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HOLOMORPHIC MAPPINGS INTO A COMPACT QUOTIENT

OF SYMMETRIC BOUNDED DOMAIN

TOSHIKAZU SUNADA

1. Introduction

In this paper, we shall be concerned with the finiteness property of
certain holomorphic mappings into a compact quotient of symmetric
bounded domain.

Let S be a symmetric bounded domain in n-dimensional complex
Euclidean space Cn and Γ\S> be a compact quotient of S) by a torsion
free discrete subgroup Γ of automorphism group of S). Further, we
denote by (̂S)) the maximum value of dimension of proper boundary
component of S), which is less than n (=dim©). Then, the exact
statement of our assertion is the following:

THEOREM A. Let M be a compact Kdhler manifold. Then there
are only finite number of holomorphic mappings of M into Γ\S) whose
rankl) are greater than ί(S). In particular, the set of surjective holo-
morphic mappings is finite.

Remark. Notice that the compact quotient Γ\S) is of general type.
Hence, in the case of compact quotient Theorem A gives a generalization
of a result of S. Kobayashi and T. Ochiai [6] which asserts the finite-
ness of surjective holomorphic mappings of M onto a compact complex
space of general type.

For convenience' sake, we give a complete list of £(&) in each ir-
reducible case. For our notation, we refer to S. Helgason [3].
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1) For a holomorphic mapping φ: M-+Γ\®, rank of φ is defined by-
sup (dim s M—dim*? φ~\φ(z))),
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Domain

I SU(mf7i)/S(UmxUn)
II Sp(n,R)/U(n)
III SO*(2n)/U(n)
IV SO0(n,2)/SO(n)χSO(2)
V E6/SO(10)'SO(2)
VI E7/E6'SO{2)

Dimension

mxn

n(n + l)/2

w(w-l)/2

16
27

(m-iχn-1)
n(w-l)/2

(w-2Xn-3)/2
1
1
8

From this list, we have

COROLLARY. Let 2) &β the n-dimensional ball (namely 2) = SU(1, n)
/SCC?! x Un)). Then, there are only finite number of holomorphic map-
pings of M into JΓ\S) except for constant ones.

We recall that the set of all holomorphic mappings of M into
another complex space N, which is denoted by Hoi (M, N) in this paper,
has a complex analytic space structure with respect to the compact open
topology (see A. Douady [1]). Generally, it has many components and
is not globally of finite dimension. However, in the course of our
proof of Theorem A, we are able to show the following:

THEOREM B. dim Hoi (M, Γ\2)) = dim £>. More precisely, for any
non constant mapping φ e Hoi (M, Γ\S)), dimp Hoi (M, Γ\S)) ^

Remark. Theorem B holds for any torsion free discrete quotient
/1\2) which is not necessarily compact.

2. Reduction to the linearized problem

We always assume that M is a compact Kahler manifold.
For a complex manifold N, TN denotes the holomorphic tangent

bundle of N. Let φ~ιTN be the induced holomorphic vector bundle on
M by a holomorphic mapping φ of M into N, H°(M, φ~xTN) the space of
holomorphic cross sections of φ~ιTN which is a finite dimensional vector
space over C.

A key lemma of our argument is the following which reduces our
problem to linearized one.

LEMMA 1. dim,, Hoi (M, N) ^ dim H°(M, φ~ιTN).

Proof. See M. Namba [7]. Roughly speaking, it uses the fact that
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Hol (M, N) is realized as a solution space of certain overdetermined non-
linear elliptic equation defined on the space of C°°-mappings of M into
N, as well as an implicit function theorem of infinite dimensional case.
In fact, a germ of Hol (M, N) at φ is realized as a locally closed an-
alytic subset of H\M,φ-ιTN).

Now, in view of Lemma 1, it is enough to show:

PROPOSITION 1. 1) dim H°(M, ^"1Γ(Γ\S))) = 0 provided that

2) dimflro(M,^1^(^τ\®)) ^ -ί(S)) provided that rankp > 0.

Proof of this proposition will be carried out in later sections. Here
we indicate how Proposition 1 implies our theorems: In fact, part 2)
of Proposition 1 and Lemma 1 imply that the set {φ e Hol (M, Γ\S)) rank φ
> (̂S))} is discrete in Hol(M,Γ\S)). Since Γ\S) is compact hyperbolic
Hol(M,Γ\2)) is compact (see S. Kobayashi [5]). So the set defined as
above has only finite elements, which proves Theorem A. Furthermore,
notice that φ is non constant if and only if rank#> > 0. Thus, the second
statement of Proposition 1 implies Theorem B.

3. Holomorphic bisectional curvature

We return to the general situation. In order to estimate dim H\M,φ~ιTN)
we use the fact that H\M,φ~ιTN) consists of horizontal cross sections
with respect to a connection of φ~ιTN. For this purpose, we review
the now-standard basic material of hermitian geometry. We make, for
convenience in this section, the assumption that N has a Kahler metric
g, which is of course satisfied in our case N = Γ\S).

We fix a holomorphic mapping φ e Hol (M, N) and for simplicity in
notation let us write ξ = φ~ιTN, which is a holomorphic vector bundle
on M of rankn such that the fiber ξz at zeM is Tφ(z)N. Let h be an
induced hermitian metric of ξ defined by hz{s, t) = gφ{z)(s, t) for s,teξz

(=TφWN). We notice that

is a holomorphic local frame of ξ, where (wa) = (w\ , wn) is the local

coordinate of 2V.
Here we recall the basic local formulas of hermitian differential
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geometry (refer to V. K. Patodi [8]).
With respect to the local frame (sα), we put

Kb = h(sa, sb)

and let (hab) be the inverse matrix of (hab) so that 2 hacheb = δζ (δ% = 1
or 0 according as a = b or not). Then, the hermitian metric of ξ gives
rise to a canonical connection, which is given by

Σ
α) = 0 ,

where ^ α = Σ -^^hcb and (2α) = (z1, , zm) is the local coordinate of
c dza

M.
Let X be the curvature tensor associated with this hermitian con-

nection. The component Z*αj8 of K are defined by

Then

In the case of hermitian vector bundle TN with metric g, as a
rule, Γ and JB will denote the connection and curvature tensor instead
of I and K. Each component is represented by the local frame

The Kahler property of # is equivalent to the following relation of sym-
metry :

Γα IΠa
be — ι cb

LEMMA 2. Lei X, Y be holomorphic tangent vector at z and s e ξz.
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Then we have the following relation;

163

Proof. By the definition of h, it follows that

Σ dza dza

dza dwe

Thus

KLM =

" α c 5 >

where we use the fact φ is holomorphic. This equality proves Lemma 2.
Finally, we put

R(s, t) = g(R(s, s)ί, t) for s,teTN ,

which is what is called the holomorphic bisectional curvature determin-
ed by s and t (cf. [2]). We notice that

g(R(s, ϊ)u, v) =

and the Kahler property means R(s, t) — R(t, s). If we set

then

where s =
dW , « = Σ ta

dwa
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4. Laplacian

We introduce a Kahler metric g' on M> and let dg' be the canonical

volume element associated with gf. Then, the Laplacian with coefficient

in ξ is as usual defined by Π = 9*3: C°°(ξ) -»C°°(ξ) where 9* denotes the

formal adjoint of first exterior operator 5: C°°(f) -> C°°(Γ*M ® f) with

respect to the metrices h, g'. As is well-known, the following are

equivalent: For s e C°°(ξ)

i) Ώs = 0, namely s is harmonic,

ϋ) 3s = 0, namely * is holomorphic,

iii) FxS = 0 for any Z e

iv) f

Moreover, we establish the following lemma as for an expression of the

Laplacian in terms of connection and curvature.

LEMMA 3. Let s be a C°°-section of ξ. Then

-,-JL). .

Proof. We recall the Laplacian • is given by

(see V. K. Patodi [8]). Thus, via the commutation formula (FβFa—FaFβ)s

= —K[ , )s, we have Lemma 3.

For s e C°°(f), we define a hermitian form Rs on N by

Rs(u, ϋ) = g(R(sf s)u, v) .

Then we have the following integral formula which plays the essential

role in our argument.

LEMMA 4. ί h(Πs,s)dg'=\ Σ>9'βah{Fas,Fβs)dg' - f Ύrφ*R8dg',
J M J M J M

where Ύv(p*R8 denotes the trace of a hermitian form <p*Rs on M with

respect to a hermitian metric g'.

Proof. By the definition of the hermitian connection, we have for
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3

Thus

-his, t) = h(Fas, t) + h(s, Fat) ,

h(FβFas,s) = -

Then we shall show that

f
For, putting ω = Σ fe(Fαs, s)cteα e C^ίΓ^M), we find

where d: C°°(M) -»C°°(T*M) is the exterior differential with respect to z9

and 3* is the adjoint of 3. So

f Σ g'βa4-rhW«s> s > ^ / = ί 9*cy^/ = ί ff^
JM dZβ JM JM

Let us now pass to the proof of Lemma.

f KΠs, s)dg> =-\ h(Σ 9fβaV,Fas + Σ g'βaκ(^->Sτ)s,s)dg>
JM JM \ \ dza dzβ / /

= - f Σ9rβaWίFas,s)dg'- ί χg>»h(κ(-J-,ΊjL)8,8)dg'
JM JM \ \ dza dzβ/ /

Here we have used above identity and Lemma 2. Since the integrand
of the second term of the last quantity is just Tr^*β s , we have even-
tually Lemma 4.

Now we put the following assumption, which will be later establish-
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ed in the case of discrete quotient Γ\® with a natural Kahler metric.

(*) Rs(t) = R(s91) ^ 0 for any s,teTN .

In such circumstance, we have following important results.

LEMMA 5. // Kahler manifold (N,g) satisfies (*), then
ϊ) C°°-cross section s of ξ(=φ~1TN) belongs to H°(M,ξ) if and only if s
is horizontal, that is to say, Vzs = F%s = 0 for any X e TM,
ii) for any zeM, the mapping τz: H°(M, ξ) —• TfWN defined by the
restriction s »-> s(z) is injective,
iii) Im τ2 is contained in the vector space {u e Tφ(z)N R(s, t)u = 0 for
any s, t e Im φ#β}.

Proof. By Lemma 4, for seH°(M,ξ) we have

0 = f Σi9
ίβaWas9Pβs)dg/ +[ -Trφ*RJg'.

J M J M

From our assumption, we obtain —Ύvφ*Rs ^ 0, so — iY(p*Rsdg' ^ 0.

On the other hand, Y\ g/βah(Fas, Fβs)dg/ > 0 since the integrand is a

non negative function. Thus, if s is a holomorphic section, then neces-
sarily

f Σ9'β

SO

Σ 9fβaW«s, Fβs) = 0 o n i ί .

Thus we have: Fas = 0 for any a. This proves i) (converse is clear),
ii) follows immediately from the horizontalness of seH°(M,ξ).

To prove iii), we notice that

(F β 8 ) ζ + Σ
uZ

Differentiating this equality by zβ and using the fact that s is holomor-

phic, we have
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This completes the proof of iii).

5. Holomorphic mappings into a Kahler manifold with the property (*)

Although the present work is devoted primarily to the holomorphic

mappings into a compact quotient of symmetric bounded domain, in

this section we will consider more general case.

Throughout this section we assume again that M is a compact

Kahler manifold and N is a Kahler manifold. We notice that for a

holomorphic mapping φ of M into N

rank φ = max rank φ*z ,
ZBM

where φ#g: TZM —• TφWN denotes the holomorphic differential of φ at z.

We set: for a vector subspace Vp of TPN

V * = {s e TPN R(u, v)s = 0 for any u,ve Vp} .

DEFINITION. For k = 0,1, , n = dim N and p e N, let

£p(k): = max dim F*

where the maximum is over all A -dimensional subspace Vp of TPN.

Furthermore we set

£(k) = max £p(k) .

We also put

Holfc (M, N) = {φ e Hoi (M, N) rank φ^k} .

Then Hoi* (M, ΛΓ) is open in Hoi (M, N) and

Hoi. (M, 2V) c Hol^CM, N) c . . . c Hol0 (AT, N) = Hoi (M, N) .

We notice that Hoi (M, 2V) contains the set of constant mappings

which is a connected component and identified with N. We denote by

Ήol (M,N)\N the complement of N in Hoi (AT, N). Then it is obvious

that Hoi! (M, 2V) = Hoi (M,

PROPOSITION 2. // (Nfg) satisfies (*),

dimHol f c(M,iV)^

Moreover, if R(s, s) Φ 0 /or s ^ 0,
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dim Holfc (M, N) ^ dim N - k .

Proof. For φ e Holft (M, JV), we choose a point z of M such that

fc ^ rank p = rank φ*z .

By Lemma 1, §2,

dim^ Hoi (Λf, 2V) ^ dim #° (M, f) .

On the other hand, by Lemma 5, §4, and the definition of £(Jc)

dim H°(M, ξ) = dim Im τ2 ^ dim (Im φ*z)* ^ £9ia)(k) ^ (̂fc) .

This proves the first statement. The second statement follows from the

fact that for any subspace Vp c TPN, 7* Π Vp = 0 (for, if s e 7* Π 7 P ,

then JF2(s, s) = g(R(s, s), s) = 0. This contradicts our assumption.)

Remark, i) R(s, s) is what is called the holomorphic sectional

curvature determined by s.

ii) If R(s,s)< — c < 0 for any unit vector s, then N is hyperbolic

(see S. Kobayashi [5].)

iii) Connecting with ii) of Lemma 5, §4, we are able to prove that

the set of holomorphic mappings of M into N with the property (*)

sending a given point zeM to SL given point w eN is discrete. More-

over, if N is complete hyperbolic, then it is finite.

PROPOSITION 3. // (N, g) satisfies (*) and R(s, s) Φ 0 for s ψ 0, then

the set of holomorphic mappings whose rank is equal to dim N is finite.

Proof. If there is a holomorphic mapping φ such that rank φ =

dim N9 then N is compact and φ(M) = N, whence we may assume N is

compact. By above remark N is hyperbolic. Thus it suffices to show

Holw (Λf, N) is discrete. But this is done in Proposition 2.

PROPOSITION 4. // N is compact and R(s, s) < 0 for any non zero

s, t e TN, then Hoi (M, N)\N is finite, namely there are only finite number

of holomorphic mappings of M into N except for constant ones.

Proof. This follows at once from the fact: £(1) = 0.

6. Review of symmetric bounded domain

According to Lemma 5, we are thus only concerned with the cur-
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vature tensor, now. In this section, we introduce in the usual way a
Kahler metric in 2) and Γ\2) which satisfies our assumption (*) of §4,
and give a brief review of some well-known facts related to boundary-
components of symmetric bounded domain. We refer to Helgason's
book [3] for details.

Let S be a symmetric bounded domain, and fix a point 0 e 2). Then
2) is a hermitian symmetric space of non compact type which is exactly
a homogeneous manifold G/K, where G is a connected non compact
semisimple Lie group and K is a maximal compact subgroup of G that
is given as isotropy group at 0. We denote by g a Lie algebra of G
and by ϊ the subalgebra of g corresponding to K. Let q = ϊ + p be a
Cartan decomposition of g and β the Killing form of g.

If 3 is a Cartan subalgebra of ϊ and hence also of g, then gc is a
Cartan subalgebra of gc (complexification of g). Δ will denote the root
system of gc with respect to $c. We may choose root vectors βα, ae Δ,
and elements ha of §c such that

[ea, e_a] = ha

and

a(hβ) = 2(a, β)(β, β)-' (a,βeΔ)

(, ) being the restriction of the Killing form to %c.
Identifying p with T02), we give a G-invariant hermitian (Kahler)

metric g on 2) in the usual way which coincides with restriction of
Killing form β at 0, and g allows one to define a Kahler metric g on
discrete quotient N = Γ\S>.

We notice that p has a natural complex structure / derived from
that of ΓQS) which we recognize by writing

p <g) c = £+ + jr, p± : ± Λ^Ί-eigen space of J ,

where :p+ is identified with the holomorphic tangent space Γ0S). Then

P + = Σ <r,

where J£ denotes the set of non compact positive roots with respect to
an ordering of Δ.

We shall now describe the curvature of 2) (or Γ\2)) in group theo-
retic terms.



170 TOSHIKAZU SUNADA

LEMMA 6. Let π: © —> Γ\^> be the natural projection, and R the
curvature tensor of Γ\2). Then, identifying Γ,(0)(/7\®) with p+, we have
the following relations.

i) Rπ(0)(s, ϊ)u = - [[s, i], w] for s,t9uep+

 9

ii) #ff(0)(s, t) = β([s, t], ΪMΪ) ^ 0,
iii) Rπi0)(s, s) = 0 if and only if s = 0.

Jn particular, (Γ\®, #) satisfies our assumption (*).

Proof. Part i) follows at once from the standard symmetric space
theory. For the second part, we recall the property of the Killing form:
namely

RπiO)(s,t) = β(-[s,s]t,t)

= β([s, t]s, ΐ)

= β([s,t],[s,t])

= ]8([β,ϊ],ϊi7a).

Since β is negative definite on ϊ and [s, ΐ] is contained in ϊc, we have
R(s, t) ̂  0. Next, we assume R(s, s) = 0 for s = Σ αOfβα € p+ (αα € C).
Then, as a result of ii) [s, s] = 0. But

[8, s] = E α*eα, Σ 3^e. J = Σ lαf Λ mod Σ fl*

Thus it is necessary that aa = 0 for all <x e J, and so s = 0. This proves
iii).

Now, we review the elementary properties of boundary components.
For this purpose, we first recall the Harish-Chandra realization of sym-
metric bounded domains.

Note that p* are commutative subalgebras of gc, which give us com-
plex analytic abelian subgroups of Gc

P+ = exp p+ , P~ = exp p~ .

It is well-known, as has been mentioned in Harish-Chandra [4], that the
mapping

η: p+ -> GC/KCP- by ηiv) = exp (v)KcP~

is a complex analytic diffeomorphism of p+ onto a dense open subset of
GC/KCP- that contains 2) = G/K c GC/KCP~. Thus S is canonically
embedded in p+ which is called the Harish-Chandra realization of S>.
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In what follows, we assume always that S c } ) + is the Harish-
Chandra realization. Let % denote the closure of £> in p+. Then, we
can endow % with an equivalence relation by setting pλ ~ p2 if there is
a set {fl9 •••,/*} of holomorphic mappings of unit disc to p+ with image
in % such that the image of fs meets the image of fj+ί (for 1 <̂  j <̂
k — 1), and ^e lm/x and p2elmfk. The equivalence classes are called
the boundary components of S. S) itself is an (improper) boundary
component and the topological boundary of S is a disjoint union of
(proper) boundary components. By the definition, (̂S)) is equal to the
maximum value of dimension of proper boundary component of S). We
refer to J. A. Wolf [9] for various more geometric descriptions of the
boundary component.

By using the classification of boundary components, we are able to
compute .#(£)) in each irreducible case as given in § 1. It can be also
computed more directly by the following identity:

= max # {β e Δ% a - β £ Δ) .

The following result is immediate

LEMMA 7. i) rank 3) ^ Sφ) < dim S>.
ii) Let Si and S)2 be symmetric bounded domains. Then

x ©2) = max {£(%) + dim 2)2, ̂ (S)2) + dim S)J .

Next, we introduce the notion of Hermitian symmetric subspace.

Let ®! be a connected closed complex submanifold of 3). S)χ is said
to be a Hermitian symmetric subspace of 2) if S\ is totally geodesic in
2). The following lemma is straightforward.

LEMMA 8. // 2^ is a Hermitian symmetric subspace of 5), then S)x

is α Hermitian symmetric space of non compact type.

A (real) subspace pλ of p is called a Lie triple system if X,Y,Z e pi
implies [[X,Y],Z]epλ. Then we have

LEMMA 9. i) Let px be a J-invariant (namely, Jpx — ft) Lie triple
system contained in p. Put ©i = Exp ft, where Exp denotes as usual
the exponential mapping: p -> S). Γ/̂ en S)x is a Hermitian symmetric
subspace of 2) satisfying Γ0S)i = Pi
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ii) On the other hand, if S^ is a Hermίtian symmetric subspace of 3)
and OeSi, then the subspace ft = Γo® of p is a J-invariant Lie triple
system and S^ = Exp ft.

Proof. See Helgason's book [3].

LEMMA 10. Let p1 be a J-ίnvariant subspace of p. Then ft is a

Lie triple system of p if and only if [ίpϊ,pt],pϊ] c pi (or equivalently

[[ft~,ft+Lft~] cpr . )

Proof. Consider the mappings τ: p -> p+ given by τ(X) = X — V — 1JX
and Re: p+ —> p by Re (s) = s + s. Then, by the elementary computation,
we have

],Z] + [[X,JY],JZ])

and

[[Re s, Re t], Re w] = Re [[s, ?],%] + Re [[s, t],ΰ] .

Due to these equalities, we get the result.

LEMMA 11. Suppose S) is embedded in p+ by Harίsh-Chandra real-
ization. Let S)i c 2) be a Hermitίan symmetric subspace of S) contain-
ing 0, and put pt = ΓoSj (cp + ) . Γfee^ S)x = S) Π pϊ and ©j c pi is just

Harish-Chandra realization of SV

Proof. We have the following commutative diagram:

V V V V

p+—>GcjKcP~<—G/X =S>2

where Gx is analytic subgroup of G with Lie algebra Qt = [ft, pj + ί>x.
Lemma can be easily derived from this.

In closing this section, we point out the following fact about the
boundary component of Hermitian symmetric subspace, which follows
from the definition of boundary component, combined with Lemma 11.

LEMMA 12. Let ©x c 2) be a Hermitian symmetric subspace of S).
Then a (proper) boundary component of S)x is contained in a uniquely
determined (proper) boundary component of 3).
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7. Proof of Proposition 1

We now come back to the proof of Proposition 1. In order to make

sure, we recall the statement of Proposition.

PROPOSITION 1. Let φ be a holomorphic mapping of a compact

Kdhler manifold M into a discrete quotient Γ\£).

i) // rank φ is greater than -έ(S)), then dim H\M, φ'ιT{Γ\S>)) = 0.

ii) If φ is not constant, or equivalently rank φ > 0, then

First of all, we choose a point z of M so that r a n k ^ is equal to

?, and set 7 = I m ^ 2 (cΓp ( z )(Γ\S)). We may assume without loss

of generality φ{z) = ττ(O), therefore we can regard 7 c p+. Then in view

of Lemma 6, Lemma 5 asserts that τzH\M,φ~ιT{Γ\S))) is contained in

the vector space {sej)+; [[u, v],s] = 0 for any u,veV}. For the sake

of simplicity, we set for any subspace V of p+ over C:

y* = {s e p+ [[u, Ό], s] = 0 for any u,v eV} .

Thus

= dim τzH°(M, 9~1Γ(Γ\S)) ^ dim 7* .

Since dim V = rank p owing to the choice of z9 what we must show is:

For a subspace V of ;p+,

1) dim 7* = 0 in the case dim V > £(&),

2) dim 7* ^ (̂S)) in the case dim V > 0.

We first prove

LEMMA 13. i) V* = {sep+; [v, s] = 0 /or α̂ τ/ v e 7}.

ii) F * Π 7 = (0) α^d 7** D 7.

iii) Re 7* and Re (7* + 7**) are J-invariant Lie triple system of p.

Proof. In fact, the equality [[u, v],s] = [u, [v,s]] implies

7* Z){sep+; [7,s] = 0} .

On the other hand, suppose [[u, ϋ],s] = 0 for any u,veV. Then

0 = β(-[[v, Ό], β], s) = j8([i?, s], [υ, s]) .

So [z;,s] = 0. This establishes i). ii) is obvious. For iii), it is enough

to show that
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ΪB.V*, V*], V*], V] = 0,

[[V* _

But these follow immediately from Jacobi's identity.

LEMMA 14. We set ©x = Exp Re 7*, ®2 = Exp Re 7**

Exp Re (7* + X**). Then S)o is biholomorphic and isometric to % x S)2.

Proo/. We shall show that the mapping / : % x S)2 -^ S)o given by
(Exp Re #!, Exp Re #2) —• Exp Re (vx + v2) (vx e 7*, #2 e 7**) is a holomor-
phic isometry. It is easy to find that / is diffeomorphic and isometric.
To see the analyticity of / , we notice that

Exp Re (vx + v2) = exp Re v1 Exp Re v2 = exp Re v2 Exp Re v1

since [Rev19 Re v2] = 0 and ExpX = expX O for Z e p . Thus, if we
denote by / 4 : ©< —̂  S) (i = 1,2) the natural injections, then

f(wlf Exp Re v2) = exp Re v2 f1(w1) ,

/(Exp Re t?!, w2) = exp Re ̂  •

This proves / is holomorphic.
Returning now to Proposition 1, we first note that we can find a

boundary component Ft of S)o which is biholomorphic to S), (i = l,2).
In fact, it is sufficient to set F1 = <£)1x p2 (resp. F2 = pt x ©2) where pt

e SSi is a point in the Silov boundary of S><β From Lemma 12, it now
follows that Ft is contained in a proper boundary component of S) if
and only if Ft is a proper one of S)o or equivalently ©̂  is a proper
direct product factor of SV In terms of V*,V**, it says

a) dim 7** ^ (̂$>) if and only if dim 7* > 0 (in the case i = 2),
b) dim 7* ^ (̂S)) if and only if dim 7** > 0 (in the case i = 1).

Since 7 is contained in 7**, a) (resp. b)) implies 1) (resp. 2)).
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