
Y. Kitaoka
Nagoya Math. J .
Vol. 66 (1977), 139-149

SCALAR EXTENSION OF QUADRATIC LATTICES

YOSHIYUKI KITAOKA

Let E/F be a finite extension of algebraic number fields, OE, OF the
maximal orders of E, F respectively. A classical theorem of Springer [6]
asserts that an anisotropic quadratic space over F remains anisotropic
over E if the degree [E: F] is odd. From this follows that regular
quadratic spaces U, V over F are isometric if they are isometric over E
and [E: F] is odd. Earnest and Hsia treated similar problems for the
spinor genera [2,3]. We are concerned with the quadratic lattices. Let
L, M be quadratic lattices over OF in regular quadratic spaces Z7, V over
F respectively. Assume

(*) there is an isometry σ from 0EL onto 0EM, where 0EL,0EM
denote the tensor products of 0E and L,M over 0F respectively. Then
our question is whether the assumption implies σ(L) = 1 or not. The
affirmative answer would imply that L, M are already isometric over 0F.
Obviously the answer is negative if the quadratic space EU (=EV) is
indefinite. Even if we suppose that EU is definite, the answer is still
negative in general. However there are many cases in which the answer
is affirmative if EU is definite. We give such examples in this paper.

Through this paper Q(x),B(x,y) denote quadratic forms and cor-
responding bilinear forms (2B(x, y) = Q(x + y) — Q(x) — Q(y)). Notations
and terminologies will be those of O'Meara [5],

THEOREM 1. Let m be a natural number > 2, and E be a totally
real algebraic number field with degree m, and assume that L,M be
definite quadratic lattices over the ring Z of rational integers. Then
the assumption^ (*) implies σ(L) = M if E does not intersect with a
finite set of (explicitely determined) algebraic integers which are not
dependent on L,M, but on m.

THEOREM 2. Let E be totally real, and L,M be definite quadratic
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*) In Theorem 1, 2, and 3 F is the field Q of rational numbers.
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lattices over Z with rank L = rank M < 5. The assumption^ (*) implies

σ(L) = M if E does not contain any of V"2\ vΠf and V 5 in case of

rank L — rank ilί = 5.

COROLLARY. Let E,K be a totally real algebraic number field and

an imaginary quadratic field respectively whose discriminants are rela-

tively prime. Then an ideal of K is principal if it is principal in the

composite field KE.

THEOREM 3. Let E be a totally real algebraic number field with

[E: Q] < 5, and L,M be definite quadratic lattices over Z. Then the

assumption^ (*) implies σ(L) — M.

In case that L — M and a is associated with an orthogonal decom-

position of OEL we have

THEOREM 4. Let E/F be a Galois extension of totally real algebraic

number fields. Assume that F is the only field between E and F which

is unramified over F. If a definite quadratic lattice L over OF is de-

composable over OE, i.e., OEL — L[ J_ Li, then there is a decomposition

of L,L = Lj J_ L2, with L\ — OFLt (i — 1,2), in other words, a definite

indecomposable quadratic lattice over OF remains indecomposable over OE.

COROLLARY. Let E be a totally real algebraic number field, and L

be a definite indecomposable quadratic lattice over Z. Then OEL is also

indecomposable.

We give some other sufficient conditions to the affirmative answer

of our question.

THEOREM 5. Let F be totally real and E = F(*JΊϊ) be a totally real

quadratic extension, and let L,M be definite quadratic lattices over OF

and suppose that there is an isometry σ from OEL onto OEM. Then,

one of the following conditions on OE\

(i) OE — OF + A^~a, where A is an ideal of F such that A2a Φ OF,

(ϋ) OE — OF + Ax, where A is an ideal of F, x2 g F, and NE/Fx is

totally negative,

implies σ(L) — M.

THEOREM 6. Let E/F be a Galois extension of totally real algebraic

number fields, and assume that F is the only field between E and F
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which is unramified over F. Let L,M be definite quadratic lattices over
0F and let σ be an isometry from 0EL onto 0EM. Then we get σ(L)
= M if σ(L) c M + 20EM.

1.1. Let E be a totally real algebraic number field with degree m,
and L be a positive definite quadratic lattice over Z with rank n <m.

LEMMA. Let v0 be an element in OEL such that Q(v0) = min Q(y),
where v runs over non-zero elements of OEL with Q(v) e Q. Then v0 is
in L if E does not intersect with a finite set of {explicitely determined)
algebraic integers which are not dependent on L but m.

Proof. We denote by B(, ) the bilinear form associated with L as
indicated in the introduction. There exists a Z-basis {ej of L such that

Id, 0\ /I tΛ

(B(ei9 βj)) = D[T], where D = \ \ , T = \ \ satisfy d, < fd,+1,

\θ dj \θ 1 /
« = 1, - -, n - 1), \ti5\ <h d< 3)> (P. 20 in [1]). Put v0 = Σ X& (xt e

fyΛ /I Uλ/xΛ

OE), and y = \\ = ' ] = T*. Then Q( ô) = Σ ^y\ < dx since

U/ I 1 / W
dx = Q(ex) is a rational number. This implies \yt\ < ^/dlldi and so x =
Γ"1^ implies | ^ | < c, where c is explicitely calculated. Since B(eue3)e
Q, taking a conjugate of the equation QO0) = {B(eue3)) [JC], we see \x\3)\
< c, where x[j) is a conjugate of a?<. Denote by S the set of algebraic
integers x with 1 < [Q(x): Q] < m such that the absolute values of con-
jugates of x is smaller than c. Then S is a finite set. If E contains
no element of S, xt is rational. Hence v0 is in L.

For simplicity we call v0 in Lemma an element which gives the ra-
tional minimum of OEL.

1.2. Proof of Theorem 1. We may suppose that L,M are positive
definite by scaling if necessary. We assume that E contains no element
of S. We take an element v0 of OEL which gives the rational minimum
of OEL. Let a be an isometry from OEL onto OEM σ(v0) is an element
which gives the rational minimum of OEM. Let OE = Z[ω19 , ωm] and
put ô = Σ to^i and Lo = Z[v19 , vm] the rank L0<m and ^0 e O^L0

is an element which gives the rational minimum of OEL0. Hence Lemma
in 1.1 implies voeLoc:L. Similarly we get σ(vQ)eM. Now we have
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σ(OE(v$- in L)) = σ(vt in OEL) = σ{vQ)L in O^M = OE{σ(vQ)L in ikί). Theo-

rem 1 is inductively proved.

2.1. The following lemma (Theorem 2.1 on p. 47 in [4]) is funda-

mental to prove Theorems 2, 3.

LEMMA. Let a be a totally real algebraic integer such that the

absolute values of the conjugates over Q are less than 2. Then a is of

the form 2 cos rπ (reQ).

Proof. Put b = Vα2/4 — 1 then the assumption implies that b2 is

totally negative. Since α/2 + b satisfies the equation x2 — ax + 1 = 0,

a/2 + b is an algebraic integer and the absolute values of the conjugates

are 1. Hence α/2 + 6 is a root of the unity. This completes the proof.

COROLLARY. Let a be a totally real algebraic integer such that the

absolute values of the conjugates are less than J^ . Then a = 0, ± 1 ,

± / 2 \ ± ( 1 ± yTΓ)/2 or ± v Λ 3 \

Proof. Lemma implies Corollary immediately.

2.2. Let E be a totally real algebraic number field and L be a

positive definite quadratic lattice over Z with rank L < 5.

LEMMA. // ι;0 is an element of OEL which gives the rational mini-

mum of OEL, then vQ is in L if E does not contain any of V~2, \ΠΪ and

V 5 in case of rank L = 5.

Proof. Put n = rank L then there is a basis {ut} of L such that

ldl \
t, Uj)) = D[T], where Z? = # with dtldM < f (1 < i < n - 1),

\ W
I ίy\ jxΛ jωΛj j

i,x = \ : = Γ :

\o l / \χj
= Q(vo) < ώi = Q(«i). Since Q(v0) and B{uifuj) are rational, we have

2 dtx't
2 = Q(̂ o) < tϊi> where I 1 = Tj | and {ω } is any conjugate of

Vnl \ω

{a)i}. Let n = 2; then we get d2#2 < di Hence |α>2| = \x2\ < Vdjd2 <

2/V~3". Corollary in 2.1 implies ω2 = 0 or ± 1 . If ω2 = 0, then ωι = a?χ
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and dxω\ < dv Therefore ωx = 0 or ± 1 , and voeL. If ω2 = ± 1 , then

dxx\ < d1 — d2. This yields \xx\ < Vl — d2\dx < \, and \ωι\ — \x1 — t12x2\ <

\ + \ = 1. Hence ωx = 0 or ± 1 and ô is in L. Let n = 3; then d^l

< di implies |ω3| = |&3| < Vdjd3 < f. Hence ω3 = 0 or ± 1 . If ω3 = 0,

then v0 is a vector which gives the rational minimum of OE[u19u2]9 and

so v0 is in Z[u19u2]c.L. Suppose ω3 = ±1; then d2x\ <dι — d3 implies

\X2\ < Vdjd2 — d3/d2 < Vf^^ϊ = V ^ S i n c e ω2 = ^2 -

^. Hence we get ω2 = 0 or ± 1 , and vQ is a vector which gives the ra-

tional minimum of OE[uuω2u2 + ω3u3]. Hence vQeZ[uuω2u2 + ω3u3] d L.

Let n = 4; then |ω4| < Vdi/d4 < Λ/( |F. Hence ω4 = 0, ± 1 or ±V~2. As

above we may assume α>4 ̂  0. Since \x3\ < Vdjd3 — dkω\\dz <

we have |ω3| < VV" ~ ί^4 + i |ω4|. Hence ω4 = ± 1 implies ω3 = 0, ± 1 or

±Λ/~2, and α>4 = ±^"2^ implies ω3 = 0 or ± 1 . As above we may exclude

the cases ω3 = 0, and |ω3| = |ω4| = 1. Therefore we assume either |ω3| =

|α)4| = 1 or \ω3\ = 1, |cy4| = \Λ2". Since x\ < djd2 — d3x\\d2 — d^x\jd2

i(ω3 + tuω,y - fW> we get 3j < - ϋ - + f v T . Hence |ω2| = |α?a -

ί23ω3 — tuωA\ < VfVT - | i + i ( l + VT) < 1.59. This implies ω2 = 0, ± 1

or ±Λ/1Γ. If ω2 = 0 or ± 1 , then v0 is a vector which gives the rational

minimum of OE[u19ω2u2 + ω3u39u4] (|ω4| = v'lΓ) or O^IX,^^ + o)4u4>u3] (|ω4|

= 1), and so v0 is i n ^ If |ω2| = ^Γ2, then ^0 is in OE[u19u3,l/\Γ2(ω2u2

+ ω4^4)] (|ω4| = V~2) or OE[u19ui9 Il*f2(ω2u2 + ω3%)] (|ω4| = 1), and v0 is in

L. Let n — 5; then d5ajj < dj implies |ωδ| = |^δ | < J ^ . From the assump-

tion follows ω5 = 0 or ± 1 . We may exclude ω5 = 0. Hence x\ < djd^

- djd, < (if - I and |ω4| < |α?4 - ti5coδ\ < V(|)3 - f + i < ψ , and so α>4 = 0

or ± 1 . This yields voeL. Thus, we have completed the proof.

2.3. Proof of Theorem 2. Without the loss of generality we may

assume that L, M are positive definite. If vQ is an element which gives

the rational minimum of OEL9 then σ(vQ) is an element which gives the

rational minimum of OEM, where a is an isometry from OEL onto OEM9

so that Lemma in 2.2 implies v0 e L, σ(vQ) e M. By induction with respect

to rank L = rank M as in the proof of Theorem 1, we complete the proof

of Theorem 2.

2.4. Proof of Theorem 3. Let E be a totally real algebraic number

field with [E: Q] < 5, and L, M be definite quadratic lattices over Z. As

in 2.3 we may assume that L, M are positive definite. To prove Theorem
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3 it suffices to show that an element which gives the rational minimum

of OEL, OEM is in L, M respectively. Let N = L or M and v0 be an

element which gives the rational minimum of OEN. Take a Z-basis

{ω19 , ωn} of OE and put v0 — 2] ωtvi9 where vt e N. Since v0 is an ele-

ment which gives the rational minimum of OEN0, No = Z[vu , vn], and

rankiV0 < 5, Lemma in 2.2 implies voeNodN.

2.5. Remark. If Lemma in 2.2 is true without the restriction on

the rank of L, our assumption (*) implies σ(L) = M under the situation

that E is totally real, F is the field Q of rational numbers, and L,M

are positive definite quadratic lattices over Z. The author knows no

counterexamples.

2.6. Proof of Corollary of Theorem 2. Let A be an ideal of K

such that A is principal in the composite field KE. Since discriminants

of K, E are relatively prime, OKE — OKOE. Hence we get OKEA = OEA

= λOEOκ, where λ is an element of KE. Putting A = Z[ulfu2], Oκ =

Z[v19v2], we have (λv19λv2) = (uί9u2)l® λ9 where \[ λ eGL(29OE). Let

x,y eOE and NA be the norm of A in K then

f (xc + yd)u2\
2

+ v2y)\2 = l^pNA"1 l̂ jίc + ^ l 2 .

On the other hand, the discriminants of binary quadratic forms NA~ι \xux

+ yu2\
2

9 \vλx + v2y\2 are equal to the discriminant of K. Comparing the

both sides of the above equation, we have (ad — be)2 = (\λ\2 NA'1)2. Put

,) then a'df — b'c! = ± 1 and NA'1 \(xa' + yb')ux
QJJ

+ (xc' + yd')u2\
2 = \vίx + v2y\2. Moreover |Λ|2 is totally positive since \λ\2

= a2 + δβ2 where λ = a + V—δβ, K — Q(V—δ). In other words, the

binary positive definite quadratic forms associated with the ideal A9OK

are equivalent over OE^mmA-X). From Theorem 2 follows that they are

equivalent over Z. This means that A is principal.

3. Proof of Theorem 5. Without the loss of generality we may

assume that L, M be positive definite at each infinite place by scaling.

Suppose that OE satisfies the first condition (i). Regarding OEL as

a quadratic lattice over OF with bilinear form trE/F B(x9 y)9 OEL has the

orthogonal decomposition to indecomposable quadratic lattices OEL = Lx

K V\ =
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JL -L Lm J_ AΛ/~aLι J_ J_ A</~aLm, where L = Lx J_ _L Lm is the

orthogonal decomposition of L to indecomposable quadratic lattices. Let

M = Mj _L J_ Mn be the orthogonal decomposition of M to indecom-

posable quadratic lattices. The isometry σ gives an isometry from OEL

onto OEM, which are regarded as definite quadratic lattices over OF as

above, and so n — m. If σLx = Mi9 then σ(OE (_L^2 £*)) = 0^ (J_jΦi M3),

and Lemma is inductively proved. Hence we may assume σ{L^) =

AA/~aΉa(i), where a(i) is a permutation of the set {1,2, « ,m}. Thus

we have (τ(L) = AJΊϊM. Comparing the volumes of the both sides,

(A^~a)2 = 0F. This is a contradiction. Next we suppose the second

condition (ii) on 0E. Put σ(v) = ψλ{v) + xφ2(v), where v e L, φ^v) e M,

<pz(v)eAM. We may assume x = ^~a + b (0 Φ beF). Since Q(i ) =

Q(σ(v)) = Q(Pl(i;)) + 2xB(Ψl(v),φ2(v)) + x2Q(φ2(v)) eF, wegetQ(v) = Qfoty))

), ?)2(i;)) + (α + b2)Q(φ2(v)), B(φM,φlLv)) + bQ(φ2(v)) = 0. Thus

p (a - &2)Q(^(^)) = Q(?>i(v)) - ΛΓΛ/Jp(a?)Q(pa(i;)), and we see

that φx is injective. From our assumption follows that Q(v) — Qiφ^v))

is zero or totally positive. Similarly we get an injective mapping φ[

from M to L such that Q(v) — Q(φi(v)) is zero or totally positive if v e M.

Put ψ = ^[p! then p is an injective endomorphism of L such that QO)

— Q(φ(v)) is zero or totally positive. Let {v^ be elements of L such that

[L: O^t , vt, •]] < co. From the property of φ follows that there is

a natural number k such that Q(pfc(^)) = Q(φk+1(Vi)) for any index i.

Since φ is monomorphism, we may suppose that vt themselves satisfy

[L; OF[- -,vi9 •]] < oo and Q(^i) = QCpC Ĵ) instead of p f c(^). Thus

i)) = 0

implies Q(vt) — Q(pi(v<)) and Q(p2(^<)) = ° Hence we get φ2(Vi) = 0 and

^j2 = 0. This means σ(L) c Af. Similarly we get σ^ίΛf) c L. Hence

(τ(L) = M.

4. Proo/ o/ Theorem 4. Let £7/F be a Galois extension of totally

real algebraic number fields satisfying the assumption in Theorem 4, and

L be an indecomposable definite quadratic lattice over OF. It suffices to

prove OEL is still indecomposable. Suppose that OEL is not indecom-

posable, i.e., OEL = Lλ _]_ - J_ Lm (m > 1), where each Lt is indecom-

posable. Denote by G the Galois group G(E/F) and operate G on OEL

as follows: giav) = g(a)v for a e OE, v e L, g e G. Then flrJ5(α?, #) = B(g(x)9

g(y)) (x, V e O^L) implies O^L = ^(L^ J . J . ff(^m) for Q € G. From the
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uniqueness of the orthogonal decomposition of a definite quadratic lattice
to indecomposable lattices follows g{Lt) = Lgit)9 where g(ΐ) stands for a
permutation. If G does not operate on the set {LJ transitively, then
there is a decomposition OEL = L[ J_ U2, where Z4 is G-invariant as a
set. Let v be an element of L; then v = vλ + v2 (vιeL[, v2eL'2). Since
v = gv = g(vλ) + g(v2) and g{vτ) e L for any g in G, #?;* = vt for any #
in G. This implies ^ e L. Hence L = (Lί Π L) J_ (LJ Π L). This con-
tradicts our assumption. Thus G operates on the set {LJ transitively.
Put H = {geG;gL1 = LJ and 3 Ά = L ί? G = US*&#. From our as-
sumption ra > 1 follows H Φ G. Put Z = {α e £7 h(a) = α for any Λ, in
iϊ}, and M1 — {v e Lx Λ(i;) = i; for any h in H}. Let v — ϋx + v2 be an
element in OKL (vx e L19 v2 e J_^2 Lt) then v = h(v) = h(v^) + h{v2) implies
h(Vi) = ^ (i = 1,2) for any fe in if. Hence O^L = JkΓx J_ (O^L Π ±^2 Lt).
This implies Lλ — OEMX. Let Mj = 0 ^ φ 0 Oκvr_λ 0 Avr, where A
is an ideal of K such that A and the relative discriminant D(E/F) of
£?/F are relatively prime. Similarly let L = O^i φ φ 0Fun_λ φ l?^w

(w == mr), where 5 is an ideal of F such that B and D(E/F) are rela-
tively prime. Put vt = Σ*-i »<^ (α€i e JE), and ^ = Σ?-i βjiwj.ύ* where
w i ( ί is an element of Lx. Since vt is fixed by fί and gUi = ut (g e G), α^
is an element of K, and u€ = Σ^ g^Wj.d = Σ^ 99j(wj,ί) (ff e G). Compar-
ing the components in L1? we get wM = h(Wjti) (heH). Thus ^ is
written as Σ t i ^ i ) (^eMO. Putting w, = ΣΓ-i &^t (&jt e JSL), we
have ^ = Σ3-i ^Φi = Σ?-i Σ?-i a>ij9*{y>$) = Σ?-i Σ?-i ΣS-i<ι>ij9*Φjdgk(vd.
Thus v4 = 25-1 Σί-i α4Attft, Σ?-i ΣΓ-i *ijg*Q>jt)g*(vd = 0 if Λ > 1. If we
put ^ = αlf</, &̂  = δ^,!, then 25-i ^6^ = 1 and Σ?-i g(&j)bj = 0 if ^ g £f.
From our assumption on ideals A, J5 follows that ai9 bt are ίD-adic integers
of K if p\D(E/F). Let O* = O^ 2 Θ Θ OFωm.x 0 Cωm, where C is an
ideal of F such that C and D(E/F) are relatively prime, and α* =

ΣΓ«iditωi and fJt = ΣS-iciAt; then Σlt-ifjtPjOt = 1»
= 0 (ff gH), and/ij is a p-adic integer of F if p\D(E/F).

Putting fl = (oh, ,α>J, ^ = ( Σ M / A ,ΣΓ=i/m^), we have
= 1, g(Ω)Ωf = 0 if geH.

We define a permutation matrix Λf ̂  by
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Then ΛfJ j I s ^ O = <? implies

(flr,(βθ, , gm(Ω')) = (Mr1*, , Mi1*) .

If flτ(fiθ = Ω', then # 6 # since ΩΩ' = 1 and g(Ω)Ω' = 1. If Mr1* = Mfe,

jffΛΩ)\ /gΛΩ)\

then : 0(030 = j Iflr/fiO and g^Ω') = flr/flO. Therefore t = ,

and this means that (M^e, , M^β) is a permutation matrix. Thus we
have

jgΛΩ)\

det : det (flr,(flθ, , ί7»(flθ) = ± 1 .

W(W
From our assumption follows that both components on the left side are

fgΛΩ)\
p-adic integers if p \ D(E/F). Hence det I [ I is a p-adic unit if

p\D(E/F), and this implies that K is unramified over F. This is a
contradiction.

4.1. Proof of Corollary of Theorem 4. If E is a totally real alge-
braic number field, then there is a totally real algebraic number field E
which is a Galois extension of Q and contains E. If OEL is decompos-
able, then OgL is also decomposable. This contradicts Theorem 4.

4.2. If E/F is an unramified extension of totally real algebraic
number fields, then we will show that there is an indecomposable definite
quadratic lattice over OF which is decomposable over OE. We take an
unramified Galois extension KjF where K is totally real and contains E.
Denote by G = {gλ = 1, g2, • , gm} the Galois group of K/F. Let V be
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an m-dimensional quadratic space over F with orthonormal basis {^}.

We define the operation of G to KV by g^avj = g^Vi (aeK). Put

L = Oκvx J_ J_ Oκvm(dKV) and L = {ΣΓ=i gJLΦt α e 0,,}. By defini-

tion, G operates trivially on L. Since i£/F is unramified, there are

elements aly , am in 0^ such that (gMj)) is a unimodular matrix at a

given prime. Hence L = O^L. If L is decomposable, and L = Lx J_ 1^

then O^Li is an orthogonal sum of a proper subset of {Oκvτ). Thus

OKLX is not closed under the operation of G. This is a contradiction

because G operates trivially on L1# Denote the subgroup of G corre-

sponding to E by H. Let G = (J Hht (coset decomposition) and put Lt

= A-heHOxhhiiVi) which is closed under the operation of H; then L =

\_iLi. Decompose an element u in 0EL as % = XJ uu u% e L<. By defi-

nition iί — /ι(^) = 2 M%) for fe in H. Hence we get h(Ui) = % and O^L

= 1 (Lt Π O^L). Thus O^L is decomposable.

5. Proo/ o/ Theorem 6. Put 2V = L J_ M and σ be an isometry of

0EN defined as σ(u + m) — σ(u) + σ~ι(m) for u e 0EL, m e 0EM. If σ(y)

== v mod 20EN for v e O^N, then v = (v + σ(v))/2 + (v - tf(v))/2 e W + l

ΛΓ_, where N± = {ue 0EN; σ(u) = ±w}. Thus 2NΓ+ JL ΛL = {i; e 0EN;σ(v)

= t; mod 2 0 ^ } . Since i; = ^ + (7(̂ 2) (̂ i> ̂ 2 e O^ί/) is in Λ/'+ J_ ΛΓ. if and

only if ux = ^2mod20^1/, we get N+±_N_ — 0E{u + σ(u) ueL} + 20EM.

Our assumption implies (TCM) = mu + 2v for ue L, where mu eM, v e 0EM.

Thus N+ ±_N_ = 0E{{u + mu;ueL} + 2M}. By virtue of Theorem 4,

there are sublattices N+,N- of N such that {̂  + mu; ueL} + 2M = iV+

J_ iV_ and iV+ = 0EN+, N_ = O^iV.. So, σ = ± 1 on N± implies σ(N+)

= JV+, tf(J\L) = iV_. Thus σ(FL J_ FM) = FL ± FM. Therefore σ(L J_ M)

= L JL M. This yields <?L = M.

6. Remark. Theorems 2, 3 are fairly improved by a different

method which will appear in a subsequent paper.
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