ON CERTAIN EXAMPLES OF SURFACES WITH $p_{g}=0$ DUE TO BURNIAT

C. A. M. PETERS

Notation and terminology

Let S be a compact complex projective and smooth variety of $\operatorname{dim}_{c} 2$, shortly a surface. We employ the following standard notations:
\mathcal{O}_{S} : structure sheaf of S.
K_{S} : the canonical bundle on S.
$p_{g}(S)=\operatorname{dim}_{C} H^{0}\left(S, K_{S}\right)$, geometric genus.
$q(S)=\operatorname{dim}_{c} H^{1}\left(S, \mathcal{O}_{S}\right)$, the irregularity.
$c_{1}^{2}(S)$ and $c_{2}(S)$, the Chern numbers of S.
$\mathscr{X}(S)=$ Euler class of $\mathcal{O}_{S}=\left(p_{g}+1-q\right)(S)=\frac{1}{12}\left(c_{1}^{2}+c_{2}\right)(S)$
For any divisor D on S we let $|D|$ be the linear system corresponding to it, and if $p_{1}, \cdots, p_{m} \in S$ we let $\left|D-p_{1}-p_{2}-\cdots-p_{m}\right|$ be the subsystem of divisors through p_{1}, \cdots, p_{m}.

If D_{1} and D_{2} are two divisors, $\left(D_{1}, D_{2}\right)$ denotes their intersection number, and $D_{1} \sim D_{2}$ means that the divisors are linearly equivalent. We shall write the group action on Pic (S), additively, so, if for instance C is a divisor and F a line bundle such that $[C] \cong F^{2}$ we simply write $C \sim 2 F$. Finally, if $F \in \operatorname{Pic}(S)$, we put $h^{p}(F)=\operatorname{dim}_{c} H^{p}(S, F)$.

Introduction

Recently P. Burniat gave examples of surfaces of general type with p_{g} $=q=0, c_{1}^{2}=2,3, \cdots, 6, c f .[1]$. This paper is written in rather ancient language and somewhat difficult to read. It seems desirable to give his construction in a more up to date way, the more since new interest seems to arise in surfaces of general type with $p_{g}=q=0$, see for example [3], [4] and [5].

Burniat constructs his examples by means of what he calls "plans 2^{2}-uples abéliennes". These 4 -fold coverings of the projective plane we study in §1. Burniats construction is given in §2 and from general
calculations in §1 we find the invariants of the resulting surface. In particular they are all regular. As a special case we find the surfaces with $c_{1}^{2}=6-\alpha(\alpha=0, \cdots, 4)$ referred to before, called Burniat surfaces $B(\alpha)$. In §3 they are shown to be of general type and we prove there also that the torsion group of $B(\alpha)$ is $\oplus^{6-\alpha} Z_{2}$. This is a new result and shows the fruitfulness of new techniques.

I also want to mention that, as a corollary, $\pi_{1}(B(0))$ is not abelian. This also is a new feature: the Godeaux and Campedelli surfaces ([5]) all have abelian fundamental group*. Similar results for $\pi_{1}(B(\alpha)), 1 \leq$ $\alpha \leq 4$ are lacking however.

Finally I want to thank Prof. Van de Ven for stimulating interest in this subject.

§ 1. Abelian 4-fold coverings

Let P be a complex analytic surface and let C_{1}, C_{2} and C_{3} be three smooth curves on P, such that for some line bundle F_{k} on P one has: $\left[C_{i}+C_{j}\right] \sim 2 F_{k}$, where $\{i, j, k\}=\{1,2,3\}$. We assume moreover that the curves C_{i} intersect each other transversally and $C_{1} \cap C_{2} \cap C_{3}=\phi$. Put $C:=C_{1}+C_{2}+C_{3}$.

We want to construct a surface Q and a holomorphic map $f: Q \rightarrow P$ of degree 4 such that the ramification divisor D of f is of the form $D=D_{1}+D_{2}+D_{3}$, with D_{i} smooth, such that $D_{i}=f^{-1}\left(C_{i}\right)$ and $f \mid D_{i}$ is of degree 2 onto $C_{i}(i=1,2,3)$. We shall call Q the abelian 4 -fold covering of P branched along C.

As intermediary steps we construct double coverings, using the next —well known-observation (cf. e.g., Horikawa, [2]):

Let X be a complex analytic surface, B a smooth curve on X and F a line bundle on X such that $B \sim 2 F$. Then there exists a surface Y and holomorphic map $\phi: Y \rightarrow X$ of degree 2 with branch locus B.

This surface Y is called the double covering of X branched along B.
We apply this construction as follows: let p_{1}, \cdots, p_{m} be the intersection points of C_{1} and C_{2}. One blows up P at these points, obtaining P^{\prime} and a map $\sigma: P^{\prime} \rightarrow P$. The exceptional curves are $P_{i}:=\sigma^{-1}\left(p_{i}\right), i=1$,

[^0]\cdots, m. Let the proper transform of a curve Γ on P be denoted by $\tilde{\Gamma}$, then one has:
$$
\tilde{C}_{j} \sim \sigma^{*} C_{j}-\sum_{\beta=1}^{s} P_{\beta}, \quad j=1,2 .
$$

Form the double covering branched along $\tilde{C}_{1}+\tilde{C}_{2}$ (notice that this curve is 2-divisible): $\rho_{1}: Y^{\prime} \rightarrow P^{\prime}$; Put $E_{r}=\rho_{1}^{-1}\left(\tilde{C}_{r}\right), \gamma=1,2,3$, and $Q_{\beta}=\rho_{1}^{-1}\left(P_{\beta}\right)$, $\beta=1, \cdots, m$. Now, on Y^{\prime} the curve $H_{3}=E_{3}+\sum_{\beta} Q_{\beta}$ is seen to be smooth and 2-divisible and one may form $\rho_{2}: Y^{\prime \prime} \rightarrow Y^{\prime}$, the double covering of Y^{\prime} branched along H_{3}. On $Y^{\prime \prime}$ the curves $R_{\beta}=\rho_{2}^{-1}\left(Q_{\beta}\right)$ are exceptional, indeed, they are clearly rational and moreover $\left(R_{\beta}, R_{\beta}\right)=$ $\frac{1}{4}\left(\rho_{2}^{*} Q_{\beta}, \rho_{2}^{*} Q_{\beta}\right)=-1$. Blowing down these curves one finally obtains Q. Since the curves R_{β} map onto points in the composition $g=\sigma \cdot \rho_{1} \cdot \rho_{2}$ we can factor this map g over Q, obtaining a holomorphic map $f: Q \rightarrow P$. This map is of degree 4 and ramified along the curves D_{τ} coming from E_{r}, and by construction, $f \mid D_{r}$ is of degree 2 onto E_{r}. This proves our assertions.

Next, we want to calculate the invariants of Q. The intermediary steps in the construction are blowings up and double coverings and the behaviour of the invariants under these operations is well known, recall e.g. :

Lemma 1.1 (Cf. Horikawa, [2]). Let Y be the double covering of X branched along B, then if $B \sim 2 F$ we have

$$
\mathscr{X}(Y)=2 \mathscr{X}(X)+\frac{1}{2}\left(F, K_{X}+F\right) .
$$

Using this lemma we can calculate $\mathscr{X}(Q)$, since it is invariant under blowings up. By definition we have $K_{Q} \sim f^{*} K_{P}+R$, with R the ramification locus of the map $f: Q \rightarrow P$, and since $R=D_{1}+D_{2}+D_{3}$ with $f \mid D_{i}: D_{i} \rightarrow C_{i}$ a 2-1 map, we can compute $c_{1}^{2}(Q)=\left(K_{Q}, K_{Q}\right)$ as well. Carrying out all this we find:

Proposition 1.2. Let $f: Q \rightarrow P$ be the abelian 4 -fold covering of P branched along $C=C_{1}+C_{2}+C_{3}, D=f^{-1}(C)$. Then we have
(i) $K_{Q} \sim f^{*} K_{P}+D$
(ii) $c_{1}^{2}(Q)=4 c_{1}^{2}(P)+(C, C)+4\left(K_{P}, C\right)$
(iii) $\mathscr{X}(Q)=4 \mathscr{X}(P)+\frac{1}{4} \sum_{i \leq j}\left(C_{i}, C_{j}\right)+\frac{1}{2}\left(K_{P}, C\right)$.

Remark 1.3. If, instead, C_{3} intersects C_{1} and C_{2} transversally at α
of their intersectionpoints we can still carry out the above construction, namely, we first blow up at these points and observe that the strict transforms \tilde{C}_{i} of the curves C_{i} now full fill the requirements stated at the beginning of this section: \tilde{C}_{i} are smooth and $\tilde{C}_{i} \cap \tilde{C}_{j}$ is a transversal intersection, $\tilde{C}_{i} \cap \tilde{C}_{j} \cap \tilde{C}_{k}=\phi$ and $\tilde{C}_{i}+\tilde{C}_{j}$ is 2-divisible

Definition 1.4. In case $C=C_{1}+C_{2}+C_{3}$ with C_{i} as in the beginning of the section except that, instead $C_{1} \cdot C_{2} \cdot C_{3}=p_{1}+\cdots+p_{\alpha}$, $p_{i} \neq p_{j}$ if $i \neq j$, the resulting 4 -fold abelian covering is called α-modified abelian covering of P with branch locus C.

Corollary 1.5. Let $Q(\alpha)$ be the α-modified 4 -fold abelian covering of P branched along C, then we have

$$
c_{1}^{2}(Q(\alpha))=c_{1}^{2}(Q(0))-\alpha \quad \text { and } \quad \mathscr{X}(Q(\alpha))=\mathscr{X}(Q(0)) .
$$

This corollary shows how to lower c_{1}^{2} with constant \mathscr{X}.
Next we want to determine the sections of $m K_{Q}$. For this, observe that the group $Z=Z_{2} \oplus Z_{2}$ acts on Q, hence on the multicanonical forms, i.e. the sections of $m K_{Q}$. Under this action $H^{0}\left(m K_{Q}\right)$ splits into 4 eigenspaces $E_{r}^{(m)}, \gamma=1,2,3,4$. If Z is generated by z_{1} and z_{2}, we set $z_{3}=z_{1} z_{2}$ and:

$$
\begin{aligned}
& E_{r}^{(m)}=\left\{s \in H^{0}\left(m K_{Q}\right) \mid z_{\gamma}(s)=s ; z_{\delta}(s)=-s, \delta \neq \gamma\right\}, \quad \gamma=1,2,3 . \\
& E_{4}^{(m)}=\left\{s \in H^{0}\left(m K_{Q}\right) \mid z(s)=s, z \in Z\right\} .
\end{aligned}
$$

How does Z act on the curves D_{i} ? Up to a permutation of indices this action is given by:
$z_{\gamma}\left|D_{r}=\mathrm{id}, z_{\dot{\delta}}\right| D_{\dot{\delta}}=i_{\dot{\delta}}, \delta \neq \gamma$, where i_{δ} is an involution. To determine the spaces $E_{r}^{(m)}$ one has to study the action of Z on sections of $m K_{Q}$ in the neighborhood of the curves $D_{r}(\gamma=1,2,3)$.

Proposition 1.6. The zeroes of sections in $E_{r}^{(m)}$ define linear systems $\left|G_{r}^{(m)}\right|$. In case $m=2 n+1$ we have

$$
\left|G_{4}^{(m)}\right|=D+\left|f^{*}\left(m K_{p}+n C\right)\right|
$$

and

$$
\left|G_{r}^{(m)}\right|=D_{r}+\left|キ^{*}\left\{n\left(2 K_{p}+C\right)+K_{p}+F_{\gamma}\right\}\right|, \quad \gamma=1,2,3 .
$$

In case $m=2 n$ we have:

$$
\left|G_{4}^{(m)}\right|=\left|n\left(2 K_{p}+C\right)\right|
$$

and

$$
\left|G_{\nu}^{m}\right|=D_{\mu}+D_{\sigma}+\left|\ell^{*}\left\{n\left(2 K_{p}+C\right)-F_{\nu}\right\}\right|
$$

with $\nu=1,2,3$ and $\{\nu, \mu, \sigma\}=\{1,2,3\}$.
Proof. We shall prove the assertion for $m=1$, the proof for the remaining m being similar. For simplicity of notation we set $E_{r}^{(m)}=$ $E_{r}, \gamma=1, \cdots, 4$. Since $K_{Q} \sim f^{*} K_{P}+D \sim f^{*}\left(K_{P}+F_{r}\right)+D_{r}$ it suffices to prove the next assertion:
(*) $M \in\left|G_{4}\right|$ if and only if M contains an odd multiple of D
$M \in\left|G_{r}\right|$ if and only if M contains an odd multiple of D_{r}
but an even multiple of $D_{\dot{\delta}}(\delta \neq \gamma), \gamma=1,2,3$.
As remarked before 1.6 to prove this assertion one has to study the action of Z on sections $s \in H^{0}\left(K_{Q}\right)$. We take a Z-invariant coordinate covering $\mathscr{U}=\left\{U_{\alpha}\right\}$ of Q, i.e. $z\left(U_{\alpha}\right)=U_{\alpha}$ or $z\left(U_{\alpha}\right) \cap U_{\alpha}=\phi$ if $z \in Z$. We have three types of sets in \mathscr{U} :
(Type 1) $U_{\alpha} \cap D=\phi . \quad$ Then exactly 4 sets are permuted by Z and these sets are mutually disjoint.
(Type 2) $U_{\alpha} \cap D_{i} \neq \phi$ for a certain i, say for $i=1$, but $U_{\alpha} \cap D_{1} \cap D_{j}=$ $\phi, j \neq 1$. Then $z_{1}\left(U_{\alpha}\right)=U_{\alpha}$ and z_{1} acts as an involution with D_{1} as fixed locus, and $z_{2}\left(U_{\alpha}\right) \cap U_{\alpha}=\phi$. Put $U_{\alpha}^{\prime}=z_{2}\left(U_{\alpha}\right)$. Assume coordinates are chosen in U_{α} and U_{α}^{\prime}, say $\left(x_{\alpha}, y_{\alpha}\right)$, resp. ($x_{\alpha}^{\prime}, y_{\alpha}^{\prime}$) such that $x_{\alpha}=z_{2}^{*} x_{\alpha}^{\prime}$, $y_{\alpha}=z_{2}^{*} y_{\alpha}^{\prime}$ and such that $z_{1} \mid U_{\alpha}$ is given by $\left(x_{\alpha}, y_{\alpha}\right) \mapsto\left(-x_{\alpha}, y_{\alpha}\right)$.
(Type 3) $U_{\alpha} \cap D_{i} \cap D_{j} \neq \phi$ for some pair, say $(i, j)=(1,2)$. Then $z\left(U_{\alpha}\right)=U_{\alpha}(z \in Z)$ and we may choose coordinates $\left(x_{\alpha}, y_{\alpha}\right)$ in such a way that $U_{\alpha} \cap D_{1}=\left\{x_{\alpha}=0\right\}, U_{\alpha} \cap D_{2}=\left\{y_{\alpha}=0\right\}, z_{1} \mid U_{\alpha}$ is given by $\left(x_{\alpha}, y_{\alpha}\right) \mapsto$ $\left(-x_{\alpha}, y_{\alpha}\right)$ and $z_{2} \mid U_{\alpha}$ is given by $\left(x_{\alpha}, y_{\alpha}\right) \mapsto\left(x_{\alpha},-y_{\alpha}\right)$.

Now, take any holomorphic 2-form s on Q. In U_{α} this can be given as $w\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha} \wedge d y_{\alpha}$, with w a holomorphic function in U_{α}. In a coordinate patch of type (2) z_{1} and z_{2} act as follows:

$$
\begin{aligned}
& \left(z_{1}\right) *\left\{w\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha} \wedge d y_{\alpha}\right\}=-w\left(-x_{\alpha}, y_{\alpha}\right) d x_{\alpha} \wedge d y_{\alpha} \\
& \left(z_{2}\right) *\left\{w\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha} \wedge d y_{\alpha}\right\}=w\left(x_{\alpha}^{\prime}, y_{\alpha}^{\prime}\right) d x_{\alpha}^{\prime} \wedge d y_{\alpha}^{\prime} .
\end{aligned}
$$

This immediately proves (*) in this case. In a coordinate patch of type (3) z_{1} and z_{2} act as follows:

$$
\begin{aligned}
& \left(z_{1}\right) *\left\{w\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha} \wedge d y_{\alpha}\right\}=-w\left(-x_{\alpha}, y_{\alpha}\right) d x_{\alpha} \wedge d y_{\alpha} \\
& \left(z_{2}\right) *\left\{w\left(x_{\alpha}, y_{\alpha}\right) d x_{\alpha} \wedge d y_{\alpha}\right\}=-w\left(x_{\alpha},-y_{\alpha}\right) d x_{\alpha} \wedge d y_{\alpha}
\end{aligned}
$$

and here also (*) is immediately verified.
Since Type-1 neighborhoods do not play a role the assertion (*) is proved, and this establishes the Proposition in case $m=1$.

§ 2. The examples of Burniat

Choose in \boldsymbol{P}_{2} three points ξ_{1}, ξ_{2} and ξ_{3} which are not collinear. Let C_{i}^{0} be the reducible curve consisting of $2 r_{i}+1$ lines through ξ_{i}, such that $\xi_{i+1} \in C_{i}^{0}$ and $\xi_{i+2} \notin C_{i}^{0}, i=1,2,3$, the indices taken modulo 3. Blow up \boldsymbol{P}_{2} at ξ_{1}, ξ_{2} and ξ_{3} and let P be the blown up surface, $\mu: P \rightarrow \boldsymbol{P}_{2}$ the blowing down map, $X_{i}^{0}=\mu^{-1}\left(\xi_{i}\right), i=1,2,3$ the three exceptional curves. Put

$$
C_{i}=\mu^{-1}\left(C_{i}^{0}\right)+X_{i+2}^{0} \quad(i=1,2,3)
$$

where $\mu^{-1}(*)$ denotes the proper transform of $*$. We have that $C_{i} \sim$ $\left(2 r_{i}+1\right) H-\left(2 r_{i}+1\right) X_{i}^{0}-X_{i+1}^{0}+X_{\imath+2}^{0}$, hence the curves $C_{i}+C_{j}$ are 2divisible. Assume that C_{3}^{0} passes through α of the intersectionpoints of C_{1}^{0} and C_{2}^{0} different from ξ_{1}, ξ_{2} and ξ_{3}. Recalling Definition 1.4. We can form the α-modified 4 -fold abelian covering of P with $C=C_{1}+C_{2}$ $+C_{3}$ as branch locus. Call the resulting surface $B\left(r_{1}, r_{2}, r_{3}, \alpha\right)$. Applying (1.2) and (1.5) to it we find

Proposition 2.1. The values of c_{1}^{2} and \mathscr{X} for $B\left(r_{1}, r_{2}, r_{3}, \alpha\right)$ are respectively

$$
(6-\alpha)+8\left[\left(r_{1} r_{2}+r_{2} r_{3}+r_{1} r_{3}-\left(r_{1}+r_{2}+r_{3}\right)\right]\right.
$$

and

$$
1+\left[r_{1} r_{2}+r_{2} r_{3}+r_{1} r_{3}-\left(r_{1}+r_{2}+r_{3}\right)\right]
$$

Example. In case $r_{1}=r_{2}=r_{3}=1$ we get a surface $B(1,1,1, \alpha)$, with c_{1}^{2} equal to $6-\alpha$ and \mathscr{X} equal to 1 . We shall indicate how to construct curves C_{3}^{0} with $\alpha=0$ up to 4: Let A_{i} be a curve in P_{2} consisting of two lines through $\xi_{i}, i=1,2$. There is a point ξ_{3} not collinear with ξ_{1} and ξ_{2} and a curve A_{3} consisting of two lines going through ξ_{3} such that A_{3} goes through any $\alpha \leq 4$ of the intersectionpoints $A_{1} \cdot A_{2}$. Indeed, for $\alpha \leqq 2$ this is trivial and for $\alpha=3$ one takes a gen-

Fig. 1
eral point on a diagonal of the quadrilateral formed by the points A_{1}. A_{2} and for $\alpha=4$ one takes a diagonal point. Using the curves A_{i} the construction of the curves C_{i}^{0} is evident. For later use we depict the branch curve C in any of the 5 cases. (Cf. Fig. 1)

PROPOSITION 2.2. Let $B=B\left(r_{1}, r_{2}, r_{3}, \alpha\right)$ and $f: B \rightarrow P$ the defining map. Let $\{\mu, \nu, \sigma\}$ be an even permutation of $\{1,2,3\}$ and put $F_{\mu}=$ $\left(r_{\nu}+r_{\sigma}+1\right) H-r_{\nu} E_{\nu}^{0}-\left(r_{\sigma}+1\right) E_{\sigma}^{0}$. Then one has:
$\left|K_{B}\right|$ is the linear combination of the systems

$$
D_{\mu}+\left|\mathscr{F}^{*}\left(-3 H+E_{1}^{0}+E_{2}^{0}+E_{3}^{0}+F_{\mu}\right)\right|, \quad \mu=1,2,3 .
$$

Proof. Apply Proposition 1.6 with $m=1$ in this case, noticing that $\left|f^{*} K_{P}\right|=\phi$.

Corollary 2.3. $q(B)=0$
Proof. Computation of the dimension of the linear systems $1-3 H$ $+E_{1}^{0}+E_{2}^{0}+E_{3}^{0}+F_{\mu} \mid$ shows that $p_{g}(B)=r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}-\left(r_{1}+r_{2}+r_{3}\right)$, hence, by Riemann-Roch

$$
q(B)=\mathscr{X}(B)-p_{g}(B)-1=0
$$

For example, if $r_{1}=r_{2}=r_{3}=1$ we find that the surface has invariants $p_{g}=q=0, c_{1}^{2}=6-\alpha$.

Definition 2.4. We call $B(1,1,1, \alpha)$ the Burniat surface of type α, notation $B(\alpha)$.

§ 3. The torsion group of $B(\alpha)$

In this section we want to prove that the torsion group of $B(\alpha)$ equals $\oplus^{6-\alpha} Z_{2}$. For brevity we put $\beta=6-\alpha$ and we shall give $2^{\beta}-1$ different non-trivial 2 -torsion elements. Then we shall prove that this is the only torsion. To find 2-torsion elements we proceed as follows:

Suppose that $\left|2 K_{S}\right|$ contains a divisor which is multiple, say the double of a curve Γ. Then $\Gamma \in\left|K_{S}+g\right|$, with g a non-trivial 2-torsion element.

Lemma 3.1. Let $\tilde{f}: B(\alpha) \rightarrow \boldsymbol{P}_{2}$ be the defining map. Then, with A the α points in $C_{1}^{0} \cap C_{2}^{0} \cap C_{3}^{0}$ we have that

$$
\left|2 K_{B(\alpha)}\right|=\tilde{f}^{*}\left|3 H-\xi_{1}-\xi_{2}-\xi_{3}-A\right|
$$

Proof. Apply Proposition 1.6 with $m=2$. We have that $\mid 2 K_{P}+$ $C-F_{\nu} \mid=\phi$ with P the plane P_{2} blown up at $\xi_{1}, \xi_{2}, \xi_{3}$ and A. Indeed, $\left|2 K_{P}+C-F_{\nu}\right|=\left|X_{\nu}-X_{\nu+1}\right|=\phi . \quad$ (Convention: $\nu+1=1$, if $\nu=3$). Moreover $\left|2 K_{P}+C\right|$ corresponds to $\left|3 H-\xi_{1}-\xi_{2}-\xi_{3}-A\right|$. This completes the proof.

Corollary 3.2. $B(\alpha)$ is of general type. Moreover it is minimal.
Proof. Since $c_{1}^{2}>0$ and the number of curves of degree 3 through $3+\alpha$ points is at least $7-\alpha^{1)}$, hence $P_{2}(B(\alpha)) \geqslant 3$, since $\alpha \geqslant 4$ and the first assertion follows from classification theory. The second follows from the equality $P_{2}(B(\alpha))=7-\alpha=c_{1}^{2}(\alpha)+1$.

Now we can exhibit the $2^{\beta}-1(\beta=6-\alpha)$ torsion elements by giving the corresponding curves of degree 3 through $\xi_{1}, \xi_{2}, \xi_{3}$ and A which give double curves on $B(\alpha)$. To this end we must be careful with curves having multiple points at ξ_{i} and A. Since, on $B(\alpha)$ the curves corresponding to ξ_{i} are seen to be divisible by 2 these points are harmless. However, the curves corresponding to points of A are not 2-divisible on $B(\alpha)$ and we can only allow curves that have a $2 k+1$-fold point at these points, since otherwise curves from $\left|3 H-\xi_{1}-\xi_{2}-\xi_{3}-A\right|$ always contain an odd multiple of the curves coming from A. With this in mind we find, using the notation H_{k} for a line through ξ_{k} :

$$
\begin{aligned}
& \alpha=0: \quad \ell_{1}^{ \pm} \ell_{2}^{ \pm} \ell_{3}^{ \pm}, \ell_{i j} \ell_{k}^{ \pm} \ell_{i}^{ \pm}, \ell_{i j} \ell_{k}^{ \pm} \ell_{j}^{ \pm}, \ell_{i j}^{+} \ell_{k}^{+} \ell_{k}^{-}, \ell_{i j} H_{k}^{2}, \ell_{i j}^{2} \ell_{k}^{ \pm}, \ell_{i j} \ell_{j k} \ell_{i}^{ \pm}, \ell_{i j} \ell_{j k} \ell_{j}^{ \pm}, \ell_{i j} \ell_{j k} \\
& \quad \ell_{k}^{ \pm}, \ell_{12} \ell_{23} \ell_{31} . \\
& \alpha=1: \quad \ell_{i}^{+} \ell_{j}^{-} \ell_{k}^{-}, \ell_{1}^{+} \ell_{2}^{+} \ell_{3}^{+}, \ell_{i j} \ell_{k}^{+} \ell_{i}^{-}, \ell_{i j} \ell_{k}^{-} \ell_{i}^{+}, \ell_{i j} \ell_{k}^{+} \ell_{j}^{-}, \ell_{i j} \ell_{k}^{+} \ell_{j}^{-}, \ell_{i j} \ell_{k}^{+} \ell_{k}^{-}, \ell_{i j} \ell_{j k} \ell_{i}^{+}, \\
& \quad \ell_{i j} \ell_{j k} \ell_{j}^{+}, \ell_{i j} \ell_{j k} \ell_{k}^{+} . \\
& \alpha=2: \quad \ell_{1}^{+} \ell_{2}^{+} \ell_{3}^{+}, \ell_{1}^{-} \ell_{2}^{-} \ell_{3}^{+}, \ell_{1}^{+} \ell_{2}^{-} \ell_{3}^{-}, \ell_{1}^{-} \ell_{2}^{+} \ell_{3}^{-}, \ell_{12} \ell_{31} \ell_{3}^{+}, \ell_{12} \ell_{23} \ell_{3}^{+}, \ell_{23} \ell_{31} \ell_{3}^{+}, \ell_{31} \ell_{3}^{+} \ell_{3}^{-}, \\
& \quad \ell_{23} \ell_{3}^{+} \ell_{3}^{-}, \ell_{12}^{+} \ell_{3}^{+}, \ell_{23} l_{1}^{-} \ell_{2}^{+}, \ell_{23} \ell_{1}^{+} \ell_{2}^{-}, \ell_{31} \ell_{1}^{+} \ell_{2}^{-}, \ell_{31} l_{1}^{-} \ell_{2}^{+}, \ell_{3}^{+} \ell_{12}^{2} \\
& \alpha=3: \quad \ell_{1}^{-} \ell_{1}^{+} l_{23}, \ell_{2}^{-} \ell_{2}^{+} \ell_{31}, \ell_{3}^{-} \ell_{3}^{+} \ell_{12}, \ell_{1}^{+} \ell_{2}^{+} \ell_{3}^{+}, \ell_{1}^{-} \ell_{2}^{-} \ell_{3}^{+}, \ell_{1}^{+} \ell_{2}^{-} \ell_{3}^{-}, \ell_{1}^{-} \ell_{2}^{+} \ell_{3}^{-} . \\
& \alpha=4: \quad \ell_{12} \ell_{3}^{+} \ell_{3}^{-}, \ell_{23} \ell_{1}^{+} \ell_{1}^{-}, \ell_{31} \ell_{2}^{+} \ell_{2}^{-} .
\end{aligned}
$$

(Cf. Fig. 1, convention $\{i, j, k\}=\{1,2,3\}$).
Lemma 3.3. Let $B=B(\alpha)$. We have
(i) If $m=2 n+1,\left|m K_{B}\right|$ is the sum of

$$
D_{\nu}+\left|\mathscr{F}^{*}\left\{n\left(3 H-\xi_{1}-\xi_{2}-\xi_{3}-A\right)-\xi_{\nu}+\xi_{\nu+1}\right\}\right|
$$

and

1) In our case Fig. 1 checks that we have equality.

$$
D+\left|\Re^{*}\left\{(n-1)\left(3 H-\xi_{1}-\xi_{2}-\xi_{3}-A\right)\right\}\right| \quad(\text { indices } \bmod 3)
$$

(ii) If $m=2 n,\left|m K_{B}\right|$ is the sum of

$$
f^{*}\left|n\left(3 H-\xi_{1}-\xi_{2}-\xi_{3}-A\right)\right|
$$

and

$$
D_{\mu}+D_{\sigma}+f^{*}\left|\left\{(n-1)\left(3 H-\xi_{1}-\xi_{2}-\xi_{3}-A\right)-\xi_{\nu}+\xi_{\nu+1}\right\}\right|
$$

$\{\mu, \nu, \sigma\}=\{1,2,3\}$, and $\nu+1=1$ in case $\nu=3$).
Proof. Observe that, on P, the plane P_{2} blown up at $\xi_{1}, \xi_{2}, \xi_{3}$ and A one has:

$$
\begin{array}{cr}
2 K_{P}+C=3 H-X_{1}^{0}-X_{2}^{0}-X_{3}^{0}-A \\
2 K_{P}+C-F_{\nu}=-X_{\nu}^{0}+X_{\nu+1}^{0} & (\nu=1,2,3) \\
K_{P}+F_{\nu}=-X_{\nu}^{0}+X_{\nu+1}^{0} & (\nu=1,2,3)
\end{array}
$$

Then apply Proposition 1.6.
Lemma 3.4. There is no odd torsion in Pic (B($\alpha)$).
Proof. Suppose $0 \neq \ell \in \operatorname{Pic}(B)$ is a torsion element. Then, since $q(B)=0, h^{0}(\ell)=0$, so dually $h^{0}\left(K_{B} \otimes \ell\right)=0$ for any non zero torsion element ℓ. By Riemann-Roch one concludes that $\left|K_{B} \otimes \ell\right|$ contains a divisor Γ and if the order of ℓ equals $t, t \Gamma \in\left|t K_{B}\right|$. Applying this remark in case $t=2 n+1$ (n some natural number) there has to be a curve in $\left|(2 n+1) K_{B}\right|$ which is $2 n+1$-fold. It is sufficient to look for $2 n+1$-fold curves in any of the subsystems $D_{\nu}+\mid \|^{*}\left\{\left(n\left(3 H-\xi_{1}-\xi_{2}-\xi_{3}-A\right)-\xi_{\nu}\right.\right.$ $\left.+\xi_{v+1}\right\}$, (cf. Lemma 3.3). This subsystem has a $2 n+1$-fold curve if $n C_{\nu}=n\left(3 H-\xi_{\mu}-2 \xi_{\sigma}-A\right)$ appears in $\mid n\left(3 H-\xi_{1}-\xi_{2}-\xi_{3}-A\right)-\xi_{\nu}+$ $\xi_{\nu+1} \mid$, where (ν, μ, σ) is an even permutation of $(1,2,3)$. The residual system, however is clearly seen to be empty. This completes the proof of the lemma.

Lemma 3.5. There is no 4-torsion in Pic ($B(\alpha)$).
Proof. From Lemma 3.3., part (ii) with $n=2$ we have that $\left|4 K_{B}\right|$ consists of the subsystems $\left|2\left(3 H-\sum_{\nu} \xi_{\nu}-A\right)\right|$ and $I_{\nu}=D_{\mu}+D_{\sigma}+f^{*}$ $\left|3 H-\sum_{\nu} \xi_{\nu}-A\right|$. The first system consists of the sum of pairs of elements of $\left|2 K_{B}\right|$, hence, to prove the assertion, it is sufficient to prove that I_{ν} does not contain multiple curves. Suppose the contrary, then,
since $D_{\mu}+D_{\sigma} \sim f^{*} F_{\nu}$, the system $\left|3 H-\sum_{\nu} \xi_{\nu}-A-\xi_{\nu}+\xi_{\nu+1}\right|$ would have to contain $F_{\nu}=3 H-\xi_{\mu}-2 \xi_{\sigma}-A$, but the residual system clearly is empty. This contradiction proves the Lemma.

Proposition 3.6. The torsion group of $B(\alpha)$ equals $\oplus^{6-\alpha} Z_{2}$.
Proof. According to Lemmas 3.4 and 3.5 there is only 2 -torsion. We have exhibited $2^{6-\alpha}-1$ different non-trivial 2 -torsion elements, hence the assertion follows.

Corollary 3.7 (of proof). The fundamental group of $B(0)$ is not abelian:

Proof. Suppose it were and form $\varphi: \tilde{B}(0) \rightarrow B(0)$, the unramified 2^{6}-fold covering with $\tilde{B}(0)$ the universal covering of $B(0)$. Since $0=q(\tilde{B}(0))$ $=\oplus_{g \in G} h^{1}\left(\mathcal{O}_{B(0)}(g)\right)$ with $G=\oplus^{6} \boldsymbol{Z}_{2}$, we must have that $h^{1}\left(\mathcal{O}_{B(0)}(g)\right)=0$ for all $g \in G$. By Riemann-Roch it would then follow that $h^{2}\left(\mathcal{O}_{B(0)}(g)\right)=1$ $g \neq 1, g \in G$. Now the Serre duality gives $h^{0}\left(K_{B(0)}+g\right)=1$ for those $g \in G$, but clearly the elements $\ell_{i j} H_{k}^{2}$ give 2 -torsion elements $g, g \neq 1$ with at least 2 independent sections in $K_{B(0)}+g$. This contradiction shows that $q(\tilde{B}(0)) \neq 0$, and hence $\pi_{1}(B(0))$ is not abelian.

Remark 3.8. It is not clear whether this Corollary holds for $B(\alpha)$, $\alpha=1, \cdots, 4$, since the above proof fails to hold.

Remark 3.9. M. Reid pointed out to me a possible way of describing the Burniat surface with $c_{1}^{2}=6$, starting with the 3 pencils of curves of genus 3 lying above the pencils $\left\{H_{k}\right\}$. From this construction $B(0)$ has an 8 -fold covering lying in the product of 3 elliptic curves as a divisor of type (2.2) invariant under a certain group of order 8. This explains 3.7 geometrically.

References

[1] P. Burniat: Sur les surfaces de genre $P_{12}>0$, Ann. Math. Pura Appl. (4) 71 (1966).
[2] E. Horikawa: On deformations of Quintic Surfaces, Inv. Math., 31 (1975), 43-85.
[3] Y. Miyaoka: Tricanonical map of numerical Godeaux surfaces, Inventiones Math., 34 (1976), 99-111.
[4] M. Reid: Some new surfaces with $p_{g}=0$, preliminary version.
[5] C. Peters: On two types of surfaces of general type with vanishing geometric genus, Inventiones Math., 32 (1976), 33-47.

Math. Instituut der R. U. Leiden, Wassenaarseweg 80, Leiden, Netherlands

[^0]: * M. Reid found a Godeaux type surface with finite non-abelian fundamental group (the quaternion-group of order 8); Kuga also has examples with infinite non-abelian fundamental group. His examples have $c_{1}^{2}=8$. Any finite unramified covering of them have $q=0$, unlike our example.

