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ON CERTAIN EXAMPLES OF SURFACES WITH Pg = 0

DUE TO BURNIAT

C. A. M. PETERS

Notation and terminology

Let S be a compact complex protective and smooth variety of dimc2,
shortly a surface. We employ the following standard notations:
Θs: structure sheaf of S.
Ks: the canonical bundle on S.
pg(S) = dimc H\S, Ks), geometric genus.
q(S) = dimc HKS,Θ8), the irregularity.
cl(S) and c2(S), the Chern numbers of S.
£(S) = Euler class of Θs = (pg + 1 - q)(S) = -^(c\ + c2)(S)
For any divisor D on S we let \D\ be the linear system corresponding
to it, and if p19 , pm e S we let \D — p1 — p2 — — pm\ be the sub-
system of divisors through pl9 ,pm.

If D1 and D2 are two divisors, (D19D2) denotes their intersection
number, and D1 — D2 means that the divisors are linearly equivalent.
We shall write the group action on Pic (S), additively, so, if for instance
C is a divisor and F a line bundle such that [C] = F2 we simply write
C - 2F. Finally, if F e Pic (S), we put hp(F) = dimc HP(S, F).

Introduction

Recently P. Burniat gave examples of surfaces of general type with pg

= q = 0, c{ = 2,3, , 6, cf. [1]. This paper is written in rather ancient
language and somewhat difficult to read. It seems desirable to give his
construction in a more up to date way, the more since new interest
seems to arise in surfaces of general type with pg = q — 0, see for ex-
ample [3], [4] and [5].

Burniat constructs his examples by means of what he calls "plans
22-uples abeliennes". These 4-fold coverings of the protective plane we
study in §1. Burniats construction is given in §2 and from general
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calculations in §1 we find the invariants of the resulting surface. In
particular they are all regular. As a special case we find the surfaces with
c\ = 6 — a (a = 0, ,4) referred to before, called Burniat surfaces B(a).
In §3 they are shown to be of general type and we prove there also
that the torsion group of B(a) is Θ6~αZ2. This is a new result and
shows the fruitfulness of new techniques.

I also want to mention that, as a corollary, 7 (̂5(0)) is not abelian.
This also is a new feature: the Godeaux and Campedelli surfaces ([5])
all have abelian fundamental group*. Similar results for π^Bia)), 1 <
a < 4 are lacking however.

Finally I want to thank Prof. Van de Ven for stimulating interest
in this subject.

§ 1 . Abelian 4-fold coverings

Let P be a complex analytic surface and let Cu C2 and C3 be three
smooth curves on P, such that for some line bundle Fk on P one has:
[Ci + Cj] ~ 2Fk, where {i, j , k) = {1,2,3}. We assume moreover that the
curves Ct intersect each other transversally and Cx Ω C2 Π C3 = φ. Put
C:=CX + C2 + C8.

We want to construct a surface Q and a holomorphic map f:Q-+P
of degree 4 such that the ramification divisor D of / is of the form
D = A + D2 + Dz, with Dt smooth, such that Dt = f'\Ct) and f\Dt is
of degree 2 onto C* (i = l,2,3). We shall call Q the abelian 4-fold
covering of P branched along C.

As intermediary steps we construct double coverings, using the next
—well known—observation (cf. e.g., Horikawa, [2]):

Let X be a complex analytic surface, B a smooth curve on X and
F a line bundle on X such that B — 2F. Then there exists a surface
Y and holomorphic map φ: Y —» X of degree 2 with branch locus B.

This surface Y is called the double covering of X branched along B.

We apply this construction as follows: let p19 , pm be the inter-
section points of CΊ and C2. One blows up P at these points, obtaining
P' and a map σ:Pf-+P. The exceptional curves are P€ := σ~\p^yi = 1,

* M. Reid found a Godeaux type surface with finite non-abelian fundamental group
(the quaternion-group of order 8) Kuga also has examples with infinite non-abelian
fundamental group. His examples have c\=8. Any finite unramified covering of them
have q—0, unlike our example.
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• , m. Let the proper transform of a curve Γ on P be denoted by Γ,

then one has:

Form the double covering branched along Cx + C2 (notice that this curve

is 2-divisible): Pl: T -> Pf Put Eγ = ^ ( φ , r = !> 2,3, and Qβ = pΓ\Pβ),

β = 1, , m. Now, on Y7 the curve H3 — E3 + Σβ Qβ is seen to be

smooth and 2-divisible and one may form p2: Y" —> Y', the double cover-

ing of Yf branched along Hs. On Y" the curves Rβ = pϊKQβ) are

exceptional, indeed, they are clearly rational and moreover (Rβ, Rβ) =

i(p*QβiP*Qβ) = —1 Blowing down these curves one finally obtains Q.

Since the curves Rβ map onto points in the composition g = σ pι p2 we

can factor this map # over Q, obtaining a holomorphic map f:Q->P.

This map is of degree 4 and ramified along the curves Dτ coming from

Ev and by construction, f\Dr is of degree 2 onto Er This proves our

assertions.

Next, we want to calculate the invariants of Q. The intermediary

steps in the construction are blowings up and double coverings and the

behaviour of the invariants under these operations is well known, recall

e.g.:

LEMMA 1.1 (Cf. Horikawa, [2]). Let Y be the double covering of

X branched along B, then if B — 2F we have

<F(Y) = 2SC(X) + J(F, Kx + F) .

Using this lemma we can calculate £(Q), since it is invariant under

blowings up. By definition we have KQ — f*KP + R, with R the ramifi-

cation locus of the map f:Q—*P, and since R = Dλ + D2 + Dz with

f\Di\Di->Ci a 2-1 map, we can compute c\{Q) — {KQ,KQ) as well.

Carrying out all this we find:

PROPOSITION 1.2. Let f:Q->P be the abelian 4-fold covering of P

branched along C = C1 + C2 + C3, D — f~ι(C). Then we have

( i ) KQ~f*KP + D

(ii) c\(Q) = 4cJ(P) + (C, C) + 4(KP, C)

(iii) &(Q) = 4^Γ(P) + i J ] w (C» Cj) + KKP, Q.

Remark 1.3. If, instead, C3 intersects d and C2 transversally at a
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of their intersectionpoints we can still carry out the above construction,

namely, we first blow up at these points and observe that the strict

transforms Ct of the curves Ct now full fill the requirements stated at

the beginning of this section: Gt are smooth and Ct Π Cj is a trans-

versal intersection, Ct Π Cj Π Ck = φ and Ct + Cj is 2-divisible

DEFINITION 1.4. In case C = Cλ + C2 + Cz with d as in the be-

ginning of the section except that, instead C1 C2 C3 = P i + ••• + pa9

p% φ pj if i φ j9 the resulting 4-fold abelian covering is called α-modified

abelian covering of P with branch locus C.

COROLLARY 1.5. Let Q(ά) be the a-modified 4-fold abelian covering

of P branched along C, then we have

d(Q(a)) = cl(Q(0)) - a and 3Γ(Q(α)) = #(Q(0)) .

This corollary shows how to lower c\ with constant X.

Next we want to determine the sections of mKQ. For this, observe

that the group Z = Z2Θ Z2 acts on Q, hence on the multicanonical forms,

i.e. the sections of mKQ. Under this action H°(mKQ) splits into 4

eigenspaces E™, γ — 1,2,3,4. If Z is generated by z1 and z2, we set

z3 = zxz2 a n d :

E?» = {s e H%mKQ) \ zr(s) = s «a(β) = -s,δ Φ γ) , r = 1> 2,3 .

£ Ί W ) = { s e H\mKQ) \ z(s) = s,ze Z}.

How does Z act on the curves A ? Up to a permutation of indices this

action is given by:

zr\Dr = id, £ δ | A = i« 5 ^ T> where iδ is an involution. To determine

the spaces £7<m) one has to study the action of Z on sections of mKQ in

the neighborhood of the curves Dγ (γ = 1,2,3).

PROPOSITION 1.6. The zeroes of sections in £7<m) define linear sys-

tems |G^m)|. In case m — 2n + 1 we have

and

|G<*>I = Dr + \f*{n(2Kp + C) + Kp + Fr}\ , γ = 1,2,3 .

/^ case m = 2?z we have:
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and

|G?| = Dμ + Dσ + \f*{n&Kp + C) - Fv}|

wi£fe y = 1,2,3 and {v, μ, σ) = {1, 2,3}.

Proof. We shall prove the assertion for m = 1, the proof for the

remaining m being similar. For simplicity of notation we set E(

r

m) =

Er, γ = 1, . . , 4. Since KQ - / * # P + D ~ f*(KP + Fr) + Dr it suffices to

prove the next assertion:

(*) Me\GA\ if and only if M contains an odd multiple of D

M e | G r | if and only if M contains an odd multiple of Dγ

but an even multiple of Dδ (δ Φ γ), γ = 1,2,3.

As remarked before 1.6 to prove this assertion one has to study the

action of Z on sections s e H°(KQ). We take a Z-invariant coordinate

covering <tι = {Ua} of Q, i.e. z(Ua) = Ua or z(Ua) Π Ua = φ if « e Z.

We have three types of sets in <%:

(Type 1) UaΓϊ D = φ. Then exactly 4 sets are permuted by Z and these

sets are mutually disjoint.

(Type 2) U.ΠDiΦφ for a certain ί, say for i = 1, but C7α Π A Π D, =

φ9 j Φ 1. Then Zι(Ua) = Ua and z1 acts as an involution with Dx as fixed

locus, and z2(Ua) Π Ua = φ. Put C/'α = a;2(ί7α). Assume coordinates are

chosen in Ua and U'a, say (α?β, yβ), resp. « , ^α) such that α?α = zftfa,

ya = z*Va and such that zx\Ua is given by (xa,ya) »-> (—xa,ya).

(Type 3) 17β Π !>< Π Z>, =£ 0 for some pair, say ( i ,# = (1,2). Then

z(Ua) = Ua(z e Z) and we may choose coordinates (xa, ya) in such a way

that Z7α Π A = {#α = 0}, Ua Π JD2 = {τ/α = 0}, ̂ | C7α is given by (xa, ya) *-*

(-%a,ya) and z2\Ua is given by (xa,ya) *-+ (xa, -yβ).

Now, take any holomorphic 2-form s on Q. In Ua this can be given

as w(xa, ya)dxa Λ dya, with w a holomorphic function in Ua. In a co-

ordinate patch of type (2) zx and ^2 act as follows:

(zj*{w(xa,ya)dxa A dya} = —w(—xa,yβ)dxa A dya

(z2)*{w(xaf ya)dxa A dya} = w(a^, 2/Ddxl Λ # 1 .

This immediately proves (*) in this case. In a coordinate patch of type

(3) zx and z2 act as follows:
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{zιY{w{xayya)dxa A dya) = —w(—xa,ya)dxa A dya

(z2)*{w(xa,ya)dxa A dya} = —w(xa, —ya)dxa A dya

and here also (*) is immediately verified.

Since Type-1 neighborhoods do not play a role the assertion (*) is prov-

ed, and this establishes the Proposition in case m = 1.

§2. The examples of Buiniat

Choose in P2 three points ξ19 ξ2 and ξ3 which are not collinear. Let

C°i be the reducible curve consisting of 2rt + 1 lines through ξu such

that ξi+1 e C\ and ξί+2 eC°ιyi = 1, 2, 3, the indices taken modulo 3. Blow

up P2 at ξ19ξ2 and ξ3 and let P be the blown up surface, μ:P->P2 the

blowing down map, X\ = μ"\ξi)9 ΐ = 1,2, 3 the three exceptional curves.

Put

where μ~\*) denotes the proper transform of *. We have that Ct ~

(2rt + 1)H - {2ri + 1)X\ - X°i+1 + X°ι+2, hence the curves Ct + Cj are 2-

divisible. Assume that Cl passes through a of the intersectionpoints of

Cl and Cl different from ξ19 ξ2 and f3. Recalling Definition 1.4. We

can form the ^-modified 4-fold abelian covering of P with C — C1 + C2

+ C3 as branch locus. Call the resulting surface B(rlfr2,rz,ά). Applying

(1.2) and (1.5) to it we find

PROPOSITION 2.1. The values of cl and 9£ for B(rl9r29τ3,a) are re-

spectively

(6 — a) + 8[(rxr2 + r2r3 + rλrz — (rx + r2 + r3)]

and

1 + b\r2 + r2r3 + r,r3 - (rx + r2 + r3)] .

EXAMPLE. In case rλ = r2 = r3 = 1 we get a surface 5(1,1,1, α),

with c\ equal to 6 — a and X equal to 1. We shall indicate how to

construct curves C\ with a — 0 up to 4: Let A^ be a curve in P2 con-

sisting of two lines through ξu ί = 1,2. There is a point f3 not col-

linear with fi and ξ2 and a curve A3 consisting of two lines going

through ξ3 such that A3 goes through any a < 4 of the intersectionpoints

A1Ά2. Indeed, for a ^ 2 this is trivial and for α — 3 one takes a gen-
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Fig. 1
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eral point on a diagonal of the quadrilateral formed by the points A Γ

A2 and for a — 4 one takes a diagonal point. Using the curves At the
construction of the curves C\ is evident. For later use we depict the
branch curve C in any of the 5 cases. (Cf. Fig. 1)

PROPOSITION 2.2. Let B = B(r19r21rz,a) and f:B-*P the defining
map. Let {μ9 v, σ) be an even permutation of {1,2,3} and put Fμ =
(rv + rσ + ΐ)H - rfil - (rσ + ΐ)E°σ. Then one has:

\KB\ is the linear combination of the systems

Dμ + |/*(-3ff + EI + EI + EI + Fμ)\ , μ = 1,2,3 .

Proof. Apply Proposition 1.6 with m = 1 in this case, noticing

that \f*KP\ = φ.

COROLLARY 2.3. q(B) = 0

Proof. Computation of the dimension of the linear systems \—SH
+ El + E°2 + E°3 + Fμ\ shows t h a t pg(B) = rλr2 + rxr3 + r2r3 - (r, + r2 + r 3),

hence, by Riemann-Roch

q(B) = aτ(B) - p,(β) - 1 = 0

For example, if r t = r2 = r3 = 1 we find that the surface has in-
variants pg = <? = 0, c? = 6 — a.

DEFINITION 2.4. We call B(l, 1,1, a) the Burniat surface of type or,
notation J5(α).

§3. The torsion group of B(a)

In this section we want to prove that the torsion group of B(a)
equals Θ6~* Z2. For brevity we put β = 6 — a and we shall give 2̂  — 1
different non-trivial 2-torsion elements. Then we shall prove that this
is the only torsion. To find 2-torsion elements we proceed as follows:

Suppose that |2JBLS| contains a divisor which is multiple, say the
double of a curve Γ. Then Γe\Ks + g\9 with g a non-trivial 2-torsion
element.

LEMMA 3.1. Let f:B(ά)->P2 be the defining map. Then, with A
the a points in C\ Π C\ Π C\ we have that

\2KBia)\ = /* \m - ξ1 - ξ2 - ξ3 - A\
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Proof. Apply Proposition 1.6 with m — 2. We have that \2KP +
C — Fv\ = φ with P the plane P2 blown up at ξu f2, ξz and A. Indeed,
\2KP + C - Fv\ = |Z, - Xv+1\ = 0. (Convention: i; + 1 = 1, if * = 3).
Moreover |2KP + C\ corresponds to \ZH — fx — ξ2 — fs — A\. This com-
pletes the proof.

COROLLARY 3.2. B(a) is of general type. Moreover it is minimal.

Proof. Since c\ > 0 and the number of curves of degree 3 through
3 + a points is at least 7 — aι\ hence P2(B(a)) > 3, since a > 4 and the
first assertion follows from classification theory. The second follows
from the equality P2(B(aj) = 7 - a = φc) + 1.

Now we can exhibit the 2̂  — 1 (β = 6— <x) torsion elements by giving
the corresponding curves of degree 3 through ξ19 ξ2f ξ3 and A which give
double curves on B(a). To this end we must be careful with curves
having multiple points at ξt and A. Since, on B(a) the curves corres-
ponding to ξt are seen to be divisible by 2 these points are harmless.
However, the curves corresponding to points of A are not 2-divisible
on B(ά) and we can only allow curves that have a 2k + 1-fold point at
these points, since otherwise curves from \SH — ξλ — ξ2 — ξ3 — A\ always
contain an odd multiple of the curves coming from A. With this in
mind we find, using the notation Hk for a line through ξk:

„ Λ . n±o±O± 0 0± 0± 0 0± 0± 0+0+0- 0 Ή2 0% 0± 0 0 0± 0 0 0± 0 0

0-0+ 0 0+0- 0 0+0- 0 0+0-O &ijZΰ ΰ i ΰ v ^ i ^ 3 ύ~. , -| 0+f— 0— P+ 0+ 0+ P P+p—

o o p+ o p p+

n O . 0+0+0+ 0-0-0+ 0+0-0- 0-0+0- 0 0 0+ 0 0 0+ 0 0 0+ 0 0+0-
(X — LA . # ! JQ2 # 3 , Z/1 XJ2 # 3 , *Zfχ O2 ^S 9 * Ί -O2 -t/3 , -(>12^31<>3 9 ^12^23^3 9 ^23^31^3 9 ^Zl^Z ^ 3 9

0 0+0- 0 0+0- 0 0-0+ 0 0+0— 0 0+0— 0 0-0+ 0+0^
#23</3 # 3 , -t/12-^3 # 3 9 -^23^1 ^ 2 9 ^IZ^l ^2 9 v$\<jγ v2 , •Cί3i<>i </2 > "^3 "^12

(Cf. Fig. 1, convention {ί,j, k) = {1,2, 3}).

LEMMA 3.3. Lβί B = B(ά). We have
(i) If m = 2n + 1, \mKB\ is the sum of

Dv + \f*{n(3H -ξl-ξ2-.ξ3-A)-ξv + ξv+1}\

and

1) In our case Fig. 1 checks that we have equality.
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D + |/*{(n - 1)(3# - ξ1 - ζ2 - ζ3 - A)}\ (indices mod 3)

(ii) If m — 2n, \mKB\ is the sum of

and

Dμ + Dσ + /* \{(n - 1)(3# - & - f2 - fs - A) - ξv + ξv+1}\

{μ, vy σ] = {1,2,3}, and v + 1 = 1 in case v = 3).

Proof. Observe that, on P, the plane P2 blown up at ?i,£2,?3

A one has:

2Z P + C = ZH - X\ - X\ - XI - A

2KP + C - Fv = -XI + X°v+ι (v = 1,2,3)

Z P + F v = -XI + Xl+ι (V = 1,2,3)

Then apply Proposition 1.6.

LEMMA 3.4. There is no odd torsion in PicCB(αO).

Proof. Suppose 0 Φ £ e Pic (B) is a torsion element. Then, since

q(B) = 0, fe°C0) = 0, so dually h°(KB ® £) = 0 for any non zero torsion

element ^. By Riemann-Roch one concludes that \KB<g)£\ contains a

divisor Γ and if the order of £ equals t, tΓ e \tKB\. Applying this re-

mark in case t = 2n + 1 in some natural number) there has to be a curve

in \(2n + 1)KB\ which is 2n + 1-fold. It is sufficient to look for 2n + 1-fold

curves in any of the subsystems Dv + \f*{(n(3H — ξt — f2 — ξ3 — A) — ξv

+ fy+i}l> (cf Lemma 3.3). This subsystem has a 2n + 1-fold curve if

^C v = w(3iϊ - fμ - 2ξσ - A) appears in \n(%Έί - ξ, - ξ2 - f3 - A) - ξv +

fp+1|, where (v,μ,σ) is an even permutation of (1,2,3). The residual

system, however is clearly seen to be empty. This completes the proof

of the lemma.

LEMMA 3.5. There is no ^-torsion in Pic (B(ά)).

Proof. From Lemma 3.3., part (ii) with n = 2 we have that |4KB |

consists of the subsystems |2(3# - £ v ξv - A)\ and Iv = Dμ + Dσ + /*

|3Jϊ — Σ»>£* ~ -̂l ^ e ^ r s ^ system consists of the sum of pairs of ele-

ments of \2KB\, hence, to prove the assertion, it is sufficient to prove

that lv does not contain multiple curves. Suppose the contrary, then,
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since Dμ + Dσ ~ f*Fv, the system | 3 # - Σ,ξ, - & ~ £„ + fv+il would

have to contain F v = SH — ξμ — 2?, — A, but the residual system clearly

is empty. This contradiction proves the Lemma.

PROPOSITION 3.6. The torsion group of B(ά) equals ®6-*Z2.

Proof. According to Lemmas 3.4 and 3.5 there is only 2-torsion.

We have exhibited 26"α — 1 different non-trivial 2-torsion elements, hence

the assertion follows.

COROLLARY 3.7 (of proof). The fundamental group of B(0) is not

abelian:

Proof. Suppose it were and form φ: 5(0) —> B(0), the unramified

26-fold covering with B(0) the universal covering of B(0). Since 0 = q(B(0))

= ®geGh\(9BW(g)) with G = Θ 6Z 2, we must have that h\Θm)(g)) = 0 for

all g eG. By Riemann-Roch it would then follow that h2(ΘBi0)(g)) = 1

g φ 1, g eG. Now the Serre duality gives h°(KB{0) + g) = 1 for those

g eG, but clearly the elements £ijH2

k give 2-torsion elements g, g Φ 1

with at least 2 independent sections in KBi0) + g. This contradiction

shows that q(B(0)) Φ 0, and hence π^BiO)) is not abelian.

Remark 3.8. It is not clear whether this Corollary holds for B(ά),

a = 1, , 4, since the above proof fails to hold.

Remark 3.9. M. Reid pointed out to me a possible way of describing

the Burniat surface with c\ = 6, starting with the 3 pencils of curves

of genus 3 lying above the pencils {Hk}. From this construction B(0)

has an 8-fold covering lying in the product of 3 elliptic curves as a di-

visor of type (2.2) invariant under a certain group of order 8. This

explains 3.7 geometrically.
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