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AMPLE VECTOR BUNDLES ON A RATIONAL SURFACE
(HIGHER RANK)

TOSHIO HOSOH

Introduction

In the previous paper [1], we showed that the set of simple vector
bundles of rank 2 on a rational surface with fixed Chern classes is
bounded and we gave a sufficient condition for an H-stable vector bundle
of rank 2 on a rational surface to be ample. In this paper, we shall
extend the results of [1] to the case of higher rank.

Let &k be an algebraically closed field of arbitrary characteristic.
Throughout this paper, the ground field £ will be fixed.

In §1, we shall prove the following;

THEOREM 1. Let X be the projective plane P* or the rational ruled
surface ¥,. For a divisor C, on X and integers C,,r (= 2), put F =
{E; simple vector bundle of rank r on X with Cy(E) = C, for i =1,2},
then & is bounded.

For a vector bundle E of rank » on a non-singular projective sur-
face, define an integer 4(E) to be (r — 1)C(E)? — 2rCy(E). It is easy to
see that —A4(F) is the second Chern class of End (£). Hence if L is a
line bundle, then 4(F ® L) = A(E). Let H be a hyperplane of P2 For
a vector bundle E of rank r on P? there exists uniquely a line bundle
L on P? such that C.(EF ® L) = aH with —7r+1<a¢=<0. Put a(F) = a.
In §2, we shall prove the following;

THEOREM 2. Let E be an H-stable wvector bundle of rank r on P2
If (Ci(E),H)= —1d(E) + (@ + 212 —a — r)/2 then E is ample where
a = a(f).

Let X, = P(Op.(—n) @ Op,) be a rational ruled surface and let M be
a minimal section of 3, and N be a fibre of 2,. The divisor class group
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of Y, is generated by the classes of M and N. For a couple of integers
(«, B), we denote a(M + nN) + gN by H,,. H,, is ample if and only if
«>0,5>0. For a vector bundle E of rank r on X,, there exists unique-
ly a line bundle L on %, such that C(F ® L) = aM + bN with —r + 1< a,
b<0. Put o(F) =a and b(E) =b. In §3, we shall prove the follow-
ing;

THEOREM 3. Let E be an H, stable vector bundle of rank r on 2,
(@>0,8>0). If (C(E),N)= —3}4(E) + c(a,b,7,1) + o and (C(E), M) =
—34(E) + c(a,b,r,n) —an + b then E is ample where a = a(E), b = b(E)
and c(a,b,r,n) = tan(a + r) — r(@ + b + ab + r — 2).

In §4, we shall show that Theorem 2 is best possible in some cases.
If £ is an H-stable vector bundle of rank » on P?* with C,(F) = +H,
then C,(E) = r — 1 (Lemma 4.1). Conversely for any couple of integers
(r,n) such that n = r — 1 = 1, there is an H-stable vector bundle E of
rank r on P? with C(F) = H and C,(E) = n such that E(t) is ample if
and only if E(f) satisfies the condition of Theorem 2 and E*(t) is ample
if and only if E*(f) satisfies the condition of Theorem 2 (Theorem 4).

§1. Simple vector bundles

Let S be a non-singular projective variety defined over k© and E be
a vector bundle (i.e. a locally free sheaf of finite rank) on S.

DEFINITION. FE is called simple if any global endomorphism of FE
is constant i.e. H(S, End (F)) = k.

DEFINITION. A set & of vector bundles on S is bounded if there
are an algebraic k-scheme T and a vector bundle V on T X S such that
each F in & is isomorphic to V, = V|,,s for some closed point ¢ in T.

Let X be the projective plane P? or a rational ruled surface X, =
POp(—n) P Op) (n = 0). Let M be a minimal section of 2, and N be
a fibre of Y,. By the same symbol H, we denote a hyperplane of P?
when X =P%,, H,;, = (M + nN) + N when X =25,. H is a very ample
divisor on X and a general member of the complete linear system |H|
is isomorphic to the projective line P'. If K, is the canonical divisor
on X, then Ky ~ —3H when X =P, Ky ~ —2M — (n 4+ 2)N when X =7,
For a divisor D on X and a coherent sheaf E on X, we denote £ ®Q Ox(D)
by ED), E ® Ox(mH) by E(m) and the dual sheaf Hom,, (F,Ox) of E
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by E*. The aim of this section is;

THEOREM 1. Let X be P? or 2,. For a divisor C; on X and inte-
gers Cyr (= 2), put F = {E; simple vector bundle of rank r on X with
C,(E) = C; for i =1,2} then &F is bounded.

Proof. For an integer d, let #, be the subset of # which consists
of F in &% such that HX, E(d)) = (0) and HX, E(d + 1)) # (0), then
F = U F,. We separate the proof into two steps;

(a) For almost all d, &F, is empty,

(b) %, is bounded for all d.

If (a) and (b) are proved then & is considered as a finite union of bounded
families and so & is bounded. Before proving (a) and (b), we introduce
one more notation. For E in %, let P be the numerical polynomial
defined by P(m) = y(X, E(m)) = Z(—1)'h¥(X, E(m)) where hY(X,E(m)) =
dim, HY(X, E(m)). Since H is ample and X is a surface, P is of degree
two and P(m) — oo if m — +oco. P is independent from a choice of E
in &,

(a) We shall prove that if #,; is not empty then P(d) < 0. Hence
such d’s are finite. Assume that &, is not empty. Let E be an element
of %, then HYX,E(d)) = (0) and H'X,E(d + 1)) = (0). We want to
prove that HX, E(d)) = (0). If this is proved, then P(d) = —r'(X, E(d))
< 0. The dual of H¥(X, E(d)) is isomorphic to HY(X, E(d)* ® Ox(Kx)) (Serre
duality) and E(d)*Q Ox(Ky) = E(d 4+ 1)*® Ox(Ky + H). Since —Ky — H
is linearly equivalent to an effective divisor, H(X, E(d)* ® Ox(Kx) C
HYX,E(d + 1)*). Therefore it suffices to prove that H'(X, E(d + 1)*) =
(0). This follows from;

LEMMA 1.1. ((4) Proposition 1.) Let E’ be a vector bundle on a
non-singular variety S defined over k. If H(S,E’) + (0), H'(S, E'*) == (0)
and E’ is not a line bundle than E’ is not simple.

Since E is simple and H%X, E(d + 1)) # (0), H (X, (X, E(d + 1)*) = (0)
by Lemma 1.1.

(b) By a theorem of Kleiman ((2) Theorem 1.138), it is sufficient to
show that there are integers m,, m, such that for any E in F,(d), 1)
X, E) <m, il) k4, E|) < m, for a general member ¢ in |[H| where
Fq4d) ={E(d); E in F,;. By the definition of #,, m, = 0 satisfies i).
We now show ii). For a general member ¢ in |H| and E in % ,(d),
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there is a long exact sequence of cohomologies;
- — HX,E) - H'(,E|) - H(X,E(-1) — ---
Since HY(X, E) = (0),
e, El) = X, E(-D) . (1)
If X = P? then h¥(P?, E(—1)) = h'(P% E(—1)* Q@ Opi(Kp,)) = R (P?, EQ1)*
® Op(—1)). Since AP}, EQ)) #+ 0 and F is simple, A%(P% E(1)*) = 0 by
Lemma 1.1. Hence h,(P?, E(—1)) = 0 and also #°(P% E(—1)) = 0. There-
fore R'(P? E(—1)) = —P(d—1). This and (1) show that m, = —P(d — 1)

satisfies ii) when X = P?%. Now assume X = 2,. Put F = EQQ)* and
consider the following long exact sequence of cohomologies;

° "“’Ho(z'n,F) _')HO(NyF’N)‘""Hl(Zn) F(—N))"‘) A

Since H'(X,, F) = (0), we have h'(N, Fly) £ h(X,, F(—N)). On the other
hand, R*2,, F(—N)) = k(2,, F(-N)*® 0;,(K;,)) = k2, E® 0;,(—M))
=0 and »'(Z,, F(—N)) = 0, therefore r'(N, F|y) = —x(2,, F(—N)). Note
that y(2,, F(—N)) is dependent only on & and d. Since N is a fibre
of 3,, F(mN)|y = F|y for any integer m. Now consider the following
long exact sequences of cohomologies;

0— H(,, F((m — 1)N)) - H(ZY,, F(mN)) — H(N, F(mN)|y) — - -
for m =0, .-.,n, then we have;

R(Z,, F(nN)) < W(Z,, F((n — 1N)) + KN, F(uN)|y)

= (&, F((n — DN)) + BN, Fly) (2)

S nh'(N, Fly) = —ny(3,, F(—N)) .

Since A'(S,, E(—1)) =0 and A2, E(—1) =r'C, E(—-1D*® 0;,(K;)) =
(2. EQ)* ® Oy, (0N)) = h°(2y, F(uN)), B'(2,, E(—1)) = —P(d — 1) + (%,
F(®nN)). Therefore, (1) and (2) show that m,= —P(d — 1) — ny(3,,
F(—N)) satisfies ii) when X = J%,.

§2. H-stable vector bundles on P’

Let E be a vector bundle on a non-singular projective surface S
defined over k£ and H be an ample divisor on S.

DEFINITION. FE is H-stable if for every non-zero coherent subsheaf
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F of E of rank < »(E),(Cy(F),H)/r(F) < (C(E),H)/r(E) where r(F) is
the rank of F'.

We refer to [5] for basic properties of H-stable vector bundles. For
a vector bundle E on S, put 4(FE) = (r — 1)C(E)?* — 2rC(F). This inte-
ger is equal to —C,(End E). If F is a vector bundle of rank » on P?
then there exists uniquely a line bundle L on P? such that C.(F ® L) =
aH with —r +1 < a <0, where H is a hyperplane of P:.. Put a(E) = a.
The aim of this section is;

THEOREM 2. Let E be an H-stable vector bundle of rank r on P2
If (C(E),H)= —34(FE) + (@ + 2r)2 — a — 1r)/2 then E is ample where
a = a(K).

In order to prove Theorem 2, we need the following lemma.

LEMMA 2.1. Let E be an H-stable vector bundle of rank r on P*
such that C(E) = aH with a = a(F) then;

@ »PLE) =0,

(2 h(P,E@m)) =0 for any m = 0,

3) »(P,EMm)) < hPLE(m — 1)) for any m = 1,

@ If (P E(m) = h'(P% E(m — 1)) for some m = 1,
then E(m) is generated by its global sections.

Proof. (1) If h°(P% E) # 0 then E contains Op, as a subsheaf but
(Ci(E),H) =a <£0. Since E is H-stable, this cannot occur. (2) Since
E* is also H-stable and (C(E(m)*® Op.(—~3)),H) = —a —r(m +3) <0
for any m = 0, h(P* E(m)) = 0 for any m = 0 by the Serre duality. (3)
Let F,, be the smallest subsheaf of E(m) such that H'(P,F,) =
H'(P?, E(m)) and E(m)/F,, is torsion free. Note that H'(P% F,(—1)) =
H (P, E(m — 1)). Let ¢ be a general member of |H| such that F,|, is
locally free on ¢ and 0> F (—-1)—F,— F,|,— 0 is exact. Since F,, is
generically generated by its global sections and ¢ = P!, F',,|, is generated
by its global sections and R'(4, F,|) = 0 for a suitable choice of 4. Con-
sidering the following long exact sequence of cohomologies;

- — H'(P%, F,(~1)) - H(P*,F,) > H(, Fpl)
- Hz(PZ, Fm(’"‘]-)) - HZ(PZ9 Fm) - 0

we have h'(P%, F',) < h'(P% F,,(—1)) and h¥(P F,,) = hA(P% F,(—1)). Hence
we have;
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w(P?, E(m)) — h(P*, E(m — 1))
= W(P*, E(m)) — B(P*, E(m — 1)) — (x(P*, E(m)) — x(P*, E(m — 1)))
= (P, Fr) — (P, Fo(—1)) — (r + (C(E(m)), H))
= W'(P*, Fy) — W(P*, Fp(—1)) + ((P*, F)
— 2(P%, Fp(=1))) — (v + (C((E(m)), H))
= (0 + (C(Fp), H)) — (r + (C((E(m)), H))

where 7 = rank of F,,. Since E is H-stable and (C,(EF(m)),H) =a +
rm >0, (C,(F,), H) < (C,(E(m)), H) therefore h'(P?, E(m)) < h'(P? E(m — 1)).
@ If r(P% E(m)) = (P, E(m — 1)) then F,, = E(m) by the above in-
equality. Hence for a general member ¢ in |H|, E(m)|, is generated by
its global sections and h'(4, E(m)|,) = 0. Consider the following long exact
sequence of cohomologies;

-+« — H(P?, E(m)) — H'(¢4, E(m)|,)
— H'(P*, E(m — 1)) — H'(P*, E(m)) — H'(¢, E(m)|) — - - - .

Since n'(¢, E(m)|) = (0) and h'(P?% E(m)) = h'(P? E(m — 1)), H(P?, E(m))
— H(¢, E(m)|)) is surjective. Hence for any closed point « in 4,
H'(P?, E(m)) — E(m) @ k(x) is surjective. On the other hand for any
closed point ¥ in X — ¢, take a member ¢’ in |H| such that ¢’ contains
y and take xz in ¢ N 4. Now consider the following commutative dia-
gram;

H'(P?, E(m)) ———> E(m) @ k()

\ o

H'(¢', E(m)|,)

Since H'(P?, E(m)) — E(m) ® k(x) is surjective, H'(¢', E(m)|,) — E(m) ® k(z)
is surjective therefore E(m)|, is generated by its global sections and
¢, E(m)|,) = 0. As the above argument for E(m)|, we have that
H(P?, E(m)) — E(m) ® k(y) is surjective. Hence E(m) is generated by its
global sections by Nakayama’s lemma.

COROLLARY 2.2. Let E be as in Lemma 2.1 then E(—y(P%, E) + 2)
s ample.

Proof. h'(P,E) = —y(P,E) by Lemma 2.1 (1) and (2). Put ¢ =
—x(P% E), then by Lemma 2.1 (3) we have;
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¢c=hP,E) =z WPL,EQ) = --- = W(PLE@) Z WP,E(c+1)=0.

Hence there must be an integer m (1 £ m < ¢ + 1) such that h'(P? E(m))
= h(P? E(m — 1)). Hence F(m) is generated by its global sections by
Lemma 2.1 (4) therefore E(—yx(P% E) + 2) is ample.

Proof of Theorem 2. Let E be as in Theorem 2, then there is a
line bnndle L on P? such that for /! = EQ L, C,(F") = aH. It is easily
calculated that (C.(E'(—x(P%, E") +2)), H) = —34FE) + (¢ + 22 —a —1)/2.
For E” = E'(—yx(P%, E’) + 2), there is a line bundle L’ on P* such that
E =FE"®QL. By the condition of Theorem 2, we have (C,(E"” ® L), H)
> (C(E'),H). Hence (C(L),H) = 0. This is equivalent to that L’ is
generated by its global sections. Since E” is ample by Corollary 2.2,
E =FE"QL is ample.

§3. H, ;stable vector bundles on Y,

Let 2, = P(Op,(—n) ® Op,) (n = 1) be a rational ruled surface and let
M be a minimal section of X, and N be a fibre of Y,. The divisor class
group of X, is generated by the classes of M and N. For a couple of
integers («, ), we denote «(M + nN) + BN by H,, The intersection
numbers (H,,, N) and (H,, M) are « and g respectively. H,, is ample
if and only if « > 0, $> 0 and the complete linear system |H,,| is base
point free if and only if « = 0,8 =0 ((1) Lemma (3.1)). For a vector
bundle E of rank » on 2X,, there exists uniquely a line bundle L on %,
such that C(F® L) = aM + BN with —» +1=<40a,b6 0. Put a(F) =0
and b(E) = b. The aim of this section is;

THEOREM 3. Let E be an H, ,-stable vector bundle of rank r on %,
(@>0,>0). If (C(E),N)= —34(E) + c(a, b,7,7) + a and (C(E), M) =
—L1A(E) + c¢(a, b, r,n) — an + b then E is ample where a = a(E), b = b(E)
and c(a,b,r,n) = tan@ + 1) — (e + b + ab + r — 2).

In order to prove Theorem 3, we need some lemmas.

LEMMA 3.1. Let E be an H, ,-stable vector bundle of rank r on %,
with C(F) = aM + bN such that o = a(E), b = b(F), then;

O rE,E) =0

2) &, EWD) =0 for any effective divisor D on 2,

Proof. The proof is similar to that of Lemma 2.1 (1), (2).
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LEMMA 3.2. Let E be an H, ;-stable vector bundle of rank r on 3,
with Cy(FE) = aM + bN such that a = a(F), b = b(E) and let F be the
smallest subsheaf of E(H,,) such that H'(Y,,F)= H'X,, E(H,)) and
E(H,)/F is torsion free, then;

@) if v = rank of F <r then W, EH,,)) < h(Z,, E) or
W(Z,, EH, ) < W(E., E),

@) if v =r (i.e. E(H,,)) is generically generated by its global sec-
tions) then W(2,, E(H,)) < W2, E) and if h(2,, E(H, ) = ', E) then
E)H,)) is generated by its global sections.

Proof. (1) Put C(E(H,)) =uM + vN and C(F) =4'M + v'N, then
by the stability of £ we have;

gy + av’ < Butav
+ r

Since « > 0,>0,u>0,v>0 and " <r, we have &' <u or v <.
We want to prove that (i) if «' <wu then r'(Z,, E(H,,) < h'(Z,, E) (i) if
v’ < v then R'S,,E(H,,)) < h'(Z,, E).

(i) Assume % <wu. Let ¢ be a general member of |H,,| such that
F|, is locally free and 0 — F(—H,,)— F(—H, ) — F(—H,y|,— 0 is exact.
Since ¢ is a fibre of 3,, £ is isomorphic to the projective line and since
F is generically generated by its global sections, F'|, is generated by its
global sections for a suitable choice of 4. The intersection number
(—H,,, ¢ is —1 so we have h'(4, F(—H,,)|,) = 0 for a suitable choice of
¢. Considering the following long exact sequence of cohomologies;

- — H'(S,, F(—H,)) — H'(Z,, F(—H,,)) - H'(4, F(—H,,)|)
— HYZ,, F(—H,,)) — H(Z,, F(—H,)) — 0

we have R'(3,, F(—H,y)) < h'(2,, F(—H,))) and hr*(Z,, F(—H,)) =
n(2,,F(—H,)). Note that r’(2,, E(H,,))) = A" (2,, F(—H,y) and A2, E)
= h'(2,, F(—H,,)), hence we have;

(2., E(H,,)) — h'(2,, B)
= K(3,, EH,,) — B2, B) — (24, E(H,,)) — (2, E))
= kN2, F(—H,)) — (2., F(—H,,)) — (r + (C(E(H,,)), H,,))
= (2., F(—H,y) — W2, F(—H,,)) + (2, F(—H,,))
— 1 (Z F(—H, ) — u
v —-u<0.



RATIONAL SURFACE 85

(ii) Assume v’ < v. A general member ¢ of |H,,| is a section of
2, 80 £ is isomorphic to the projective line and (—H,;, ) = —1. Hence
., E(H, ) < h'(2,, E) is similarly obtained as above.

(2) The proof is similar to that of Lemma 2.1 (3), (4).

COROLLARY 3.3. Let E be asin Lemma 3.1, then E((—x(2,, E) + 2)H, )
s ample.

Proof. h(2,,E)= —yxCZ,, E) by Lemma 3.1. Put ¢= —y(,, E).
By Lemma 3.2 (1), there are integers »p = 0, ¢ = 0 such that for E’' =
EH, ), W2, E)<c—(+ q and E’'(H,, is generically generated by
its global sections. Put ¢’ = r'(2,, E’) then by Lemma 3.2 (2) we have;

¢ =hm2,E)z W, EH,)) = -
= W&, E'(CH,)) = W2, B'(¢' + DH,)) 2 0.

Hence there must be an integer m 1 <m < ¢’ + 1) such that h'(Y,,
E'((m — 1DH, ) = (2, E'(mH,;)). Hence by Lemma 3.2 (2), E'(mH,,)
is generated by its global sections, therefore E'((¢’ + 2)H,, is ample.
On the other hand E((c + 2)H,,) = E'((¢’ + 2)H,,) ® 05, (Hy,, + (c— (@ + @)
—c¢)H, ) and ¢ — (» + @ — ¢ =0, so E((c + 2)H,,) is ample.

Proof of Theorem 3. Let E be as in Theorem 3, then there is a
line bundle L on X, such that for B/ = EQ L, C\(E') = aM + bN. 1t is
easily calculated that for E” = E'((—x(2.,E") + 2)H,)), (¢,(E"),N) =
—314(E) + c¢(a, b, r,n) + @ and (Cy(E"), M) = —14(E) + c(a, b, r,n) —an + b.
There are integers p, ¢ such that F = E”(H,,). By the condition of
Theorem 3, we have (C(E"(H, ), N) = (C(E"),N) and (C\(E"(H,,,), M)
= (C(E"),M). Hence (H,,N)=p=0 and (H,,,M)=q=0. This is
equivalent to that O; (H,, is generated by its global sections. Since
E” is ample by Corollary 3.5, £ = E"(H,,,) is ample.

§4. Examples of H-stable vector bundles on P*

In this section we shall show that Theorem 2 is best possible when
o= —r+1or —1. Let H be a hyperplane of P°. We begin with a
simple lemma.

LEMMA 4.1. Let E be an H-stable vector bundle of rank r on P
If C,(E) =H or —H then C,FE)=r—1.

Proof. Since C(E*) = —C(F) and C,(E*) = C,(H), we may assume
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C(F) = —H. By Lemma 2.1 1), (2), W(P%,E) = (P, E)=0. Hence
—h(PLE) = y(PLE) =7+ (C(E),3H) /2 + (C(E) — 2C(E) /2 =1 — 1 —
C,(E) by the Riemann-Roch theorem. Therefore C,(E) = r — 1.

The following lemma is due to Maruyama ((8) Theorem 4.6).

LEMMA 4.2. Let ¢ be a line on P? and n =1 be an integer, then
there is an H-stable vector bundle of rank 2 on P? such that C,(E) = H,
C(E)=n and E|, = O(—n + 1) ® O,(n) where Ofn) is the line bundle
on ¢ with deg (0,(n)) = n.

LEMMA 4.3. Let E be an H-stable vector bundle of rank r on P?
with C(E) = H. If there is a short exact sequence of vector bundles;

0-0,—-E —-FE—0 *)
and this is not split then E’' is H-stable.

Proof. Let F' be a non-trivial subsheaf of E’ such that the rank
of F<7+1 and E'/F is torsion free. Since C,(£’) = H, it is sufficient
to show that (C,(F),H) <0. Put L = F N Op, and F’ be the image of F
in E, then there is a short exact sequence 0 — L — F — F' — 0. Since
Op. and E are H-stable, (C,(L), H) £ 0 and (C,(F"), H) < 1 hence (C,(F), H)
< 1. Therefore it is sufficient to show that (C.(F),H) = 1. If it were
happened then (C,(L),H) = 0 and (C,(F"), H) = 1. This is possible if and
only if L = (0) and dim supp (E'/F’) <0, by the H-stability of F. Since
(*) is not split, E/F’ # (0). There is a short exact sequence 0 — Op, —
E'|F - E[/F'— 0. But H'P%,(E/F)m)) # (0) and H'(P? Op(m)) = (0)
for all m and since E’/F is torsion free, H'(P*E’/F(m)) = (0) for m < 0.
This is a contradiction.

The aim of this section is the following theorem which shows that
the converse of Lemma 4.1 and that Theorem 2 is best possible when
a=—r-+1or —1.

THEOREM 4. Put A ={(r,m);n=r—1=1}. Let ¢ be a line on P
Then there is a set S = {E, »}r.nmea Of vector bundles on P* which satis-
fies the following conditions;

(1) S consists of H-stable vector bundles,

@) the rank of K, is r,Cy(E, ) = H and C ¥, ) =mn for all
(r,m)e A,

(3) thereis a short exact sequence 0 — Op, —E , y —> E ;0 — 0 and
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this is not split,
@ WEP,Ei,) =n—r+1,

B) Euunl=0(—n+1)@0(n -1+ 2) (JBrf 0,1) where 22 o) =
oM@ ---P0,Q) (r — 2 times),

6) HY(P,E%,) = H,EE,,,) canonically,

(M E, @ is ample if and only if E, . () satisfies the condition
of Theorem 2,

@) E,@) is ample if and only if EF . (t) satisfies the condition
of Theorem 2.

Proof. The above conditions are not independent each other. In
fact;

(i) M, and 3) for K ,_,,,, > (1) for E ,, by Lemma 4.3,

(ii) (2) and ) for E,_ ., > (2) for E ,,

({ii)) ) and (@)= (4) by the Riemann-Roch theorem and Lemma 2.1
1), @),

(iv) 1),(@),d) and (5) = (6),

(v) 1),@) and 6= (D),

(vi) @D),(2) and 6) = 8).

(v) and (vi) are easily checked by considering E, ,,®)|, and E ()],
respectively. We now show (iv). Consider the following long exact
sequence of cohomologies;

o= H'(P EY ) — H' (G, B ) — H (PP Ef o (—1) — -

Since (C,\(E,,,(—2)),H) <0 by (), H(P*, E¥% ,,(—1)) = (0) by (1). More-
over WP, E%,)=n—7r+1 by (4) and R4, E% ) =n —7 + 1 by (5)
hence we have H'(P*, E} ) = H'(4, Ef,,|,) canonically.

By Lemma 4.2, for any n = 1, there is a vector bundle K, ,, such
that ¥, ., satisfies (1), (2) and (5). Lastly we constant E ., which satis-
fies (3) and (5) by (6) and (6) for K _,,. There is a short exact se-
quence;

050,— 01+ DDOM -7 +2@F ® 0L = Epyrml— 0 (D

of vector bundles on ¢ by (6) for K., ,. &) has an obstruction in
HY4,E%_, ) hence there is a short exact sequence 0 — Op, — E, ., —
E 1, — 0 such that its restriction to ¢ is isomorphic to () by (6) for
E 15 This short exact sequence is not split and E, ,, satisfies (5) by
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(). Al these together we have constructed S = {E, »,}r.nyc« Which satis-
fies (1)-(8).
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