H since 202’ =1and g()2' =1. If M;'e = Mje,
9:(2) 9,(2)
then - o2 = ¢ 1952) and g,(2) = g,(2). Therefore i =j,
9n(82) In(2)

and this means that (M;le, ---,M;'e) is a permutation matrix. Thus we
have

9:(2)
det| : |-det(9.(2), 9,2 = =%1.
In ()
From our assumption follows that both components on the left side are
9:(2)
p-adic integers if p|D(E/F). Hence det is a yp-adic unit if
In ()

p|D(E[F), and this implies that K is unramified over F. This is a
contradiction.

4.1. Proof of Corollary of Theorem 4. If E is a totally real alge-
braic number field, then there is a totally real algebraic number field E
which is a Galois extension of @ and contains E. If OzL is decompos-
able, then OzL is also decomposable. This contradicts Theorem 4.

42. If E/F is an unramified extension of totally real algebraic
number fields, then we will show that there is an indecomposable definite
quadratic lattice over Op which is decomposable over Oz. We take an
unramified Galois extension K/F where K is totally real and contains E.
Denote by G = {9, =1, ¢, - - -, g} the Galois group of K/F. Let V be
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an m-dimensional quadratic space over F' with orthonormal basis {v}.
We define the operation of G to KV by g,(av,) = g;(@)v; (acK). Put
L=0xv, | -+ | Oxv,(CKV) and L = {3\, 9:(@)v;; a ¢ Og}. By defini-
tion, G operates trivially on L. Since K/F is unramified, there are
elements a,, -+, a, in Og such that (g9,(e;)) is a unimodular matrix at a
given prime. Hence L= OxzL. If L is decomposable, and L = L, | L,
then OfL, is an orthogonal sum of a proper subset of {Oxv;}. Thus
OxL, is not closed under the operation of G. This is a contradiction
because G operates trivially on L,. Denote the subgroup of G corre-
sponding to E by H. Let G =\ Hh, (coset decomposition) and put L,
= | nem Oxhh,(v;) which is closed under the operation of H; then L =
1:L;. Decompose an element % in OzL as u = > u;, u;e L,. By defi-
nition % = h(u) = > W(u;) for = in H. Hence we get h(u,) = u, and OzL
= | (I; N OzL). Thus OzL is decomposable.

5. Proof of Theorem 6. Put N=L | M and ¢ be an isometry of
OzN defined as ¢(u + m) = o(u) + o7'(m) for ue OzL, me OzM. If ¢(v)
= vmod 20;N for ve OzN, then v = (v + ¢®))/2 + (v — ¢())/2e N, |
N_, where N, = {u€OzN;é(uw) = +u}. Thus N, | N_ = {veOzN; i)
= vmod 20;N}. Since v = %, + o(u;) (U, u,€ Ogl) is in N, | N_ if and
only if 4, = u, mod 20;L, we get N, | N_ = Oz{u + o(w); we L} + 20;M.
Our assumption implies ¢(ut) = m, + 2v for u € L, where m, € M, v e OgM.
Thus N, | N_ = Og{{u + m,;ue L} + 2M}. By virtue of Theorem 4,
there are sublattices N,, N_ of N such that {u + m,;ueL} +2M = N,
| N_and N, =0zN,, N.=0;N_. So, 6 =+1 on N, implies &(XN,)
=N,,6(N.)=N_. Thus ¢(FL | FM) = FL | FM. Therefore ¢(L | M)
=L | M. This yields ¢L = M.

6. Remark. Theorems 2, 3 are fairly improved by a different
method which will appear in a subsequent paper.
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