CLASS NUMBERS OF QUADRATIC FORMS OVER REAL QUADRATIC FIELDS

YOSHIYUKI KITAOKA

Let k be an algebraic number field, let K be a Galois extension of k of finite degree, and let O_{K}, O_{k} be the maximal orders of K, k, respectively. We consider the conjugate operation: for a given quadratic lattice M over O_{K} equipped with a bilinear form B and for an automorphism $\sigma \in G(K / k)$, we define a new quadratic lattice M^{σ} over O_{K}. Here M° has the same underlying abelian group as M, but a new $O_{K^{-}}$ action $a * v=\sigma(a) v\left(a \in O_{K}, v \in M\right)$; the new bilinear form B^{σ} on M^{σ} is defined by $B^{\sigma}(u, v)=\sigma^{-1}(B(u, v))(u, v \in M)$. Then the O_{K}-linearity of B^{σ} is checked as follows:

$$
\begin{aligned}
B^{\sigma}(a * u, v) & =\sigma^{-1}(B(\sigma(a) u, v)) \\
& =a B^{\sigma}(u, v) \quad\left(a \in O_{K}, u, v \in M\right) .
\end{aligned}
$$

If M has an O_{K}-basis, i.e., $M=O_{K}\left[v_{1}, v_{2}, \cdots, v_{n}\right]$, then M^{σ} is a quadratic lattice corresponding to the matrix $\left(\sigma^{-1}\left(B\left(v_{i}, v_{j}\right)\right)\right.$). In this paper we say that a quadratic lattice M is symmetric if M^{σ} is isometric to M for any σ in $G(K / k)$. There are some tools to know class numbers of positive definite quadratic forms over the ring Z of rational integers, and they are effective in principle in case of definite quadratic lattices over the maximal order of an algebraic number field. But they do not seem to be useful to know the class numbers of symmetric quadratic lattices apart from the cases of small class numbers. By using the theory of quaternions we prove

THEOREM. Let K be a real quadratic field $\boldsymbol{Q}(\sqrt{q})$ where q is a rational prime $\equiv 1(\bmod 4)$, and let V be a quaternary quadratic space over K with bilinear form B and quadratic form $Q(Q(x)=B(x, x))$ which satisfies
(i) the discriminant $d V$ of V is a square, that is, $\operatorname{det}\left(B\left(v_{i}, v_{j}\right)\right)$ is a square, where $\left\{v_{i}\right\}$ is a basis of V,
(ii) V is positive definite at each infinite prime of K,
(iii) there is a lattice M over the maximal order O_{K} of K in V such that M is a unimodular quadratic lattice at each finite prime of K, and $Q(x) \equiv 0(\bmod 2)$ for any $x \in M$.
Furthermore, let G denote the genus of the quadratic lattice M. Then, for $q \neq 5$, the class number of isometry classes of quadratic lattices in G is

$$
\frac{1}{2} H(H+1) \text {, where } H \text { is } B_{2, x} / 2^{4} \cdot 3+h(\sqrt{-q}) / 8+h(\sqrt{-3 q}) / 6
$$

and the class number of isometry classes of symmetric*) quadratic lattices in G is

$$
\begin{aligned}
& \frac{1}{2}\left\{\left(q+3-4\left(\frac{3}{q}\right)\right) / 24+\left(1-\left(\frac{2}{q}\right)\right) / 4\right\}^{2} \\
& \quad+B_{2, \mathrm{z}} / 2^{5} \cdot 3+h(\sqrt{-q}) / 16+h(\sqrt{-3 q}) / 12
\end{aligned}
$$

where $B_{2, \chi}$ is a generalized Bernoulli number with $\chi(n)=\left(\frac{n}{q}\right),\left(\frac{n}{q}\right)$ stands for the quadratic residue symbol, and $h(\sqrt{-m})$ is the class number of an imaginary quadratic field $\boldsymbol{Q}(\sqrt{ } \overline{-m})$. If $q=5$, then both class numbers are one.

Remark 1. Theorem in case of $q=5$ is proved by Maass [3].
Remark 2. Every quadratic lattice in the genus G in Theorem has an O_{K}-basis (appendix). Hence G can be regarded as a set of matrices A in $S L\left(4, O_{K}\right)$ such that diagonal entries are divisible by 2 , and $A, \sigma A$ are positive definite, where σ is a non-trivial automorphism of K.

Remark 3. Since a conjugate quadratic lattice L^{σ} of L is not unique up to rotations, it seems to be difficult to consider our problems within the category of rotations in general. However there are some exceptional cases which can be treated as follows:

Let K / k be a Galois extension and V_{0} be a quadratic space over k, and put $V=K \otimes_{k} V_{0}$. For $\sigma \in G(K / k)$ and an element $v=\sum a_{i} v_{i}$, where $a_{i} \in K$ and $\left\{v_{i}\right\}$ is a basis of V_{0} over k, we define $\sigma(v)$ by $\sum \sigma\left(a_{i}\right) v_{i}$.

[^0]Then, for a given quadratic lattice L in V and $\sigma \in G(K / k)$, we have $L^{\sigma} \cong \sigma^{-1}(L)$. Suppose that two lattices L, M are isometric by a rotation $\varphi, \varphi(L)=M$. Put $\varphi_{\sigma}=\sigma^{-1} \varphi \sigma$; then $\varphi_{\sigma}\left(\sigma^{-1} L\right)=\sigma^{-1} M$. Next we show that φ_{σ} is a rotation. Let $\varphi\left(v_{1}, \cdots, v_{n}\right)=\left(v_{1}, \cdots, v_{n}\right) T$. Then $\varphi_{\sigma}\left(v_{1}, \cdots, v_{n}\right)=$ $\left(v_{1}, \cdots, v_{n}\right) \sigma^{-1}(T)$ implies $\operatorname{det} \varphi_{\sigma}=\operatorname{det} \sigma^{-1}(T)=\sigma^{-1} \operatorname{det} T=\sigma^{-1} \operatorname{det} \varphi=1$, and $\left(B\left(\varphi_{o}\left(v_{i}\right), \varphi_{o}\left(v_{j}\right)\right)\right)=\sigma^{-1}\left({ }^{t} T\right)\left(B\left(v_{i}, v_{j}\right)\right) \sigma^{-1}(T)=\sigma^{-1}\left({ }^{t} T\left(B\left(v_{i}, v_{j}\right)\right) T\right)=\sigma^{-1}\left(B\left(v_{i}, v_{j}\right)\right)$ $=\left(B\left(v_{i}, v_{j}\right)\right)$, where B is the bilinear form associated with V_{0}. Thus φ_{0} is a rotation. Hence by taking $\sigma^{-1}(L)$ as a realization in V of L^{σ} we can consider our problems in the category of rotations.
§1. In this section we summarize our necessities without proofs from the theory of Tamagawa which was lectured in the Summer Institute at Tokyo in 1970 (for details and more see [6]).

Let q be a prime $\equiv 1(\bmod 4)$, and D_{0} be a quaternion algebra over the rational number field \boldsymbol{Q} which is ramified at and only at q and ∞, and K be $\boldsymbol{Q}(\sqrt{q})$. We denote the maximal order of K by O_{K}. D denotes $K \otimes_{Q} D_{0}$; then D is a quaternion algebra over K which is ramified at two infinite primes only. Moreover we denote the non-trivial automorphism of K by the bar, $x \rightarrow \bar{x}$, and the main involution of D_{0} by the star, $x \rightarrow x^{*}$. These two linear mappings are cannonically extended to D and the idele group D_{A}^{\times}of D, and we denote them by the bar and the star again. For an O_{K}-module \tilde{M} in D we denote the \mathfrak{p}-adic closure of \tilde{M} in $D_{\mathfrak{p}}=D \otimes_{K} K_{\mathfrak{p}}$ by $\tilde{M}_{\mathfrak{p}}$. The two linear mappings are locally as follows:

Let \mathfrak{p} be a prime of $K(\mathfrak{p} \nmid \infty)$; then $D_{\mathfrak{p}}$ is isomorphic to $M_{2}\left(K_{\mathfrak{p}}\right)$ and the main involution $*$ is given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{*}=\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \quad\left(a, b, c, d \in K_{\natural}\right) .
$$

Let p be a rational prime.

1) In case that p splits in $K,(p)=\mathfrak{p}_{1} \mathfrak{p}_{2}, \mathfrak{p}_{1} \neq \mathfrak{p}_{2}$, we have $D_{\mathfrak{p}_{1}} \oplus D_{\mathfrak{p}_{2}}=$ $M_{2}\left(\boldsymbol{Q}_{p}\right) \oplus M_{2}\left(\boldsymbol{Q}_{p}\right)$ and the non-trivial automorphism of K operates as the permutation on it.

If p does not split in K and $\mathfrak{p} \mid p$, then $K_{\mathfrak{p}}$ is a quadratic extension of \boldsymbol{Q}_{p} and the non-trivial automorphism of K induces one of K_{p}, and it operates on $D_{\mathrm{p}} \cong M_{2}\left(K_{\mathrm{p}}\right)$:
2) $\overline{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)}=\left(\begin{array}{ll}\bar{a} & \bar{b} \\ \bar{c} & \bar{d}\end{array}\right)$ if $p \neq q$,
3) $\overline{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)}=\left(\begin{array}{cc}\bar{d} & e^{-1} \bar{c} \\ e \bar{b} & \bar{a}\end{array}\right)$ if $p=q$,
where $a, b, c, d \in K_{p}$, and e is a unit of \boldsymbol{Q}_{p} which is not the norm of an element of K_{p}.

Now it is obvious that there is a maximal order \mathfrak{D} in D such that $\overline{\mathfrak{D}}=\mathfrak{D}^{*}=\mathfrak{D}$ and $\mathfrak{D}_{\mathfrak{p}}=M_{2}\left(O_{K_{\mathfrak{p}}}\right)$ by the correspondence $D_{\mathfrak{p}} \cong M_{2}\left(K_{\mathfrak{p}}\right)$, where $O_{K_{p}}$ is the maximal order of K_{p}. We fix it hereafter.

Put $H=\left\{x \in D ; \bar{x}=x^{*}\right\}$ and $H_{0}=H \cap \mathfrak{D}$, and we consider the quaternion algebra D as a quadratic space with $Q(x)=2 n(x)=2 x x^{*}$ over K; then for $x \in H_{0} Q(x)$ is a rational number since $Q(x)=2 x x^{*}=2 x \bar{x}$. Hence we can regard H_{0} as a quaternary positive definite quadratic lattice over the ring Z of rational integers.

If p splits in $K,(p)=\mathfrak{p}_{1} \mathfrak{p}_{2}\left(\mathfrak{p}_{1} \neq \mathfrak{p}_{2}\right)$, then the closure of H_{0} in $D_{\mathfrak{p}_{1}} \oplus$ $D_{y_{2}} \cong M_{2}\left(\boldsymbol{Q}_{p}\right) \oplus M_{2}\left(\boldsymbol{Q}_{p}\right)$ is $\left\{\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right) \oplus\left(\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right) ; a_{i}, b_{i}, c_{i}, d_{i} \in \boldsymbol{Z}_{p},\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right)^{*}\right.$ $\left.=\left(\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right)\right\}$. If $(p)=\mathfrak{p}$ is a prime in K, then the closure of H_{0} in D_{p} is $\left\{\left(\begin{array}{ll}a & b \\ c & \bar{a}\end{array}\right) ; a, b, c \in O_{R_{p}}, \bar{b}=-b, \bar{c}=-c\right\}$.

If $p=q$, then the closure of H_{0} in $D_{\mathfrak{p}}(\mathfrak{p} \mid q)$ is $\left\{\left(\begin{array}{cc}a & b \\ -e \bar{b} & d\end{array}\right) ; b \in O_{K \mathfrak{p}}\right.$, $\left.a, d \in \boldsymbol{Z}_{q}\right\}$. Hence the norm of H_{0} is $2 Z$ and the discriminant $\left|B\left(x_{i}, x_{j}\right)\right|$ is q, where $\left\{x_{i}\right\}$ is a Z-basis of H_{0} and $B\left(x_{i}, x_{j}\right)=\operatorname{tr}\left(x_{i} x_{j}^{*}\right)=x_{i} x_{j}^{*}+x_{j} x_{i}^{*}$.

Denote the idele group of K, \boldsymbol{Q} by $K_{A}^{\times}, \boldsymbol{Q}_{A}^{\times}$respectively and put
 ($\boldsymbol{Q}_{A}^{\times}$is embedded in D_{A}^{\times}). Then $D^{\times} \times \boldsymbol{Q}^{\times} \backslash D_{A}^{\times} \times \boldsymbol{Q}_{A}^{\times} / N$ is bijectively corresponding to the equivalence classes of ideals of form $c A \backsim \bar{A}^{*}\left(c \in \boldsymbol{Q}_{A}^{\times}\right.$, $A \in D_{A}^{\times}$) where the equivalence relation is defined as follows: \mathfrak{M}, \mathfrak{n} are equivalent if and only if $\mathfrak{M}=b B \Re \bar{B}^{*}$, where $b \in \boldsymbol{Q}^{\times}, B \in D^{\times}$. Since D is unramified for any finite prime of K and \mathscr{D} is a maximal order, $A_{p} \mathfrak{N}_{p} B_{p}=Ð_{\mathfrak{p}}\left(A_{p}, B_{p} \in D_{p}^{\times}\right)$implies $A_{p} \mathcal{D}_{\mathfrak{p}}=a_{p} \mathfrak{N}_{p}, \mathfrak{D}_{p} B_{p}=a_{p}^{-1} \mathfrak{D}_{\mathfrak{p}}$ for any finite prime \mathfrak{p}, where $a_{\mathfrak{p}}$ is in K_{p}. Hence we get $N=Z\left(U \times U_{Q}\right)$, where Z is $\left\{\left(a, N_{K_{A}^{\times}} / Q_{A}^{\times} a^{-1}\right) ; a \in K_{A}^{\times}\right\}, U$ is the group of unit ideles of \mathfrak{D}, and U_{Q} is the group of unit ideles of \boldsymbol{Q}. Hence the number of double cosets $D^{\times} \times \boldsymbol{Q}^{\times} \backslash D_{A}^{\times} \times \boldsymbol{Q}_{A}^{\times} / N$ is equal to $\#\left\{D^{\times} \backslash D_{A}^{\times} / K_{A}^{\times} U\right\}$. Let A, \mathfrak{a} and α be an element of D_{A}^{\times}, an ideal of K and an element of D^{\times}respectively. Then $\mathfrak{D A a}=\mathfrak{D A \alpha}$ implies $\mathfrak{a}^{2}=(n(\alpha))$ and so \mathfrak{a} is a principlal ideal since the class number of K is odd. Hence we have $\#\left\{D^{\times} \times \boldsymbol{Q}^{\times} \backslash D_{A}^{\times} \times \boldsymbol{Q}_{A}^{\times} / N\right\}=$
$h(D) / h(K)$, where $h(D), h(K)$ are the class numbers of D and K respectively.

Let a be an element of K_{A}^{\times}; then a defines cannonically an ideal of K. We denote the ideal by id (a). From the oddness of the class number of K and the fact that the norm of a fundamental unit of K is -1 follows that there is an element $a \in K_{A}^{\times}$for a given $A \in D_{A}^{\times}$such that $\operatorname{id}(n(A \alpha))=\operatorname{id}\left(a^{2} n(A)\right)$ is a principal ideal (x) with totally positive $x \in K$. Then there is an element α in D such that $n(\alpha)=x$. Thus $c A \bigcirc \bar{A}^{*}\left(c \in \boldsymbol{Q}_{A}^{\times}\right)$ is equivalent to $A_{1} \mathfrak{\infty} \bar{A}_{1}^{*}$, where $A_{1}=\alpha^{-1} a A$, and $\operatorname{id}\left(n\left(A_{1}\right)\right)$ is the maximal order O_{K} of K. Now we consider $H \cap A_{1} \subseteq \bar{A}_{1}^{*}=A_{1}(H \cap \subseteq) \bar{A}_{1}^{*}$ as a quadratic lattice over Z with quadratic form $Q(x)=2 n(x)$. Then $H \cap$ $A_{1} \unrhd \bar{A}_{1}^{*}$ is in the genus of H_{0}. A main result of Tamagawa is as follows:

The above correspondence gives a bijection from the equivalence classes of $c A \mathfrak{D} \bar{A}^{*}\left(c \in \boldsymbol{Q}_{A}^{\times}, A \in D_{A}^{\times}\right)$to the equivalence classes in the narrow sense, namely, by the group of rotations, of even quaternary positive definite quadratic lattices with discriminant q.
§2. Keeping all in $\S 1$, let L be an O_{K}-lattice of D; then L is by definition a normal ideal if and only if the right or left order of L is a maximal order ; then $L=A \cong B=D \bigcap_{p} A_{p} \mathfrak{D}_{p} B_{p}\left(A, B \in D_{A}^{\times}\right)$, where \mathfrak{D} is the maximal order of D in $\S 1$ satisfying $\mathfrak{D}=\mathfrak{D}^{*}=\bar{D}$ and $\mathfrak{\cap} \cap H$ is an even quaternary positive definite quadratic lattice with discriminant q. Two normal ideals L, M are said to be equivalent, $L \sim M$, if there exist α, $\beta \in D^{\times}$such that $M=\alpha L \beta$. This equivalence relation is different from one in §1. Let G be the genus of the maximal order \mathfrak{O} with quadratic form $Q(x)=2 n(x)$, that is, G consists of quaternary positive definite unimodular quadratic lattices N over O_{K} such that $Q(x) \equiv 0(\bmod 2)$ for each x in N and the quadratic space $K \otimes_{o_{K}} N$ is of discriminant 1 , and so it is the same genus as G in Theorem. Regarding D as a quadratic space over K with quadratic form $Q(x)=2 n(x)$, the rotations of D are all the mappings of the form $x \mapsto \alpha x \beta$, where $\alpha, \beta \in D$ and $n(\alpha \beta)=1$, and a non-rotational isometry is given by $x \mapsto x^{*}$.

Lemma 1. The class number of isometry classes, by the group of rotations, of quadratic lattices in G is equal to

$$
h(K)^{-1} \times \text { the class number of normal ideals }=h(D)^{2} / h(K)^{2},
$$

where $h(D), h(K)$ is the class number of D, K, respectively.
Proof. Let $L=A \cong B\left(A, B \in D_{A}^{\times}\right)$be a normal ideal such that $\operatorname{id}(n(A B))$ is a principal ideal (a); then we may assume a is totally positive and then there is an element $\alpha \in D$ such that $n(\alpha)=\alpha$. Put $M=\alpha^{-1} L=$ $\alpha^{-1} A \curvearrowright B$. Since id $\left(n\left(\alpha^{-1} A B\right)\right)$ is the maximal order O_{K} of K, M is in the genus of \subseteq as a quadratic lattice with quadratic form $2 n(x)$, i.e., $M \in G$. This correspondence gives a bijection from the equivalence classes of normal ideals $L=A \oslash B\left(A, B \in D_{A}^{\times}\right)$such that $\operatorname{id}(n(A B))$ is principal to the equivalence classes by rotations of quadratic lattices in G. It is obvious that the class number of normal ideals equals $h(K) \times$ the class number of normal ideals $L=A \oslash B\left(A, B \in D_{A}^{\times}\right)$such that $\operatorname{id}(n(A B))$ is principal, since $h(K)$ is odd. For a normal ideal $L=A \oslash B\left(A, B \in D_{A}^{\times}\right)$ we put $\varphi(L)=\left(A \bigcirc A^{-1}, \underline{B}^{-1} \subseteq B\right)$, where the underline means the equivalence class of maximal orders, namely, $A \subseteq A^{-1}=\left\{\alpha A \subseteq A^{-1} \alpha^{-1} ; \alpha \in D^{\times}\right\}$. Then φ gives a bijection from the equivalence classes of normal ideals $L=$ $A \bigcirc B\left(A, B \in D_{A}^{\times}\right)$such that $\operatorname{id}(n(A B))$ is principal to the direct product of two copies of equivalence classes of maximal orders, noting $a^{-1} \bigcirc a=\mathfrak{D}$ ($a \in K_{4}^{\times}$). The number of equivalence classes of maximal orders is, by definition of equivalence, $\#\left\{\left\{A \in D_{A}^{\times} ; A^{-1} \subseteq A=\mathfrak{D}\right\} \backslash D_{A}^{\times} / D^{\times}\right\}$and it is $h(D) / h(K)$ since $\left\{A \in D_{A}^{\times} ; A^{-1} \mathfrak{Ð} A=\mathfrak{O}\right\}=K_{A}^{\times} \times U$ as in $\S 1$. This completes the proof.

By the correspondence in the proof of Lemma 1 we regard a quadratic lattice L in G as a normal ideal $A \cong B\left(A, B \in D_{A}^{\times}\right)$such that id $(n(A B))$ is principal. Then for quadratic lattices L_{1}, L_{2} in G corresponding normal ideals $A_{1} \mathfrak{\sim} B_{1}, A_{2} \circlearrowleft B_{2}, L_{1}, L_{2}$ are rotationally isometric if and only if $A_{1} \circlearrowleft B_{1} \sim A_{2} \circlearrowleft B_{2}$, and L_{1} is isometric to L_{2} if and only if $A_{1} \bigcirc B_{1} \sim A_{2} \bigcirc B_{2}$ or $A_{1} \subseteq B_{1} \sim\left(A_{2} \bigcirc B_{2}\right)^{*}$.

Let L be a quadratic lattice; then L has an isometry which is not a rotation if and only if any quadratic lattice M which is isometric to L is always rotationally isometric to L. Hence denoting the number of isometry classes of quadratic lattices in G and the number of isometry classes by rotations of them by h and h^{+}respectively, $2 h-h^{+}$equals the number of quadratic lattices in G which have a non-rotational isometry.

Lemma 2. $2 h-h^{+}=h(D) / h(K)$.
Proof. The idea of the proof is essentially due to H. Hijikata. By
the above remark it suffices to prove that the class number of normal ideals $L=A \cong B\left(A, B \in D_{A}^{\times}\right)$such that $L \sim L^{*}$ and id ($n(A B)$) is principal equals $h(D) / h(K)$. Put $L=A \bigcirc B\left(A, B \in D_{A}^{\times}\right)$. If $L^{*}=\alpha L \beta(\alpha, \beta \in D)$, then $B^{*} \bigcirc A^{*}=\alpha A Ð B \beta$. Hence $\varphi(L)$ (in the proof of Lemma 1) $=$
 versely, $B \in D_{A}^{\times}$is given, then we put $A=n(B)^{-1} B^{*}$. Then $\varphi(A \bigcirc B)=$ $\left(B^{-1} \bigcirc B, B^{-1} \bigcirc B\right)$ and $(A \bigcirc B)^{*}=A \supseteqq B$ and moreover id ($n(A B)$) is principal. This completes the proof.

From Lemma 1 and 2 we have $h=\frac{1}{2}\left(h(D)^{2} / h(K)^{2}+h(D) / h(K)\right)$, and $h(D)=1 q=5$. If $q>5$, then $h(D) / h(K)$ is $B_{2, x} / 2^{4} \cdot 3+h(\sqrt{-q}) / 8+$ $h(\sqrt{-3 q}) / 6$, where $B_{2, \chi}$ is a generalized Bernoulli number with $\chi(n)=$ $\left(\frac{n}{q}\right)$ (the quadratic residue symbol) and $h(\sqrt{-m})$ denotes the class number of an imaginary quadratic field $Q(\sqrt{-m})$ ([1], [5], and [2] combining with §1). This completes the proof of the former part of Theorem. Hereafter we calculate the class number \bar{h} of quadratic lattices L in G such that L is isometric to L^{σ} where σ is a non-trivial automorphism of K and L° is defined in the introduction. Here we introduce a new equivalence relation \approx for normal ideals:

$$
L \approx M \text { if and only if } L \sim M \text { or } L \sim M^{*}
$$

Then \bar{h} is the class number by the new equivalence \approx of normal ideals $L=A \oslash B$ such that $L \approx \bar{L}$ and $\operatorname{id}(n(A B))$ is principal. Let $L=A \oslash B$ stand for normal ideals such that id $(n(A B))$ is principal; then we have

$$
\begin{array}{r}
2 \sharp\{\{L ; L \sim \bar{L}\} / \approx\}=\#\{\{L ; L \sim \bar{L}\} / \sim\}+\#\left\{\left\{L ; L \sim \bar{L} \sim L^{*}\right\} / \sim\right\}, \\
\left.\#\left\{\left\{L: L \nsim \bar{L}, L \sim \bar{L}^{*}\right\} / \approx\right\}=\#\left\{L ; L \sim \bar{L}^{*}\right\} / \approx\right\}-\#\left\{\left\{L ; L \sim \bar{L}^{*} \sim \bar{L}\right\} / \approx\right\} \\
=\#\left\{\left\{L ; L \sim \bar{L}^{*}\right\} / \approx\right\}-\#\left\{\left\{L ; L \sim \bar{L}^{*} \sim \bar{L} / \sim\right\},\right. \\
2 \#\left\{\left\{L ; L \sim \bar{L}^{*}\right\} / \approx\right\}=\#\left\{\left\{L ; L \sim \bar{L}^{*}\right\} / \sim\right\}+\#\left\{\left\{L ; L \sim \bar{L}^{*} \sim L^{*}\right\} / \sim\right\} .
\end{array}
$$

Hence we have

$$
\begin{aligned}
\bar{h} & =\#\{\{L ; L \sim \bar{L}\} / \approx\}+\#\left\{\left\{L ; L \nsim \bar{L}, L \sim \bar{L}^{*}\right\} / \approx\right\} \\
& =\frac{1}{2} \#\{\{L ; L \sim \bar{L}\} / \sim\}+\frac{1}{2} \#\left\{\left\{L ; L \sim \bar{L}^{*}\right\} / \sim\right\} .
\end{aligned}
$$

Denote $\#\{\{L ; L \sim \bar{L}\} / \sim\}, \#\left\{\left\{L ; L \sim \bar{L}^{*}\right\} / \sim\right\}$ by h_{1}, h_{2} respectively.
Lemma 3. h_{1} is the square of the number h_{0} of equivalence classes of maximal orders $A \circlearrowleft A^{-1}\left(A \in D_{A}^{\times}\right)$such that $\overline{\bar{A}} \cap \bar{A}^{-1}=\underline{A Ð A^{-1}}$.

Proof. Let $L=A \cong B\left(A, B \in D_{A}^{\times}\right)$be a normal ideal such that $\bar{L}=$ $\alpha L \beta, \alpha, \beta \in D$; then $\bar{A} \oslash \bar{B}=\alpha A \supseteqq B \beta$ implies $\varphi(L)=\left(A \cong A^{-1}, B^{-1} \supseteq B\right)=$
 for $A, B \in D_{A}^{\times}$, then taking $A_{1}, B_{1} \in D_{A}^{\times}$such that $\operatorname{id}\left(n\left(A_{1}\right)\right)=\operatorname{id}\left(n\left(B_{1}\right)\right)=O_{K}$
 for $L=A_{1} \bigcirc B_{1}$, and $\varphi(L)=\varphi(\bar{L})$. Hence we get $L \sim \bar{L}$. This completes the proof.

Lemma 4. $h_{0}=\left(q+3-4\left(\frac{3}{q}\right)\right) / 24+\left(1-\left(\frac{2}{q}\right)\right) / 4$, where $\left(\frac{n}{q}\right)$ stands for the quadratic residue symbol.

Proof. Let $A \subseteq A^{-1}\left(A \in D_{A}^{\times}\right)$be a maximal order. Then the equivalence class of $A \bigcirc \bar{A}^{*}$ where the equivalence relation is one defined in $\S 1$ is uniquely determined by $A \lesssim A^{-1}$. The correspondence is bijective from equivalence classes of maximal orders to the equivalence classes of ideals of form $c A \cong \bar{A}^{*}\left(c \in \boldsymbol{Q}_{A}^{\times}, A \in D_{A}^{\times}\right)$. Let $A \cong A^{-1}\left(A \in D_{A}^{\times}\right)$be a maximal order such that $\underline{A \supseteq A^{-1}=\bar{A} \subseteq \bar{A}^{-1} \text {. We may assume that id }(n(A)), ~(1) ~}$ $=O_{K}$ without changing the class of the given maximal order $A \subseteq A^{-1}$. $\underline{A \cong A^{-1}}=\bar{A} \cong \bar{A}^{-1}$ implies $A \cong=\alpha \beta \bar{A} \cong\left(\alpha \in K_{A}^{\times}, \beta \in D\right)$. Since $\operatorname{id}(n(A))=$ $\operatorname{id}\left(a^{2} n(\beta) n(\bar{A})\right)=O_{K}, \operatorname{id}(\alpha)$ is principal. Hence we have $A \cong=\gamma \bar{A} \cong(\gamma \in D)$ and $\operatorname{id}(n(\gamma))=O_{R}$. Now we define a linear mapping η by $\eta(x)=\gamma x^{*} \gamma^{*}$ for $x \in D$. Then $\eta\left(A \oslash \bar{A}^{*}\right)=\gamma \bar{A} \oslash A^{*} \bar{\gamma}^{*}=A \unrhd \bar{A}^{*}$, and $\eta\left(A \supseteq \bar{A}^{*} \cap H\right)=$ $A \backsim \bar{A}^{*} \cap H$. Moreover $n(\eta(x))=n\left(\gamma x^{*} \bar{\gamma}^{*}\right)=N_{K / Q}(n(\gamma)) n(x)=n(x)$ since $n(\gamma)$ is a totally positive unit of K. Therefore an even positive definite quadratic lattice $A \bigcirc \bar{A}^{*} \cap H$ with discriminant q has a non-trivial isometry. Then there exists an element e in $A \oslash \bar{A}^{*} \cap H$ with $n(e)=1$ by 2.5 in [2]. Conversely assume that $A \subseteq \bar{A}^{*} \cap H$ has an element e with $n(e)=1$, where $\operatorname{id}(n(A))=O_{K}$. Put $e=A_{p} e_{p}\left(\bar{A}^{*}\right)_{p}\left(e_{p} \in \mathscr{O}_{\mathfrak{p}}\right)$; then $n\left(e_{p}\right)$ is a unit since $n(e)=n\left(A_{p}\right) n\left(e_{p}\right) n\left(\left(\bar{A}^{*}\right)_{p}\right)=1$ and $n\left(A_{p}\right), n\left(\left(\bar{A}^{*}\right)_{p}\right)$ are units of $K_{\mathfrak{p}}$ from our assumption. Hence we get $e_{p} \in \mathfrak{D}_{p}^{\times}$. Take an element f in D_{A}^{\times}such that $f_{p}=e_{p}$ for any finite prime. Then we have $\bar{A} \bigcirc \bar{A}^{-1}=$ $\left(f^{-1} A^{-1} e\right)^{*} \bigcirc\left(f^{-1} A^{-1} e^{-1}\right)^{-1 *}=e^{-1} A \oslash A^{-1} e=A \bigcirc A^{-1}$. By virtue of Tamagawa's bijection in $\S 1$ and the above bijection h_{0} is equal to the class number by rotations of even positive definite quaternary lattices with discriminant q which have an element with length 2 , and it is $\left(q+3-4\left(\frac{3}{q}\right)\right) / 24$ $+\left(1-\left(\frac{2}{q}\right)\right) / 4(\S 1$ in [2]) since for such quadratic lattices the equivalence
by rotations is the same as the equivalence by isometries (a vector of length 2 gives a symmetry).

Lemma 5. $h_{2}=h(D) / h(K)$.
Proof. Let $L=A \supseteqq B\left(A, B \in D_{A}^{\times}\right)$be a normal ideal such that $L=$ $\alpha \bar{L}^{*} \beta(\alpha, \beta \in D)$ and $\operatorname{id}(n(A B))$ is principal. Then $A \cong B=\alpha \bar{B}^{*} \supseteqq \bar{A}^{*} \beta$ implies $\varphi(L)=\left(\underline{A \subseteq A^{-1}}, \underline{\left.B^{-1} \supseteq B\right)}=\underline{\left(\bar{B}^{*} \subseteq \bar{B}^{*-1}\right.}, \underline{\left.B^{-1} \supseteq B\right)}=\underline{\left(\bar{B}^{-1} \bigcirc \bar{B}\right.}, \underline{B^{-1} \supseteq B}\right)$. Conversely take an order $B^{-1} \bigcirc B \overline{\left(B \in D_{A}^{\times}\right)}$; then there is some $\overline{C \text { in } D_{A}^{\times}}$ such that $\underline{C}^{-1} \bigcirc C=\underline{B^{-1} \supseteq B}$ and id $(n(C))$ is principal. $L=\bar{C}^{*} \oslash C$ satisfies $\bar{L}^{*}=L$ and $\varphi^{*}(L)=\overline{\left(\bar{B}^{-1} \supseteq \bar{B}\right.}, \underline{\left.B^{-1} \bigcirc B\right)}$. This completes the proof of Lemma 5 and of our Theorem.

Appendix

Proposition. Let k be an algebraic number field with the maximal order $\mathfrak{0}$, and V be a regular quadratic space over k with bilinear form B and we denote $\operatorname{det}\left(B\left(v_{i}, v_{j}\right)\right)$ by $d V$, where $\left\{v_{i}\right\}$ is a basis of V over k. Then, a lattice L in V has an \mathfrak{o}-basis, i.e., $L=\mathfrak{o} u_{1}+\cdots+\mathfrak{o} u_{n}$ if and only if there is an element a in k^{\times}such that the discriminant $d L_{\mathfrak{p}}$ of L_{p} is equal to $a^{2} d V\left(\bmod \mathfrak{o}_{\mathfrak{p}}^{\times 2}\right)$ for any prime \mathfrak{p} in k.

Proof. Suppose that L has an \mathfrak{o}-basis, $L=\mathfrak{o} u_{1}+\cdots+\mathfrak{o} u_{n}$. We define a matrix A by $\left(u_{1}, \cdots, u_{n}\right)=\left(v_{1}, \cdots, v_{n}\right) A$, and put $a=|A|$. Then $d L_{p}=\left|\left(B\left(u_{i}, u_{j}\right)\right)\right|=|A|^{2}\left|\left(B\left(v_{i}, v_{j}\right)\right)\right|=a^{2} d V$. Conversely suppose that $d L_{p}=$ $a^{2} d V$ for an element a in k^{\times}and any prime \mathfrak{p} in k. Put $L_{0}=\mathfrak{o} v_{1}+\cdots$ $+\mathfrak{v} v_{n}, M=\mathfrak{v a v _ { 1 }}+\mathfrak{o} v_{2}+\cdots+\mathfrak{o} v_{n}$, and $L=\mathfrak{v} e_{1}+\cdots+\mathfrak{v} e_{n-1}+\mathfrak{a} e_{n}$ where \mathfrak{a} is an ideal in k; then $d M_{\mathfrak{p}}=d M=a^{2} d V$, and $d L_{p} \mathfrak{D}_{\mathfrak{p}}=\left|\left(B\left(e_{i}, e_{j}\right)\right)\right| \mathfrak{a}_{\mathfrak{p}}^{2}=$ $a^{2} d V \mathfrak{o}_{\mathfrak{p}}$. Thus we have $a^{2} d V\left|\left(B\left(e_{i}, e_{j}\right)\right)\right|^{-1} \mathfrak{o}=\mathfrak{a}^{2}$. Since $d V\left|\left(B\left(e_{i}, e_{j}\right)\right)\right|^{-1}$ is a square in k, a is principal. This completes the proof.

Corollary. Keeping the notations of Proposition, we assume further that there is a lattice L in V such that L_{p} is unimodular for any prime \mathfrak{p} in k. Then, L has an $\mathfrak{0}$-basis if and only if $d V$ is a unit of k up to a square of k.

Proof. If L has an o-basis, then $d L$ is a unit at any prime in k. Hence $d L$ is a unit of k. If, conversely, $d V$ is a unit, then $d L_{p} / d V$ is a square of unit of k_{p}. Hence $d L_{p}=d V$ ($d L_{p}$ is uniquely determined up to squares of units of $k_{\mathfrak{p}}$ by definition). Taking 1 as a in Proposition,
we get Corollary.

References

[1] M. Eichler, Zur Zahlentheorie der Quaternionenalgebren, J. reine u. angew. Math., 195 (1956), 127-151.
[2] Y. Kitaoka, Quaternary even positive definite quadratic forms of prime discriminant, Nagoya Math. J., 52 (1973), 147-161.
[3] H. Maass, Modulformen und quadratische Formen über dem quadratischen Zahlkörper $\boldsymbol{R}(\sqrt{5})$, Math. Ann. 118 (1941), 65-84.
[4] O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag, 1963.
[5] M. Peters, Ternäre und quaternäre quadratische Formen und Quaternionenalgebren, Acta Arith., 15 (1969), 329-365.
[6] P. Ponomarev, Arithmetic of quaternary quadratic form, Acta Arith., 29 (1976), 1-48.

Nagoya University

[^0]: ${ }^{*}$) We consider the rational number field Q as k in the introduction.

