H. Fujimoto Nagoya Math. J. Vol. 64 (1976), 117-147

A UNIQUENESS THEOREM OF ALGEBRAICALLY NON-DEGENERATE MEROMORPHIC MAPS INTO *P^N (C)*

HIROTAKA FUJIMOTO

§ 1. Introduction.

In the previous paper [3], the author generalized the uniqueness theorems of meromorphic functions given by G. Pόlya in [5] and R. Nevanlinna in [4] to the case of meromorphic maps of $Cⁿ$ into the N³ dimensional complex projective space $P^N(C)$. He studied two meromorphic maps f and g of C^n into $P^N(C)$ such that, for q hyperplanes H_i in $P^N(C)$ with $f(C^n) \subset H_i$, $g(C^n) \subset H_i$ located in general position, the pull-backs $\nu(f, H_i)$ and $\nu(g, H_i)$ of divisors (H_i) on $P^N(C)$ by f and g are equal to each other. Under some additional assumptions, he revealed the existence of some special types of relations between f and g . For example, he showed that, if f or g is non-degenerate, namely, the image is not included in any hyperplane in $P^N(C)$ and $q = 3N + 2$, then $f \equiv g$.

We consider in this paper meromorphic maps into $P^N(C)$ which are algebraically non-degenerate, namely, whose images are not included in any proper subvariety of $P^N(C)$. We give the following theorem.

THEOREM. *Let f,g be meromorphic maps of Cⁿ into P^N (C) such that* $\nu(f, H_i) = \nu(g, H_i)$ for $2N + 3$ hyperplanes H_i located in general *position.* If f or g is algebraically non-degenerate, then $f \equiv g$.

To show this, after giving some preliminaries (§ 2), we provide in § 3 some combinatorial lemmas which act essential roles in this paper. A main one of them is proved in $\S 4$. And, in $\S 5$, the smallest algebraic set $V_{f,g}$ in $P^N(C)$ which includes the set $(f \times g)(C^n)$ is studied in the case that $2N + 2$ hyperplanes H_i with $\nu(f, H_i) = \nu(g, H_i)$ are given. It case that $2N + 2$ hyperplanes H_i with $\nu(f, H_i) = \nu(g, H_i)$ are given. It is shown that $V_{f,g}$ is an at most N-dimensional irreducible algebraic set.

Received March 12, 1976.

After these preparations, we prove the above theorem in § 6. We show also the existence of some special types of relations between algebraically non-degenerate meromorphic maps f and g such that $\nu(f, H_i) = \nu(g, H_i)$ for $2N + 2$ hyperplanes H_i in general position. In the last section, we study meromorphic maps into $P^2(C)$ or $P^3(C)$ more precisely. For the above meromorphic maps f and g , it is shown that they are related as $L \cdot g = f$ with a special type of projective linear transformation *L* of $P^N(C)$ in the case $N = 2$ and the algebraic set $V_{f,q}$ is included in an algebraic set defined by some special types of equations of degree at most two in the case *N —* 3.

§ **2. Preliminaries.**

2.1. We shall recall some notations and results in the previous paper [3],

Let f be a meromorphic map of C^n into $P^N(C)$. For arbitrarily fixed homogeneous coordinates w_1 : w_2 : \cdots : w_{N+1} on $P^N(C)$, we can find holo morphic functions $f_1(z)$, \cdots , $f_{N+1}(z)$ on C^n such that the analytic set

$$
(2.1) \tI(f) := \{z \in C; f_1(z) = \cdots = f_{N+1}(z) = 0\}
$$

is of codimension at least two and f is represented as

$$
f(z) = f_1(z) : f_2(z) : \cdots : f_{N+1}(z) \qquad (z \in C^n - I(f)) \ .
$$

In the following, we shall call such a representation an admissible re presentation of *f on Cⁿ .* As is easily seen, for two admissible repre sentations

$$
f = f_1 \colon f_2 \colon \cdots \colon f_{N+1} = \tilde{f}_1 \colon \tilde{f}_2 \colon \cdots \colon \tilde{f}_{N+1}
$$

of $f_i, \bar{f}_i/f_i$ ($=\bar{f}_i/f_i$ ($2 \leq i \leq N + 1$)) is a nowhere zero holomorphic function on *Cⁿ .* For a given hyperplane

$$
H: a^1 w_1 + a^2 w_2 + \cdots + a^{N+1} w_{N+1} = 0
$$

in $P^N(C)$ with $f(C^n) \subset K$, we define a holomorphic function

(2.2)
$$
F_f^H: = a^1f_1 + \cdots + a^{N+1}f_{N+1}
$$

with an admissible representation $f = f_1: f_2: \cdots: f_{N+1}$ on C^n and denote by $\nu(f, H)(a)$ the zero multiplicity of F_f^H at a point $a \in \mathbb{C}^n$, which is uniquely determined independently of any choices of homogeneous co ordinates and admissible representations.

Now, let us consider two non-constant meromorphic maps / and *g* of C^n into $P^N(C)$ and $q \ (\geq 2N + 2)$ hyperplanes

$$
(2.3) \tH_i: a_i^1 w_1 + a_i^2 w_2 + \cdots + a_i^{N+1} w_{N+1} = 0 \t(1 \leq i \leq q)
$$

in $P^N(C)$ located in general position. We shall study these maps under the assumption that $f(C^n) \subset H_i$, $g(C^n) \subset H_i$ and $v(f, H_i) = v(g, H_i)$ for any i. We define functions

$$
(2.4) \t\t\t\t\t h_i := F_f^{H_i}/F_g^{H_i}
$$

with holomorphic functions $F_f^{\mu_i}$ and $F_g^{\mu_i}$ defined as (2.2) for arbitrarily fixed admissible representations of f and g . By the assumption, each h_i is a nowhere zero holomorphic function on C^n and the ratios h_i/h_j are uniquely determined independently of any choices of homogeneous coordinates, representations (2.3) of H_i and admissible representations of / and *g.*

For the case $q = 2N + 2$, by eliminating $f_1, \dots, f_{N+1}, g_1, \dots, g_{N+1}$ from the identities

$$
a_i^1 f_1 + \cdots + a_i^{N+1} f_{N+1} = h_i(a_i^1 g_1 + \cdots + a_i^{N+1} g_{N+1}),
$$

we obtain a relation

$$
(2.5) \qquad \det (a_i^1, \cdots, a_i^{N+1}, h_i a_i^1, \cdots, h_i a_i^{N+1}; 1 \le i \le 2N+2) = 0.
$$

Then, by the Laplace' expansion formula, we can show easily

(2.6) *Among holomorphic functions hi satisfying the relation* (2.5) *there is a relation of the type*

$$
\sum_{1 \leq i_1 < \cdots < i_{N+1} \leq 2N+2} A_{i_1 \cdots i_{N+1}} h_{i_1} h_{i_2} \cdots h_{i_{N+1}} = 0
$$

where $A_{i_1\cdots i_{N+1}}$ *are non-zero constants* (cf., [3], Proposition 3.5).

2.2. Let H^* be the multiplicative group of all nowhere zero holomorphic functions on C^n . We may regard the set $C^* = C - \{0\}$ as a subgroup of H^* . Then, the factor group $G: = H^*/C^*$ is a torsion free abelian group. We denote by *[h]* the class in *G* containing an element *h* in H^* . For two elements *h*, $h^* \in H^*$, by the notation $h \sim h^*$ we mean $[h] = [h^*]$ in *G*.

As an easy consequence of the classical theorem of E. Borel, we know the following fact ([1], [2] and [3], Remark to Corollary 4.2).

 (2.7) Let $h_1, \dots, h_p \in H^*$ satisfy the relation

 $a^1h_1 + a^2h_2 + \cdots + a^ph_p = 0$

for some $a^i \in \mathbb{C}^*$. Then, for any h_i , there exists some h_j $(i \neq j)$ such that $h_i \sim h_j$.

By (2.6) and (2.7), we can conclude

(2.8) Let $\alpha_1, \alpha_2, \cdots, \alpha_{2N+2}$ be elements in H^*/C^* . Assume that (2.5) holds *for suitable* $h_i \in H^*$ with $\alpha_i = [h_i]$ and a $(2N + 2) \times (N + 1)$ matrix $A = (a_i^j)$ whose minors of degree $N + 1$ do not vanish. Then, for *any i x ,* , *iN+1* (1 < ^ < < *iN+1* ^ *2N +* 2), ίfcere *exist some* j_1, \dots, j_{N+1} with $1 \leq j_1 \leq \dots \leq j_{N+1} \leq 2N+2$ and $\{i_1, \dots, i_{N+1}\} \neq$ $\{j_1, \ldots, j_{N+1}\}\$ such that

$$
\alpha_{i_1}\alpha_{i_2}\cdots\alpha_{i_{N+1}}=\alpha_{j_1}\alpha_{j_2}\cdots\alpha_{j_{N+1}}.
$$

And, we have also

(2.9) Let h_1, h_2, \dots, h_t be elements in H^* such that $h_1^{t_1}h_2^{t_2} \cdots h_t^{t_t} \notin C^*$ for any integers (ℓ_1, \ldots, ℓ_t) ($\neq (0, \ldots, 0)$). Then, for any not identically $zero \quad polynomial \quad P(X_1, \ldots, X_t)$, $P(h_1, \ldots, h_t) \quad does \quad not \quad vanish$ *identically.*

For the proof, see Proposition 4.5 in [3].

§3. Combinatorial lemmas.

3.1. Let G be a torsion free abelian group. Take a q-tuple $A = (\alpha_1, \alpha_2)$ \cdots , α_q) of elements α_i in G. We denote by $\{\{\alpha_1, \cdots, \alpha_q\}\}$, or simply \tilde{A} , the subgroup of G generated by $\alpha_1, \cdots, \alpha_q$ and $t(A)$ the rank of \tilde{A} , where $t(A) = 0$ means $\alpha_1 = \cdots = \alpha_q = 1$ (=the unit elements of G). It has a basis β_1, \dots, β_t ($t = t(A)$) and each α_i is uniquely represented as

$$
\alpha_i = \beta_1^{\ell_{i1}} \beta_2^{\ell_{i2}} \cdots \beta_t^{\ell_{it}}
$$

with suitable integers ℓ_{i} . We may regard G as a subgroup of $G \otimes_{\mathbf{Z}} \mathbf{Q}$, where *Z* and *Q* denote the additive groups of all integers and of all rational numbers respectively. Then, we can choose some $\alpha_{i_1}, \dots, \alpha_{i_k}$ among $\alpha_1, \dots, \alpha_q$ as a basis of the subgroup of $G \otimes_{\mathbf{Z}} \mathbf{Q}$ generated by $\alpha_1, \cdots, \alpha_q$ as a **Q**-module.

(3.2) There exists a basis $\{\beta_1, \dots, \beta_t\}$ of $\{\{\alpha_1, \dots, \alpha_q\}\}$ in G such that, for

suitable i_1, \dots, i_t and non-zero integers $\ell_i, \beta_i^{\ell_{\tau}} = \alpha_{i_{\tau}},$ namely, $\ell_{i_{\tau\sigma}} = 0$ $(\sigma \neq \tau)$ *in the representation* (3.1).

In the followings, we shall call a basis of \tilde{A} with the property as in (3.2) to be an adequate basis for *A.*

For convenience' sake, we introduce some notations. For the set I_r : = {1, 2, ..., r}, we mean by a combination $((i_1, \ldots, i_s))$ in I_r the set of integers i_1, \dots, i_s with $1 \leq i_1 < \dots < i_s \leq r$. And, we indicate by $\mathfrak{F}_{r,s}$ the set of all combinations of *s* elements in *I^r .* For an arbitrarily fixed *r*-tuple $A = (\alpha_1, \dots, \alpha_r)$ of elements in *G*, we use an abbreviated notation

$$
A_I = \alpha_{i_1} \alpha_{i_2} \cdots \alpha_{i_s}
$$

 $\text{when } I = ((i_1, i_2, \dots, i_s)) \in \mathfrak{F}_{r,s}.$

DEFINITION 3.3. Let $q \ge r > s \ge 1$. A *q*-tuple $A = (\alpha_1, \alpha_2, \dots, \alpha_q)$ of elements in G is called to have the property $(P_{r,s})$ if any chosen r-tuple $A' = (\alpha_{k_1}, \dots, \alpha_{k_r}) \quad (1 \leq k_1 < \dots < k_r \leq q), \text{ put } A' : = (\alpha'_1, \dots, \alpha'_r) = (\alpha_{k_1}, \dots, \alpha'_r)$ \cdots , α_{k_r}), satisfies the condition that for any *I* in $\mathfrak{F}_{r,s}$ there exists some *J* in $\mathfrak{F}_{r,s}$ with $I \neq J$ such that

$$
A'_I=A'_J.
$$

Let $A = (\alpha_1, \dots, \alpha_q)$ be a q-tuple of elements in G with the property *(P*_{*r*},*s*). To study relations among α_i , we choose a basis β_1, \dots, β_t for which each α_i is represented as (3.1). Then, we can find integers p_i , \cdots , p_t such that, when we put

$$
\ell_i := \ell_{i1}p_1 + \ell_{i2}p_2 + \cdots + \ell_{it}p_t \qquad (1 \leq i \leq q) ,
$$

 $\ell_i = \ell_j$ holds only if

$$
(\ell_{i1},\ell_{i2},\cdots,\ell_{it})=(\ell_{j1},\ell_{j2},\cdots,\ell_{jt}),
$$

(cf., [3], (2.2)).

LEMMA 3.4. In the above situation, if the indices i of α_i are chosen *so that*

$$
\ell_1\leqq \ell_2\leqq \cdots \leqq \ell_q,
$$

then

$$
\ell_s=\ell_{s+1}=\cdots=\ell_{q+s-r+1}
$$

and so

$$
\alpha_s=\alpha_{s+1}=\cdots=\alpha_{q+s-r+1}.
$$

For the proof, see Lemma 2.6 in [3].

Since $q + s - r + 1 \geq s + 1 \geq 2$ in any case, we have

LEMMA 3.5. *For any q-tuple* $A = (\alpha_1, \dots, \alpha_q)$, if A has the property $(P_{r,s})$ $(1 \leq s \leq r \leq q)$, there exist two distinct indices *i*, *j* such that $\alpha_i = \alpha_j$.

3.2. Let us introduce another notation. For elements $\alpha_1, \alpha_2, \cdots, \alpha_q$, $\alpha_1^*, \alpha_2^*, \dots, \alpha_q^*$ in G, by the notation

$$
\alpha_1:\alpha_2:\cdots:\alpha_q=\alpha_1^*:\alpha_2^*:\cdots:\alpha_q^*
$$

we mean that $\alpha_i = \beta \alpha_i^*$ ($1 \leq i \leq q$) for some $\beta \in G$.

Now, we give the following main lemma.

LEMMA 3.6. Let $1 \leq s < q \leq 2s$ and $A = (\alpha_1, \dots, \alpha_q)$ be a q-tuple *elements in G with the property* $(P_{q,s})$ *and assume* $\alpha_i = 1$ *for some i. Then,*

(i) the rank $t(A)$ of $\{\{\alpha_1, \dots, \alpha_q\}\}\$ is not larger than $s-1$,

(ii) if $t(A) = s - 1$, $q = 2s$ and a basis $\beta_1, \dots, \beta_{s-1}$ of $\{\{\alpha_1, \dots, \alpha_q\}\}\$ can be chosen so that, after suitable changes of indices, α_{1} , α_{2} *represented as one of the following two types;*

(A) s is *odd and*

$$
\alpha_{\scriptscriptstyle 1}\!:\alpha_{\scriptscriptstyle 2}\!:\,\cdots\!:\alpha_{\scriptscriptstyle 2s} = 1\!:\!1\!:\beta_{\scriptscriptstyle 1}\!:\beta_{\scriptscriptstyle 1}\!:\beta_{\scriptscriptstyle 2}\!:\beta_{\scriptscriptstyle 2}\!:\,\cdots\!:\beta_{\scriptscriptstyle s-1}\!:\beta_{\scriptscriptstyle s-1}
$$

(B)
$$
\alpha_1: \alpha_2: \cdots: \alpha_{2s}
$$

= 1: $\cdots: 1: \beta_1: \cdots: \beta_{s-1}: (\beta_1 \cdots \beta_{a_1})^{-1}: (\beta_{a_{1}+1} \cdots \beta_{a_2})^{-1}: \cdots$
 $\cdots: (\beta_{a_{k-1}+1} \cdots \beta_{a_k})^{-1},$

where $0 \leq k \leq s - 1$, $a_{k} - a_{k-1} \leq s - k$ (put $a_{0} = 0$) for any κ and *unit element* 1 appears $s - k + 1$ times in the right hand side.

The proof of Lemma 3.6 will be given in the next section.

3.3. We shall show here that $A = (a_1, \dots, a_{2s})$ of the type (A) or (B) of Lemma 3.6 satisfies actually the condition $(P_{2s,s})$

Let us consider first $A = (\alpha_1, \dots, \alpha_{2s})$ of the type (A). Since s is odd, for any given combination $I = ((i_1, \dots, i_s)) \in \mathfrak{J}_{2s,s}$ we can find some α_{r_0} with $1 \le r_0 \le s$ such that one of α_{2r_0} and α_{2r_0+1} equals some α_{i_r} and

the other does not equal any $\alpha_{i_1}, \alpha_{i_2}, \cdots, \alpha_{i_s}$. Exchanging indices if necessary, we may assume $2\tau_0 = i$, and $2\tau_0 + 1 \neq i_1, \dots, i_s$. Then, if we put $J: =((i_1, \dots, i_{r-1}, 2\tau_0 + 1, i_{r+1}, \dots, i_s)) \in \mathfrak{F}_{2s,s}),$ it satisfies the conditions $I \neq J$ and $A_I = A_J$. This shows that A has the property $(P_{2s,s})$

We study next $A = (\alpha_1, \dots, \alpha_{2s})$ of the type (B). Take an arbitrary combinations $I = ((i_1, \dots, i_s)) \in \mathcal{S}_{2s,s}$. Firstly, we consider the case $\{i_1, \dots, i_s\}$ $\{\dots, i_s\} \cap \{1, 2, \dots, s-k+1\} \neq \emptyset.$ If $\{1, 2, \dots, s-k+1\} \subset \{i_1, \dots, i_s\},$ for example, $i_1 = 1$, $i_2 \neq 2$, then a combination $J = ((2, i_2, \dots, i_s))$ satisfies the conditions $I \neq J$ and $A_I = A_J$. We assume now $\{1, 2, \dots, s - k + 1\}$ \subseteq $\{i_1, \ldots, i_s\}$. Let

$$
i_{\scriptscriptstyle 1}=1,\,\cdot\cdot\cdot,i_{\scriptscriptstyle s-k+1}=s-k+1
$$

Then, there exists some α_{i_0} ($i_0 \geq 2s - k + 1$) with the expression

$$
\alpha_{i_0}=(\beta_{a_{\kappa+1}}\beta_{a_{\kappa+2}}\cdots \beta_{a_{\kappa+1}})^{-1}
$$

for some κ $(0 \leq \kappa \leq k - 1)$ such that $\alpha_{i_0} \neq \alpha_{i_{\ell+1}}, \dots, \alpha_{i_s}$ and $\beta_s \neq \alpha_{i_{s-k+2}},$ \ldots , $\alpha_{i_{\ell}}$ for any σ ($a_{\kappa} + 1 \leq \sigma \leq a_{\kappa+1}$). In fact, if not, at least one β , among $\alpha_{i_{s-k+1}}, \ldots, \alpha_{i_{\ell}}$ is used to express each α_i ($i \ge 2s - k + 1$) with $\alpha_i \ne \alpha_{i_{\ell+1}},$ \cdots , α_{i_k} as (3.1) and so at least $k - (s - \ell)$ elements in $\{\alpha_{i_{s-k+2}}, \cdots, \alpha_{i_l}\}$ are necessary. But, the number of elements $\alpha_{i_{s-k+2}}, \dots, \alpha_{i_l}$ is only k $s + \ell - 1$. Therefore, we can choose a suitable α_{i_0} satisfying the desired condition. Then, since $a_{k+1} - a_k \leq s - k$,

$$
\alpha_{i_1}\alpha_{i_2}\cdots\alpha_{i_s}=\alpha_1\alpha_2\cdots\alpha_{s-k+1}\alpha_{i_{s-k+2}}\cdots\alpha_{i_s}
$$

= $\alpha_1\cdots\alpha_{s-k-a_{s+1}+a_s}\alpha_{i_0}\beta_{a_{s+1}}\cdots\beta_{a_{s+1}}\alpha_{i_{s-k+2}}\cdots\alpha_{i_s}.$

If we define a combination $J = ((j_1, \dots, j_s)) \in \mathfrak{F}_{2s,s}$ so that

 $\{\alpha_1, \cdots, \alpha_{s-k-a_{k+1}+a_k}, \alpha_{i_0}, \beta_{a_{k+1}}, \cdots, \beta_{a_{k+1}}, \alpha_{i_{s-k+2}}, \cdots, \alpha_{i_s}\} = \{\alpha_{j_1}, \alpha_{j_2}, \cdots \alpha_{j_s}\},$

it satisfies the conditions $I \neq J$ and $A_I = A_J$.

It remains to examine the case $\{1, 2, \dots, s - k + 1\} \cap \{i_1, \dots, i_s\} = \phi$. Let us assume

 $s-k+1 \leq i_{\scriptscriptstyle 1} \leq \cdots \leq i_{\scriptscriptstyle \ell} \leq 2s-k \leq i_{\scriptscriptstyle \ell+1} \leq \cdots \leq i_{\scriptscriptstyle s} \leq 2s \;.$

Then, there exists some $\alpha_{i_{\tau_0}}$ ($\ell + 1 \leq \tau_0 \leq s$) such that

$$
\alpha_{i_{\tau_0}} = (\beta_{a_{\kappa'+1}} \cdots \beta_{a_{\kappa'+1}})^{-1}
$$

for a suitable κ' ($0 \leq \kappa' \leq k - 1$) and each β , $(a_{\kappa'} + 1 \leq \sigma \leq a_{\kappa' + 1})$ coincides with $\alpha_{i_{\tau}}$ ($1 \leq \tau \leq \ell$). In fact, if not, for each α_i of $\alpha_{i_{\ell+1}}, \dots, \alpha_{i_{\ell}}$ some *β*_{*a*} with *β*_{*a*} \in { $\alpha_{i_1}, \cdots, \alpha_{i_l}$ } appears in the expression of α_i as (3.1). But, there are only $s = \ell - 1$ β , with β , $\neq \alpha_{i_1}, \dots, \alpha_{i_{\ell}}$. So, a suitable $\alpha_{i_{\tau_0}}$ has the desired property. Then, if we define a combination $J = ((j'_1, j'_2)$ \cdots , j'_{s}) \in $\mathfrak{S}_{2s,s}$ so that

 $\{\alpha_1, \cdots, \alpha_{a_{k'+1}-a_{k'+1}}, \alpha_{i_1}, \cdots, \alpha_{i_s}\} - \{\alpha_{i_0}, \beta_{a_{k'+1}}, \cdots, \beta_{a_{k'+1}}\} = \{\alpha_{j_1}, \alpha_{j_2'}, \cdots, \alpha_{j_s'}\},$ we get the desired conclusions $I \neq J$ and $A_I = A_J$.

§4. The proof of the main lemma.

4.1. This section is devoted to the proof of Lemma 3.6. Let $A =$ $(\alpha_1, \dots, \alpha_q)$ $(1 \leq s < q \leq 2s)$ be a *q*-tuple of elements in *G* with the property $(P_{q,s})$ and $\alpha_i = 1$ for some *i*. We note here we may assume $\alpha_{i_0} = 1$ for an arbitrarily preassigned i_0 . Indeed, we may study a new q-tuple A' : = $(\alpha_1 \alpha_{i_0}^{-1}, \dots, \alpha_q \alpha_{i_0}^{-1})$ instead of the original A. For, by the assump tion, $\{\{\alpha_1, \dots, \alpha_q\}\} = \{\{\alpha_1\alpha_{i_0}^{-1}, \dots, \alpha_q\alpha_{i_0}^{-1}\}\}\$ and so $t(A') = t(A)$.

Lemma 3.6 will be proved by the induction on *s.* For the case $s = 1$, we have necessarily $q = 2$ and $\alpha_1 = \alpha_2$ (=1), which gives the desired conclusion. Consider next the case $s = 2$. Then $q = 3$ or $q = 4$ and, after suitable changes of indices, we may assume $\alpha_1 = \alpha_2 = 1$ by Lemma 3.5 and the above remark. If $q=3$, taking a combination $I=$ $((1, 2)) \in \mathfrak{F}_{3,2}$, we choose some $((i, j)) \in \mathfrak{F}_{3,2}$ with $((i, j)) \neq ((1, 2))$ and $\alpha_i \alpha_j =$ $\alpha_1 \alpha_2 = 1$. Then, necessarily, $\alpha_i = 1$ or $\alpha_j = 1$. In any case, $\alpha_1 = \alpha_2 = \alpha_3$ $= 1$, whence $t(\alpha_1, \alpha_2, \alpha_3) = 0$. For the case $s = 2$ and $q = 4$, we choose again a combination $((i, j))$ with $((i, j)) \neq ((1, 2))$ and $\alpha_i \alpha_j = \alpha_i \alpha_j$. If $\alpha_i = 1$ or $\alpha_j = 1$, we may write

$$
\alpha_{\scriptscriptstyle 1}\!:\alpha_{\scriptscriptstyle 2}\!:\alpha_{\scriptscriptstyle 3}\!:\alpha_{\scriptscriptstyle 4} = 1\!:\!1\!:\!1\!:\beta
$$

with some $\beta \in G$ by a suitable change of indices. And, if $\alpha_i \neq 1$ and $\alpha_j \neq 1$, it may be written

$$
\alpha_{\scriptscriptstyle 1}\!:\alpha_{\scriptscriptstyle 2}\!:\alpha_{\scriptscriptstyle 3}\!:\alpha_{\scriptscriptstyle 4} = 1\!:\!1\!:\!\beta\!:\beta^{-1}\;,\quad
$$

where $\beta \neq 1$. In any case, $t(\alpha_1, \dots, \alpha_4) \leq 1$ and, if $t(\alpha_1, \dots, \alpha_4) = 1$, $(\alpha_1, \dots, \alpha_5)$ \cdots , α_4) is of the type (B).

In the following, we assume $s \geq 3$ and Lemma 3.6 is valid if *s* is replaced by a number smaller than s . And, we consider the case $t:$

 $t(A) \geq s - 1$ only, because, if otherwise, we have nothing to prove. Let $M_0: = \{i \, ; \, \alpha_i = 1\}$ and $m_0: = \#M_0$, where $\#M$ denotes the number of ele ments in a set M. Since A may be replaced by $\{\alpha_1 \alpha_{i_0}^{-1}, \cdots, \alpha_q \alpha_{i_0}^{-1}\}$ for any i_0 , we may assume $m_0 \geq \frac{4}{3} \{i : \alpha_i = \alpha_j\}$ for any $j \ (1 \leq j \leq q)$. Then, $m_0 \geq 2$ by Lemma 3.5. Now, we take an adequate base β_1, \dots, β_t of $\{\{\alpha_1, \dots, \alpha_q\}\}\$ as in (3.2) and express each α_i as (3.1) with integers ℓ_i . The proof of Lemma 3.6 are given separately for each of the following two cases;

Case *a*. For each τ ($1 \leq \tau \leq t$), ℓ_{1t} , \cdots , ℓ_{qt} are all non-negative or all non-positive.

Case β . For some τ , there exist distinct indices i, j with $\ell_{i, \tau} > 0$ and $\ell_{j\tau} < 0$.

4.2. The proof of Lemma 3.6 for the case *a.* For each *τ,* after a replacement of $β_$ by $β_$ ² if necessary, it may be assumed that $\ell_{i_0} \ge 0$ for any *i.* Put

$$
M_{\tau} : = \{i \, ; \, \ell_{i_{\tau}} \neq 0, \, \ell_{i_{\tau+1}} = \cdots = \ell_{i_{t}} = 0\}
$$

and m_{τ} : = $\sharp M_{\tau}$ for each τ (1 $\leq \tau \leq t$).

We shall show first the following fact.

(4.1) For any subset $\{\tau_1, \dots, \tau_u\}$ of the set $\{1, 2, \dots, t\}$ of indices, $m_{\tau_1} +$ $m_{r_2} + \cdots + m_{r_u} \neq s.$

Proof. Assume that $m_{\tau_1} + \cdots + m_{\tau_u} = s$ for some τ_1, \dots, τ_u and put

$$
M^* := M_{\tau_1} \cup M_{\tau_2} \cup \cdots \cup M_{\tau_u} = \{i_1, i_2, \cdots, i_s\},
$$

where $1 \leqq \tau_1 \leqq \cdots \leq \tau_u \leqq t$ and $1 \leqq i_1 \leq i_2 \leq \cdots \leq i_s \leqq q$. By the assump tion, there exists some $J = ((j_1, \dots, j_s)) \in \mathfrak{F}_{q,s}$ such that $I \neq J$ and

$$
\alpha_{i_1}\alpha_{i_2}\cdots\alpha_{i_s}=\alpha_{j_1}\alpha_{j_2}\cdots\alpha_{j_s}.
$$

If $M_t \cap M^* = \phi$, by expressing the both sides of (4.2) with β_1, \dots, β_k and observing the exponents of β_t we see

$$
\sum_{\tau=1}^s \ell_{j_\tau t} = \sum_{\tau=1}^s \ell_{i_\tau t} = 0,
$$

whence $\ell_{j_{t}} = 0$ $(1 \leq \tau \leq s)$ because $\ell_{it} \geq 0$ for any i. So, $M_t \cap \{j_t, j_t\}$ \cdots , j_s = ϕ . And, if $M_t \cap M^* \neq \phi$, then $M_t \subset M^*$. In this case,

$$
\sum_{t=1}^s \ell_{j_t} = \sum_{t=1}^s \ell_{i_t} = \sum_{i \in M_t} \ell_{it},
$$

whence $M_t \subset \{j_1, j_2, \dots, j_t\}$. In any case, we have

$$
M_t \cap \{i_1, \cdots, i_s\} = M_t \cap \{j_1, \cdots, j_s\}.
$$

Cancel α_i with $i \in M_i$ in the both sides of (4.2) and observe the exponents of β_{t-1} of the obtained relation. Then, we can conclude that, if $M_{t-1} \cap M^* = \phi,$

$$
{M}_{t-1} \cap \{i_1,\,\cdot \cdot \cdot,i_s\} = {M}_{t-1} \cap \{j_1,\,\cdot \cdot \cdot,j_s\} = \phi
$$

and, if $M_{t-1} \cap M^* \neq \phi$,

$$
M_{t-1} \subset \{i_1, \ldots, i_s\} \cap \{j_1, \ldots, j_s\}.
$$

Therefore,

$$
(M_{t-1} \cup M_t) \cap \{i_1, \cdots, i_s\} = (M_{t-1} \cup M_t) \cap \{j_1, \cdots, j_s\}.
$$

Repeating this process, we get finally

 $(M_0 \cup M_1 \cup \cdots \cup M_t) \cup \{i_1, \cdots, i_s\} = (M_0 \cup \cdots \cup M_t) \cap \{j_1, \cdots, j_s\}.$ } .

This contradicts the assumption $I \neq J$. Thus, we have the conclusion (4.1).

We shall prove next

(4.3) Under the above assumption, we have always $t \leq s - 1$. And, if $t = s - 1$, then $q = 2s$ and one of the following two cases occurs; (a) $m_0 = s - 1, m_1 = m_2 = \cdots = m_{s-1} = 1,$ (b) $m_0 = m_1 = \cdots = m_{s-1} = 2.$

Proof. We define the number $\sigma_1, \dots, \sigma_t$ so that

$$
m_{\sigma_1} \geqq m_{\sigma_2} \geqq \cdots \geqq m_{\sigma_t}.
$$

Since $m_0 \geq 2$ and $m_{\sigma} \geq 1$ for any σ ,

$$
2s \ge q = m_0 + (m_{\sigma_1} + \dots + m_{\sigma_t})
$$

\n
$$
\ge 2 + m_{\sigma_1} + (t - 1)
$$

\n
$$
\ge m_{\sigma_1} + s
$$

and so $m_{\sigma_1} \leq s$. Take the largest number u_0 such that

$$
m^* := m_{\sigma_1} + m_{\sigma_2} + \cdots + m_{\sigma_{u_0}} \leq s.
$$

By (4.1) , $m^* \leq s$. Assume $u_0 = t$. Then,

$$
s-1\leq t\leq m_{\sigma_1}+m_{\sigma_2}+\cdots+m_{\sigma_t}
$$

So, $t = s - 1$, $m_{s_1} = \cdots = m_{s_t} = 1$ and $m_0 = q - (m_1 + \cdots + m_t) = q$ $s + 1$. If $q = 2s$, $m_0 = s + 1$ and so the case (a) of (4.3) occurs. For the case $q \leq 2s - 1$, we have $m_0 \leq s$. We may put

$$
\alpha_i \colon \alpha_2 \colon \cdots \colon \alpha_q = 1 \colon 1 \colon \cdots \colon 1 \colon \beta_i \colon \cdots \colon \beta_{s-1} \ ,
$$

where $\{\beta_1, \dots, \beta_{s-1}\}$ is a basis of $\{\{\alpha_1, \dots, \alpha_q\}\}\$ and 1 is repeated at most s times. For a combination $I = ((1, 2, \dots, s))$, it is easily seen that there is no combination $J \in \mathfrak{J}_{q,s}$ with $I \neq J$ and $A_I = A_J$. The case $u_0 = t$ and $q \leq 2s - 1$ does not occur.

Now, let us consider the case $u_0 < t$. Then, $m^* + m_{\sigma_{u_0+1}} > s$ and $m_{\sigma_{u_0+1}} \geq 2$. Let $v := #{\tau : m_{\tau} = 1}$. By (4.1), $m^* + v = m^* + m_{\sigma_{t-v+1}}$. \cdots + $m_{\sigma t}$ < s. So,

$$
v \leq s - m^* - 1 \leq (m^* + m_{\sigma_{u_0+1}} - 1) - m^* - 1 = m_{\sigma_{u_0+1}} - 2 \leq m_{\sigma_1} - 2.
$$

On the other hand, since $m_{\sigma_2} \geq \cdots \geq m_{\sigma_{\ell-\sigma}} \geq 2$,

$$
2s \geq q = m_0 + m_{\sigma_1} + (m_{\sigma_2} + \cdots + m_{\sigma_{t-v}}) + (m_{\sigma_{t-v+1}} + \cdots + m_{\sigma_t})
$$

\n
$$
\geq 2 + m_{\sigma_1} + 2(t - v - 1) + v
$$

\n
$$
\geq m_{\sigma_1} - v + 2t.
$$

Thus, we conclude $t \leq s - 1$. Let $t = s - 1$. Then,

$$
m_{\sigma_1}\leqq v\,+\,2s\,-\,2(s-1)=v\,+\,2\leqq m_{\sigma_{u_0+1}}\leqq m_{\sigma_1}\ .
$$

We have necessarily \tilde{m} : $= m_{\sigma_1} = \cdots = m_{\sigma_{u_0+1}} = v + 2$. Moreover, we can show $\tilde{m} = m_{\sigma_{\tau}}$ for any τ with $\tau \leq t - v$. In fact, if $m_{\sigma_{\tau}} < \tilde{m}$ for some τ with $\tau \leq t - v$, putting $v' := s - m^* - m_{\sigma_{\tau}}$, we see $0 \leq v' \leq v$ and

$$
m^* + m_{\sigma_{\tau}} + m_{\sigma_{t-\nu'+1}} + \cdots + m_{\sigma_t} = s,
$$

which contradicts (4.1). From these facts, it follows that

$$
2s \ge q = m_0 + (m_{\sigma_1} + \dots + m_{\sigma_{t-\sigma}}) + (m_{\sigma_{t-\sigma+1}} + \dots + m_{\sigma_t})
$$

\n
$$
\ge 2 + \tilde{m}(t - \tilde{m} + 2) + \tilde{m} - 2
$$

\n
$$
= \tilde{m}(s - \tilde{m} + 2)
$$

and so $\tilde{m}^2 - (s + 2)\tilde{m} + 2s \geq 0$. Then, $\tilde{m} \geq s$ or $\tilde{m} \leq 2$. We know $\tilde{m} \leq s$ and the case $\tilde{m} = s$ contradicts the assumption (4.1). Therefore $\tilde{m} = 2$.

This implies that $v = 0$ and $m_1 = m_2 = \cdots = m_t = 2$. In this case, since

$$
(2 \leq) m_0 = q - (m_1 + \cdots + m_t) \leq 2s - (2s - 2) = 2,
$$

the case (b) of (4.3) occurs. The proof of (4.3) is completed.

We go back to the proof of Lemma 3.6 for the case (α) . The conclusion (i) of Lemma 3.6 was already shown in (4.3). We shall prove (ii) under the assumption $t = s - 1$.

If the case (a) of (4.3) occurs, $q = 2s$ and we may write

$$
\alpha_1:\alpha_2:\cdots:\alpha_{2s}=1:1:\cdots:1:\beta_1:\cdots:\beta_{s-1},
$$

where $\{\beta_1, \dots, \beta_{s-1}\}$ is a basis of $\{\{\alpha_1, \dots, \alpha_{2s}\}\}\$ and 1 is repeated $s + 1$ times in the right-hand side. This is a special case of the type (B) of Lemma 3.6.

We assume now the case (b) of (4.3) occurs. Then, changing indices, we may put

$$
M_{0} \colon = \{1,2\} , \quad M_{1} \colon = \{3,4\}, \cdots , \quad M_{s-1} = \{2s-1,2s\}
$$

and

$$
\alpha_1 = \alpha_2 = 1 \; , \quad \alpha_{2r+1} = \beta_r^{\ell_r} \; , \quad \alpha_{2r+2} = \beta_1^{\ell_{r1}} \beta_2^{\ell_{r2}} \; \cdots \; \beta_r^{\ell_{rr}} \; ,
$$

where $1 \leq \tau \leq s - 1$ and ℓ_r , ℓ_{σ_r} are integers with $\ell_r > 0$, $\ell_{rr} > 0$, $\ell_{\sigma_r} \geq 0$ for any σ , τ . Here, we can show that

$$
A^* \colon = (\alpha_{1}, \alpha_{2}, \cdots, \alpha_{2s-4})
$$

satisfies the condition $(P_{2s-4,s-2})$. In fact, for any given combination $I^* = ((i_1, \dots, i_{s-2}))$ of elements in $\{1, 2, \dots, 2s - 4\}$, if we take a combina tion $J: = ((j_1, \ldots, j_s)) \in \mathfrak{S}_{2s,s}$ with $J \neq I: = ((i_1, \ldots, i_{s-2}, 2s - 1, 2s))$ and $A_I = A_J$, we see easily

$$
1\leqq j_1<\cdots
$$

by observing the exponents of β_{s-1} and β_{s-2} in the expression of the both sides of the relation $A_I = A_J$ with β_r ($1 \leq \tau \leq s - 1$). Therefore, $J^* :=$ $((j_1, \dots, j_{s-2})) \in \mathfrak{F}_{2s-4,s-2}$ satisfies the conditions $I^* \neq J^*$ and $A^*_{J^*} = A^*_{I^*}.$ By the induction hypothesis, $A^* = (\alpha_1, \dots, \alpha_{2s-4})$ is of the type (A) or (B). But, there is no possibility of the type (B), because $\ell_{i_{\tau}} \geq 0$ for any i, τ and $\sharp M_{\sigma} = 2 \ (0 \leq \sigma \leq s - 1)$. So, A^* is of the type (A), namely, s is odd and $\alpha_{2r+1} = \alpha_{2r+2}$ if $1 \le r \le s - 3$. Now, for a combination $I :=$

 $((3,4,\dots, 2r+1, 2r+2, 2s-2, 2s-1, 2s)) \in \mathfrak{F}_{2s,s}$ take some $J = ((j_1, \dots j_s))$ with $I \neq J$ and $A_I = A_J$ according to the assumption, where $r = \frac{s - \mu}{2}$ By expressing $A_I = A_J$ with $\beta_1, \dots, \beta_{s-1}$ and observing the exponents of *s*₋₁, we have necessarily $j_{s-3} \leq 2s - 4$, $j_{s-1} = 2s - 1$, $j_s = 2s$ and $j_{s-2} =$ $2s-3$ or $=2s-2$. If $j_{s-2}=2s-2$, then there is a non-trivial algebraic relation among $\beta_1, \dots, \beta_{s-2}$, which is a contradiction. So, $j_{s-2} = 2s - 3$. Moreover, if we observe the exponents of $\beta_1, \dots, \beta_{s-3}$, it is easily seen that $j_i = 3, j_2 = 4, \dots, j_{s-3} = 2r + 2$. The relation $A_i = A_j$ implies $\alpha_{2s-2} = \alpha_{2s-3}$. For $I' := ((1,2,\dots,2r+1,2r+2,2s))$ taking a combination *J'* with $J' \neq I'$ and $A_{I'} = A_{J'}$, we can show also $\alpha_{2s-1} = \alpha_{2s}$ in the same manner as the above. Therefore, A is of the type (A) , which completes the proof of Lemma 3.6 for the case α .

4.3. The proof of Lemma 3.6 for the case β . Changing indices, for the exponents ℓ_{it} of β_t in the expression (3.1) of α_i ($1 \leq i \leq q$) we may assume that

$$
\ell_{1t} \geq \cdots \geq \ell_{n_{+}+1t} = \cdots = \ell_{n_{+}+n_0t} = 0 > \ell_{n_{+}+n_0+1t} \geq \cdots \geq \ell_{qt},
$$

where $n_+ \geq 1$ and $n_-: = q - (n_+ + n_0) \geq 1$ by the assumption. Moreover, after a replacement of β_t by β_t^{-1} if necessary, we may assume $n_+ \leq n_-$.

We shall show first

(4.4) Under the above assumptions, $1 \leq s - n_{+} < n_{0} \leq 2(s - n_{+})$ and $A^* = (\alpha_{n_{+}+1}, \ldots, \alpha_{n_{+}+n_0})$ has the property $(P_{n_0,s-n_+}).$

Proof. Since $\{\beta_1, \dots, \beta_t\}$ is an adequate basis, $\alpha_{i_{\tau}} = \beta_{\tau}^{\ell_{\tau}}$ ($\ell_{\tau} \neq 0$) for suitable i_1, \dots, i_t , whence $\ell_{i_t t} = 0$ for $\tau = 1, 2, \dots, t - 1$. Therefore,

$$
n_0 \geqq m_0 + (t-1) \geqq 2 + (t-1) \geqq s.
$$

We have then

$$
n_0 > s - n_+ > s - (n_+ + n_-) = s - (q - n_0) \geq n_0 - s \geq 0.
$$

And, since $n_{+} \leq n_{-}$,

$$
2(s - n_+) \geq 2s - (n_+ + n_-) \geq q - (q - n_0) = n_0.
$$

Now, let us take an arbitrary combination $I^*: = ((i_{n_{i+1}}, \dots, i_s))$ of elements in $\{n_+ + 1, \ldots, n_+ + n_0\}$. By the assumption of $A = (\alpha_1, \ldots, \alpha_q)$,

for a combination $I := ((1, 2, \dots, n_+, i_{n_+}, i_-, \dots, i_s))$ there is some $J = ((j_1, \dots, j_s))$ \cdots , *j*_{*s*})) \in $\mathfrak{F}_{q,s}$ with $J \neq I$ and $A_I = A_J$. Observe the exponents of β_t of A_i and A_j . As is easily seen,

$$
j_{1} = 1, \ldots, j_{n_{+}} = n_{+}, \qquad n_{+} + 1 \leq j_{n_{+}+1} \leq \ldots \leq j_{s} \leq n_{+} + n_{0}.
$$

This concludes $A^*{}_{I^*} = A^*{}_{J^*}$ for a combination J^* : = $((j_{n_++1}, \ldots, j_s))$ ($\neq I^*$). The assertion (4.4) is proved.

Obviously, the system $\{\beta_1, \dots, \beta_{t-1}\}\$ is a basis of $\{\{\alpha_{n_{t+1}}, \dots, \alpha_{n_{t+n_0}}\}\}.$ We can conclude from the induction hypothesis

$$
t-1\leq s-n_+-1\leq s-2
$$

and so $t \leq s - 1$. This completes the proof of (i) of Lemma 3.6. Let $t = s - 1$. Then, by the above inequalities, $n_{+} = 1$ and $A^* = (\alpha_{n_{+}+1},$ \cdots , $\alpha_{n_{+}+n_{0}}$ is of the type (A) or of the type (B). In any case, $n_{0} =$ $2(s - n_{+}) = 2s - 2$ and

$$
n_{-} = q - (n_{0} + n_{+}) \leq 2s - (2s - 2 + 1) = 1,
$$

whence $n_{-}=1$ and $q=2s$. In this situation, we shall show

(4.5) A* *cannot be of the type* (A).

Proof. Let A* be of the type (A). Then, we may put

$$
\alpha_1\!:\cdots:\alpha_{2s}=1:1:\beta_1^{\ell_1}:\beta_1^{\ell_1}\!:\cdots:\beta_{s-2}^{\ell_{s-2}}:\beta_{s-2}^{\ell_{s-2}}:\beta_{s-1}^{\ell_{s-1}}:\beta_1^{\ell_1}\cdots\beta_{s-1}^{\ell_{s-1}^{\ell_s}}
$$

by a suitable change of indices, where $s - 1$ is odd and ℓ_s , ℓ'_t are integers with $\ell_{\sigma} > 0$ ($1 \leq \sigma \leq s - 1$) and $\ell'_{s-1} < 0$. Consider first the case that some l' _c with $1 \le r \le s - 2$, say l' ₁, is positive. Putting $r = s/2$, for $I:=(3,4,\dots,2r-1,2r,2s-1,2s)$ \in $\mathfrak{F}_{2s,s}$ we take $J=(j_1,\dots,j_s)$ \in $\mathfrak{F}_{2s,s}$ such that $J \neq I$ and $A_I = A_J$. By comparing the exponents of β_1 of A_I and A_J , we see easily $j_s = 2s$. And, by observing the exponents of β_{s-1} of them, we have also $j_{s-1} = 2s - 1$. Then, since $I \neq J$, we get a non trivial relation among $\beta_1, \dots, \beta_{s-1}$, which is impossible. Consider next the case $\ell'_{\epsilon} \leq 0$ for any τ . Take in this case a combination $J' \in \mathfrak{F}_{2s,s}$ such that $J' \neq I'$ and $A_{J'} = A_{I'}$ for $I' := ((1, 2, \dots, 2r - 1, 2r)) \in \mathfrak{F}_{2s,s}.$ By comparing the exponents of $\beta_1, \dots, \beta_{s-1}$ of the both sides of $A_{J'} = A_{I'}$, we have necessarily a non-trivial relation among $\beta_1, \dots, \beta_{s-1}$. This is a contradiction. Thus, (4.5) holds.

To complete the proof, it suffices to show

(4.6) In the case A^* is of the type (B) , $(\alpha_1, \dots, \alpha_{2s})$ is also of the type *(B).*

Proof. Changing indices, we assume $A^* = (\alpha_1, \dots, \alpha_{2s-2})$. We may put by the assumption

$$
\alpha_1: \alpha_2: \cdots: \alpha_{2s} \n= 1: \cdots: 1: \beta_1': \cdots: \beta_{s-2}' : (\beta_1' \cdots \beta_{a_1}')^{-1}: \cdots: (\beta_{a_{k-2}+1}' \cdots \beta_{a_{k-1}}')^{-1}: \alpha_{2s-1}: \alpha_{2s}
$$

 $\text{and} \ \ \beta'_{\tau} = \beta'^{\epsilon_{\tau}}_{\tau} \ \ (1 \leqq \tau \leqq s - 2), \ \ \alpha_{2s - 1} = \beta'^{\epsilon_{s - 1}}_{s - 1}, \ \ \alpha_{2s} = \beta'^{\epsilon'_{1}}_{1} \beta'^{\epsilon'_{2}}_{2} \ \cdots \ \beta'^{\epsilon_{s - 1}}_{s - 1} \ \ \text{for} \ \ \text{a \ basis}$ $\{\beta_1, \dots, \beta_{s-1}\}\$ of $\{\{\alpha_1, \dots, \alpha_{2s}\}\}\$, where 1 appears $s - k + 1$ times repeatedly and $1 \leq k \leq s - 1$, $a_{\epsilon} - a_{\epsilon-1} \leq s - k$ and $\ell_1, \dots, \ell_{s-1}, \ell'_1, \dots, \ell'_{s-1}$ are in tegers with $\ell_{\tau} > 0$, $\ell'_{s-1} < 0$. Then, $\ell'_{\tau} \geq 0$ if $1 \leq \tau \leq a_{k-1}$. In fact, for example, if $\ell_1' \leq 0$, we have a non-trivial relation among $\beta_1, \dots, \beta_{s-1}$ by observing a combination $J \in \mathfrak{S}_{2s,s}$ with $J \neq I$, $A_J = A_I$ for $I := ((s - k + 3,$ \cdots , 2s - k, 2s - 1, 2s)). Now, for I' : = ((s - k + 2, \cdots , 2s - k - 1, 2s -1, 2s)) let us take a combination J' : = $((j_1, \dots, j_s))$ with $J' \neq I'$, $A_{J'} = A_{I'}$. If $\ell'_i > 0$ for some τ $(1 \leq \tau \leq s - 2)$, then we have easily $j_s = 2s$ and a non-trivial relation among $\beta_1, \dots, \beta_{s-1}$. Therefore, $\ell'_{\tau} \leq 0$ for any τ (1 \leq $\tau \leq s - 1$) and, particularly, $\ell'_{\tau} = 0$ if $1 \leq \tau \leq a_{k-1}$. Moreover, as is easily seen, none of α_{j_r} ($1 \leq r \leq s$) are equal to α_{2s-k} , \cdots , α_{2s-2} , α_{2s} . If we cancel out some of $\alpha_{s-k+2}, \ldots, \alpha_{2s-k-1}, \alpha_{2s-1}$ in the both sides of the relation $A_{I'} = A_{J'}$, we obtain

$$
\beta_{\tau_1}^{\ell_{\tau_1}} \cdots \beta_{\tau_{b-1}}^{\ell_{\tau_{b-1}}} \alpha_{2s} = \alpha_{\sigma_1} \alpha_{\sigma_2} \cdots \alpha_{\sigma_b} = 1,
$$

where $1 \leq b \leq s - k + 1$, $a_{k-1} < \tau_1 < \cdots < \tau_{b-1} \leq s - 1$ and $1 \leq \sigma_1 <$ $\cdots < \sigma_b \leq s - k + 1$. Changing notations and indices suitably, we may put

$$
\alpha_{2s}=(\beta_{a_{k-1}+1}^{\ell_{a_{k-1}+1}}\cdots\,\beta_{a_{k}}^{\ell_{a_{k}}})^{-1}
$$

If we replace each β^{ℓ_r} by β_r , we get the conclusion that A is of the type (B). We have thus Lemma 3.6.

§**5.** The smallest algebraic set including the image of $f \times g$.

5.1. Let f, g be meromorphic maps of C^n into $P^N(C)$. Assume that, for $2N + 2$ hyperplanes H_1, \cdots, H_{2N+2} in $P^N(C)$ located in general position, $f(C^n) \subset H_i$, $g(C^n) \subset H_i$ and $\nu(f, H_i) = \nu(g, H_i)$ $(1 \leq i \leq 2N + 2)$.

DEFINITION 5.1. We define the set $V_{f,q}$ to be the smallest algebraic

set in $P^N(C) \times P^N(C)$ which contains points $(f \times g)(z) = (f(z), g(z))$ for any $z \in \mathbb{C}^n$ – $(I(f) \cup I(g)$, where $I(f)$ and $I(g)$ are sets defined as (2.1) for the maps / and *g.*

(5.2) $V_{f,g}$ is an irreducible algebraic set.

Indeed, if $V_{f,g} = V_1 \cup V_2$ for two algebraic sets V_1, V_2 with $V_i \subseteq V_{f,g}$ then $A_i:=(f \times g)^{-1}(V_i)$ $(i=1,2)$ are analytic sets in C^n and $C^n=A_i \cup$ A_2 . Since C^n is irreducible, $C^n = A_1$ or $C^n = A_2$. Therefore, $V_{f,g} = V$ or $V_{f,q} = V_{2}$, which contradicts the assumption.

As in $\S 2$, taking admissible representations of f and g , we define holomorphic functions $F_f^{u_i}, F_a^{u_i}$ by (2.2) for each H_i ($1 \le i \le 2N + 2$) and $h_i = F_j^{\mu_i}/F_j^{\mu_i}$, where at least one h_i is assumed to be constant by a suitable choice of admissible representations.

We shall prove now the following theorem.

THEOREM 5.3. Suppose that among the functions h_1, \dots, h_{2N+2} there *exist* 2s functions $h_{i_1}, \dots, h_{i_{2s}}$ such that the canonical images $\alpha_i := [h_{i_1}],$ \cdots , α_{2s} : = [h_{in}] of h_i into the factor group H^*/C^* do not satisfy the *condition* $(P_{2s,s})$. Then, for the number $t = t([h_1], \dots, [h_{2N+2}])$

$$
\dim V_{f,g}\leq N-s+t.
$$

Before the proof of Theorem 5.3, we shall give

COROLLARY 5.4. (i) $V_{f,q}$ is always of dimension $\leq N$.

(ii) If dim $V_{f,q} = N$, the system $([h_1], \dots, [h_{2N+2}])$ in H^*/C^* has the *property* $(P_{2t+2,t+1})$ *for the number* $t = t([h_1], \dots, [h_{2N+2}]).$

Proof of Corollary 5.4. We choose $h_{i_1}, \dots, h_{i_{2t}}$ among h_1, \dots, h_{2N+2} suitably such that $t = t([h_{i_1}], \dots, [h_{i_{2t}}])$. Then, $([h_{i_1}], \dots, [h_{i_{2t}}])$ do not satisfy the condition $(P_{2t,t})$. For, if not, $t([h_{i_1}], \dots, [h_{i_{2t}}]) \leq t-1$ by Lemma 3.6, (i). Putting $s = t$, we can apply Theorem 5.3. So, under the assumption that Theorem 5.3 is valid, we obtain

$$
\dim V_{f,g} \leq (N-s) + s = N.
$$

On the other hand, if some $(2t + 2)$ -tuple $([h_{i_1}], \dots, [h_{i_{2t+2}}])$ $(1 \leq i_1 < \dots <$ $i_{2t+2} \leq 2N + 2$) do not satisfy the condition $(P_{2t+2,t+1})$, we can conclude

$$
\dim V_{f,g}\leq N-(t+1)+t=N-1
$$

from Theorem 5.3, which shows the conclusion (ii) of Corollary 5.4.

5.2. The proof of Theorem 5.3. Suppose that for 2s functions of h_1 , \cdots , h_{2N+2} , say $h_1, \cdots, h_s, h_{N+2}, \cdots, h_{N+s+1}$, ([h₁], \cdots , [h_s], [h_{N+2}], \cdots , [h_{N+s+1}]) do not satisfy the condition $(P_{2g,s})$. Since functions h_i are not changed by a change of homogeneous coordinates on $P^N(C)$ the hyperplanes H_i may be written as

$$
H_i: a_i^1 w_1 + \cdots + a_i^{N+1} w_{N+1} = 0 \qquad (1 \le i \le 2N+2)
$$

such that $a_i^j = \delta_i^j$ $(1 \leq i, j \leq N + 1)$, where $\delta_i^j = 0$ if $i \neq j$ and $= 1$ if *i* = *j*. Then, any minor of a matrix $(a_{N+j+1}^i; 1 \leq i, j \leq N + 1)$ does not vanish. Let us take functions $\eta_1, \dots, \eta_t \in H^*$ such that $\{[\eta_1], \dots, [\eta_t]\}$ gives a basis for $\{([h_1], \dots, [h_{2N+2}]\}]$ in H^*/C^* . Then each h_i $(1 \le i \le 2N + 2)$ can be written uniquely as

(5.5)
$$
h_i = c_i \eta_1^{\ell_{i1}} \eta_2^{\ell_{i2}} \cdots \eta_t^{\ell_{it}} \qquad (c_i \in \mathbb{C}^*, \ \ell_{i} \in \mathbb{Z})
$$

and $\eta_1^{\ell_1}\eta_2^{\ell_2} \cdots \eta_t^{\ell_t} \notin C^*$ for any $\ell_{\tau} \in Z$ with $(\ell_1, \ell_2, \cdots, \ell_t) \neq (0,0,\cdots, 0)$. Put $\ell_{it+1} = -(\ell_{i1} + \cdots + \ell_{it})$ and define rational functions

$$
H_i(u) = c_i u_1^{\ell_{i1}} u_2^{\ell_{i2}} \cdots u_{i+1}^{\ell_{i\ell+1}} \qquad (1 \leq i \leq 2N+2)
$$

of $t + 1$ variables $u = (u_1, \dots, u_{t+1})$. Each $H_i(u)$ is written as $H_i(u) =$ $H_t^*(u)/H_t^-(u)$ with homogeneous polynomials $H_t^*(u) = c_i \prod_{i=1}^{t+1} u^{t_i^+}$ and $H_i^-(u) = \prod_{i=1}^{t+1} u_i^{t_i}$ of the same degree, where $\ell_{i\tau}^+ = \max(\ell_{i\tau}, 0), \quad \ell_{i\tau}^- =$ $-\min(\ell_{i_{\tau}},0)$. Now, we consider the space $X:=P^{\prime}(C)\times P^{\prime\prime}(C)\times P^{\prime\prime}(C)$ and an algebraic set V^* consisting of all points

$$
(u, v, w) = (u_1: \cdots: u_{t+1}, v_1: \cdots: v_{N+1}, w_1: \cdots: w_{N+1}) \in X
$$

satisfying the equations

$$
(5.6)_i \qquad \qquad \left(\sum_{j=1}^{N+1} a_i^j v_j\right) H_i^-(u) = c_0 \left(\sum_{j=1}^{N+1} a_i^j w_j\right) H_i^+(u)
$$

 $(1 \ge i \ge 2i)$ + 2) for some non-zero constant c_0 . Let π_i $(i = 1, 2, 3)$ be the canonical projections defined as $\pi_1(u, v, w) = u$, $\pi_2(u, v, w) = v$ and union of all irreducible components V_i^* of V^* satisfying the conditions $\pi_3(u, v, w) = w$ ((*u,v,w*) $\in V^*$). We define an algebraic set V^{**} as the

(5.7) (1)
$$
\pi_1(V_i^*) = P^i(C)
$$
,
\n(2) $\pi_2(V_i^*) \subset \bigcup_{i=1}^{2N+2} H_i$ and $\pi_3(V_i^*) \subset \bigcup_{i=1}^{2N+2} H_i$.

And, we put \tilde{V} : = $(\pi_2 \times \pi_3)(V^{**})$, which is a subvariety of $P^N(C)$. Then,

$$
(5.8) \t\t V_{f,g} \subset \tilde{V} .
$$

To see this, we recall the definition of *hi* and the relation (5.5). For admissible representations $f = f_1: \cdots: f_{N+1}$ and $g = g_1: \cdots: g_{N+1}$, it holds that

$$
\sum_{j=1}^{N+1} a_i f_j = \left(\sum_{j=1}^{N+1} a_i' g_j \right) H_i(\eta_1, \dots, \eta_t, \eta_{t+1}) \qquad (1 \le i \le 2N+2) ,
$$

where $\eta_{t+1} \equiv 1$. This shows that, for a holomorphic map $\eta = \eta_1 : \eta_2$: \cdots : η_{t+1} of C^n into $P^t(C)$,

$$
(\eta \times f \times g)(z) := (\eta(z), f(z), g(z)) \in V^* \qquad (z \in C^n - (I(f) \cup I(g))) .
$$

Then, by the same argument as in the proof of (5.2) we see easily $(\eta \times f \times g)(C^n) \subset V_{i_0}^*$ for an irreducible component $V_{i_0}^*$ of V^* . On the other hand, by the assumption, $f(C^n) \subset \pi_1(V_{i_0}^*), g(C^n) \subset \pi_2(V_{i_0}^*), f(C^n) \subset \pi_2(V_{i_0}^*)$ $\bigcup_{i=1}^{2N+2} H_i$ and $g(C^n) \subset \bigcup_{i=1}^{2N+2} H_i$. Therefore, $V_{i_0}^*$ satisfies the condition (2) of (5.7). Moreover, by the property of the functions η , and the conclusion (2.9), $\eta(C^n)$ does not included in any proper subvariety of $P^t(C)$. So, $\eta(C^n) \subset \pi_1(V_{i_0}^*)$ implies $\pi_1(V_{i_0}^*) = P^t(C)$. By definition, $V_{i_0}^* \subset V^{**}$. And, we see

$$
(f \times g)(C^n) \subset (\pi_2 \times \pi_3)(V^{**}) = \tilde{V} .
$$

We have thus (5.8) by the definition of $V_{f,q}$.

Now, consider the equations

$$
(5.9) \quad \sum_{j=1}^{s} a_{i}^{j}(H_{i}(u) - H_{j}(u))w_{j} = -\sum_{j=s+1}^{N+1} a_{i}^{j}(H_{i}(u) - H_{j}(u))w_{j}
$$
\n
$$
(N+2 \leq j \leq N+s+1)
$$

obtained by substitutions of $v_i = c_0 H_i(u) w_i$ ($1 \le i \le N + 1$) into the rela tions (5.6) for $i = N + 2, \dots, N + s + 1$. We can prove here the following fact, which will be shown later.

(5.10) *Ψ(u)*: = de ^t *(a' N+i+1 (H N+ί+1 (u) - H {u)) ;l£i,j£ ⁸)&0 .*

By virtue of (5.10), the equations (5.9) can be resolved as

$$
w_{\tau} = \Phi_{\tau}(u_1, \ldots, u_{t+1}, w_{s+1}, \ldots, w_{N+1}) \qquad (1 \leq \tau \leq s)
$$

with rational functions Φ _c, whose denominators χ _c may be chosen as functions of u_1, \dots, u_{t+1} only. This implies that for any point (u, v, w) $= (u_1: \dots: u_{i+1}, v_1: \dots: v_{N+1}, w_1: \dots: w_{N+1})$ in V^{**} w_1, \dots, w_s are uniquely

determined by the values $u_1, \dots, u_{t+1}, w_{s+1}, \dots, w_{N+1}$ if $\chi_t(u) \neq 0 \ (1 \leq \tau \leq s).$ On the other hand, each v_j ($1 \leq j \leq N + 1$) is determined by u_1, \dots, u_{t+1} , w_1, \dots, w_{N+1} in view of $(5.6)_{i}$ for $i = 1, 2, \dots, N+1$ if $u_1u_2 \dots u_{t+1} \neq 0$. From these facts, we can conclude the map π^* of V^{**} into $C^t \times C^{N-s}$ defined as

$$
\pi^*(u_1: \cdots: u_{t+1}, v_1: \cdots: v_{N+1}, w_1: \cdots: w_{N+1})
$$
\n
$$
= \left(\left(\frac{u_1}{u_{t+1}}, \cdots, \frac{u_t}{u_{t+1}} \right), \left(\frac{w_{s+1}}{w_{N+1}}, \cdots, \frac{w_N}{w_{N+1}} \right) \right)
$$

is injective if the definition domain is restricted to the range

(5.11)
$$
u_1u_2 \cdots u_{t+1} \neq 0, \quad v_1v_2 \cdots v_{N+1} \neq 0, \quad w_1w_2 \cdots w_{N+1} \neq 0,
$$

$$
\chi_{\tau}(u) \neq 0 \quad (1 \leq \tau \leq s).
$$

By definition, any irreducible component of *V*** intersects with the range (5.11) in *X.* It follows

$$
\dim V_{f,g} \leqq \dim \tilde{V} \leqq \dim V^{**} \leqq t + (N - s) .
$$

Because, in general, in the case there exists a holomorphic map f of an irreducible complex space X_1 into X_2 , we can conclude dim $X_1 \leq \dim X_2$ if f is injective on some non-empty open set, and dim $X_2 \leq \dim X_1$ if f is surjective.

To complete the proof of Theorem 5.3, it remains to prove the assertion (5.10). To this end, we rewrite *Ψ(u)* as

$$
\mathit{\Psi}(u)=\det\begin{pmatrix}I_s,&I_s'\\ A,&A'\end{pmatrix},
$$

where I_s is the unit matrix of order *s* and $A = (a_j^{N+i+1}; 1 \le i, j \le s)$, $S_i = (\delta_i^j H_i(u); 1 \leq i, j \leq s)$ and $A' = (a_{N+i+1}^j H_{N+i+1}(u); 1 \leq i, j \leq s)$. Then, we see

$$
\mathit{\Psi}(\eta)\colon=\mathit{\Psi}(\eta_1,\,\cdot\cdot\cdot,\eta_t,1)=\det\begin{pmatrix}I_s&I_s^{\prime\prime}\\A&A^{\prime\prime}\end{pmatrix},
$$

where $I''_s = (\delta_i^j h_i; 1 \leq i, j \leq s)$ and $A'' = (a'_{N+i+1} h_{N+i+1}; 1 \leq i, j \leq s)$. On the other hand, it is easily seen that any minor of a $2s \times s$ matrix $\begin{pmatrix} I_s \\ A \end{pmatrix}$ of order *s* does not vanish. If $\Psi(\eta) \equiv 0$, then $([h_1], \cdots, [h_s], [h_{N+2}],$ \cdots , $[h_{N+s+1}]$) satisfies the condition $(P_{2s,s})$ by (2.8), which contradicts the assumption. Therefore, $\Psi(\eta) \neq 0$. We can conclude the assertion (5.10).

$§ 6.$ Algebraically non-degenerate meromorphic maps.

6.1. We give first

DEFINITION 6.1. Let f be a meromorphic map of C^n into $P^N(C)$. We shall call f to be *algebraically non-degenerate* if $f(C^n)$ is not in cluded in any proper subvariety of $P^N(C)$.

As in the previous sections, consider meromorphic maps f, g of C^n into $P^N(C)$ such that for hyperplanes H_1, \cdots, H_{2N+2} in general position H_i *,* $g(C^n) \subset \mathbb{H}_i$ and $\nu(f, H_i) = \nu(g, H_i)$ (1 $\leq i \leq 2N + 2$).

(6.2) *If f or g is algebraically non-degenerate, then the algebraic set* $V_{f,g}$ defined as in Definition 5.1 is of dimension N.

Proof. It may be assumed that f is algebraically non-degenerate. Obviously, $f(C^n) \subset \pi_1(V_{f,g})$. By the assumption, $\pi_1(V_{f,g})$ cannot be a proper subvariety of $P^N(C)$. Therefore

$$
\dim V_{f,g}\geqq \dim \pi_1(V_{f,g})=N.
$$

Corollary 5.4 yields dim $V_{f,g} = N$. q.e.d.

Let h_i ($1 \le i \le 2N + 2$) be functions defined as (2.4) and assume that at least one of them is constant.

PROPOSITION 6.3. *In the above situation, if f or g is algebraically non-degenerate, there exist elements* β_1, \cdots, β_t *in* H^*/C^* *such that*

(6.4)
$$
\begin{aligned} [h_1]: [h_2]: \cdots : [h_{2N+2}] \\ &= 1:1: \cdots :1: \beta_1: \cdots : \beta_t: (\beta_1 \cdots \beta_{a_1})^{-1}: \cdots : (\beta_{a_{k-1}+1} \cdots \beta_t)^{-1}, \end{aligned}
$$

where 1 appears $2N - k - t + 2$ times repeatedly in the right hand side *and* $t = t([h_1], \dots, [h_{2N+2}]), \ a_{\kappa} - a_{\kappa-1} \leq t - k + 1$ (let $a_0 = 0$ and $a_{\kappa} = t$).

To prove this, we need the following

LEMMA 6.5. Assume that h_i $(1 \leq i \leq 2N + 2)$ are represented as

$$
h_i = c_i \eta_1^{\ell_{i1}} \eta_2^{\ell_{i2}} \cdots \eta_i^{\ell_{i\ell}} \qquad (c_i \in \mathbb{C}^*, \ \ell_{i,\tau} \in \mathbb{Z})
$$

with functions $\eta_1, \dots, \eta_t \in H^*$, where $t = t([h_1], \dots, [h_{2N+2}])$. Then, there

is no possibility that, for some τ *, exactly one of integers* $\ell_1, \ell_2, \dots, \ell_{2N+2\tau}$ *is not zero and the others vanish.*

Proof. Without loss of generality, we may assume

$$
\ell_{1t} = \ell_{2t} = \cdots = \ell_{2N+1t} = 0 \; , \qquad \ell_{2N+2t} = 1 \; .
$$

As is stated in § 2, there is a relation (2.5) among h_1, \dots, h_{2N+2} . Therefore

$$
\det (a_i^1, \, \cdots, a_i^{N+1}, a_i^1 H_i(\eta), \, \cdots, a_i^{N+1} H_i(\eta) ; \, 1 \leq i \leq 2N+2) \equiv 0 ,
$$

where $H_i(\eta)$ are given by substitutions of $u_i = \eta$, into

$$
H_i(u)=c_iu_1^{\ell_{i1}}u_2^{\ell_{i2}}\cdots u_t^{\ell_{it}}.
$$

According to (2.9), we have then

$$
\det (a_i^1, \dots, a_i^{N+1}, a_i^1 H_i(u), \dots, a_i^{N+1} H_i(u); 1 \le i \le 2N + 2) \equiv 0
$$

as a rational function of u_1, \dots, u_t . Substitute $u_t = 0$ into this identity. We get by the assumption

$$
\det \begin{pmatrix} a_1^1, & \cdots, a_1^{N+1}, & a_1^1H_1(u), & \cdots, a_1^{N+1}H_1(u) \\ \cdots & & \cdots & \\ a_{2N+1}^1, & \cdots, a_{2N+1}^{N+1}, & a_{2N+1}^1H_{2N+1}(u), & \cdots, a_{2N+1}^{N+1}H_{2N+1}(u) \\ \vdots & \vdots & \ddots & \\ a_{2N+2}^1, & \cdots, & a_{2N+2}^{N+1}, & 0, & \cdots, & 0 \end{pmatrix} \equiv 0.
$$

It then follows

$$
\det \begin{bmatrix} a_1^1, & \cdots, a_1^{N+1}, & a_1^1h_1, & \cdots, a_1^{N+1}h_1 \\ & \cdots & & \cdots \\ a_{2N+1}^1, & \cdots, a_{2N+1}^{N+1}, & a_{2N+1}^1h_{2N+1}, & \cdots, a_{2N+1}^{N+1}h_{2N+1} \\ a_{2N+2}^1, & \cdots, a_{2N+2}^{N+1}, & 0, & \cdots, 0 \end{bmatrix} \equiv 0 \; .
$$

In this situation, by the well-known argument any solutions $(x_1, \dots, x_{N+1},$ y_1, \dots, y_{N+1} of the linear equations

$$
\sum_{j=1}^{N+1} a_i^j x_j = \sum_{j=1}^{N+1} a_i^j h_i(z) y_j \qquad (1 \le i \le 2N+1)
$$

satisfy simultaneously an equation

$$
\sum_{j=1}^{N+1} a_{2N+2}^j x_j = 0
$$

for any fixed z . In particularly, the identities

$$
\sum_{j=1}^{N+1} a_i^j f_j(z) = \sum_{j=1}^{N+1} a_i^j h_i(z) g_j(z) \qquad (1 \le i \le 2N+1)
$$

yield

$$
\sum_{j=1}^{N+1} a_{2N+2}^j f_j \equiv 0 \; .
$$

This shows $f(C^n) \subset H_{2N+2}$, which contradicts the assumption. We have thus Lemma 6.5. $q.e.d.$

6.2. Proof of Proposition 6.3. By the assumption and (6.2), dim $V_{f,q}$ $N = N$ and, by virtue of Corollary 5.4, (ii), the system $([h_1], \dots, [h_{2N+2}])$ satisfies the condition $(P_{2t+2,t+1})$. In Lemma 3.4 considering the case $q = 2N + 2$, $r = 2t + 2$ and $s = t + 1$, we can conclude that $2N - 2t + 2$ elements of $[h_1], \dots, [h_{2N+2}]$ are equal to each others. By suitable choices of an admissible representation of f and indices, we may assume

$$
h_1 \sim h_2 \sim h_{2t+3} \sim \cdots \sim h_{2N+2} \sim 1.
$$

Then, $A:=(h_1], \dots, [h_{2t+2}])$ satisfies the condition $(P_{2t+2,t+1})$ and $t=$ According to Lemma 3.6, $([h_1], \dots, [h_{2t+2}])$ is represented as one of the types (A) and (B) of Lemma 3.6, (ii) if we put $s = t + 1$ and $\alpha_i = [h_i]$. For the case of the type (B), we may put by a suitable change of indices

$$
[h_1]: [h_2]: \cdots : [h_{2N+2}]
$$

= 1: 1: $\cdots : 1 : \beta_1 : \cdots : \beta_t : (\beta_1 \cdots \beta_{a_1})^{-1} : \cdots : (\beta_{a_{k-1}+1} \cdots \beta_{a_k})^{-1},$

where 1 appears $2N + 2 - (t + k)$ times and $a_{t} - a_{t-1} \leq t + 1 - k$. Moreover, by Lemma 6.5 there is no possibility $a_k < t$. We have the conclusion of Proposition 6.3.

Let us consider the case *A* is of the type (A). We may put then

(6.6)
$$
[h_1]: [h_2]: \cdots : [h_{2N+2}] = 1:1: \beta_1: \beta_1: \cdots : \beta_t: \beta_t:1: \cdots :1
$$

with suitable β_1, \dots, β_t in H^*/C^* , where t is an even number. We shall show here $t = N$. Suppose $t \leq N$. As was already seen, any chosen $2t + 2$ elements among $[h_1], \dots, [h_{2N+2}],$ particularly, $\alpha_i := [h_1], \dots, \alpha_{2t+1}$ $=[h_{2t+1}], a_{2t+2} := [h_{2t+3}]$ satisfies the condition $(P_{2t+2,t+1})$. For a combina tion $I = ((1, 2, \dots, t, 2t + 2)) \in \mathfrak{S}_{2t+2,t+1}$ observe $J = ((j_1, \dots, j_{t+1})) \in \mathfrak{S}_{2t+2,t+1}$ such that $J \neq I$ and

$$
\alpha_{i_1}\alpha_{i_2}\cdots\alpha_{i_{t+1}}=\alpha_{j_1}\alpha_{j_2}\cdots\alpha_{j_{t+1}}.
$$

Then, we have necessarily a relation among β_1, \dots, β_t because *t* is even. This is a contradition. Thus, $t = N$.

To complete the proof of Proposition 6.3, we shall prove that (6.6) cannot occur for $t = N$. Assume the contrary. Changing indices, we may put $h_{N+1} \equiv 1$ and $h_{N+i+1} = c_i h_i$ $(1 \leq i \leq N+1)$ for some constants $c_i \in \mathbb{C}^*$, where $[h_1], \dots, [h_N]$ give a basis of $\{([h_1], \dots, [h_{2N+2}]\})$. Moreover, for these choices of indices, given hyperplanes

$$
H_i: a_i^1 w_1 + a_i^2 w_2 + \cdots + a_i^{N+1} w_{N+1} = 0 \qquad (1 \le i \le 2N+2)
$$

may be assumed to satisfy the condition that $a_i^j = \delta_i^j$ ($1 \leq i, j \leq N + 1$). Then, by substituting $f_i = h_i g_i$ $(1 \leq i \leq N + 1)$ into the identities

$$
(6.7)_i \qquad \sum_{j=1}^{N+1} a_{N+i+1}^j f_j = c_i h_i \left(\sum_{j=1}^{N+1} a_{N+i+1}^j g_j \right) \qquad (1 \leq i \leq N+2) ,
$$

we have relations

$$
\alpha_i^1 h_1 + \alpha_i^2 h_2 + \cdots + \alpha_i^N h_N + \alpha_i^{N+1} = 0 \qquad (1 \leq i \leq N+1) ,
$$

where

$$
\alpha_i^j\colon =a_{N+i+1}^jg_j-c_i\delta_i^j\left(\sum_{j=1}^{N+1}a_{N+i+1}^jg_j\right).
$$

Eliminate h_1, \dots, h_N from these equations. We obtain

$$
\chi(g_1, \, \cdots, g_{N+1}) : = \det (\alpha_i^j \, ; \, 1 \leq i, j \leq N+1) \equiv 0 \; .
$$

By the assumption, we may consider g to be algebraically non-degenerate. So, there is no non-trivial algebraic relation among g_1, \dots, g_{N+1} . This implies that χ vanishes identically as a polynomial of independent variables g_1, \dots, g_{N+1} . In particular, for any *i*, if we put $g_i = 1, g_1 = \dots =$ $g_{i-1} = g_{i+1} = \cdots = g_{N+1} = 0,$

$$
\chi(0,\,\cdot\cdot\cdot,0,1,0,\,\cdot\cdot\cdot,0)\\ = (-1)^{N}c_{1}\cdot\cdot\cdot c_{i-1}(1-c_{i})c_{i+1}\cdot\cdot\cdot c_{N+1}a_{N+2}^{i}\cdot\cdot\cdot a_{2N+2}^{i}=0.
$$

Therefore, $c_1 = c_2 = \cdots = c_{N+1} = 1$, because $a_j^i \neq 0$ by the assumption that H_1, \ldots, H_{2N+2} are located in general position. Since

$$
\det\left(\alpha_{i}^{j}\,;\,1\leq i,j\leq N\right)\not\equiv0
$$

by the algebraically non-degeneracy of g , we can solve the functions h_i from *N* equations (6.7) , $(1 \le i \le N)$ by the well-known Cramer's formula.

For example, we get $h_1 \equiv 1$. This contradicts the fact that $([h_1], \dots, [h_N])$ is a basis of $\{([h_1], \dots, [h_{2N+2}]\})$. We have thus the desired conclusion. Proposition 6.3 is completely proved. $q.e.d.$

Remark 6.8. We cannot assert that all cases of the conclusion of Proposition 6.3 occur. In fact, for example, in the case $N = 3$, the only case $t = 3$, $k = 3$, $a_1 = a_2 = a_3 = 1$ is possible (cf., § 7.2).

Proposition 6.3 can be restated in a form not including the functions h_i explicitly. In the same situation as in Proposition 6.3, we consider holomorphic functions $F_f^{H_i} = \sum_{j=1}^{N+1} a_i^j f_j$ and $F_g^{H_i} = \sum_{j=1}^{N+1} a_i^j g_j$ $(1 \le i \le j)$ $2N + 2$) defined as (2.2) , where

$$
H_i: a_i^1 w_1 + \cdots + a_i^{N+1} w_{N+1} = 0
$$

and *f*, *g* have admissible representations $f = f_1 : f_2 : \cdots : f_{N+1}$, $g = g_1 : g_2$: \cdots : g_{N+1} respectively.

THEOREM 6.9. // *either f or g is algebraically non-degenerate, there are relations between f and g such that, after a suitable change of indices,*

$$
F_j^{\mu_1} = c_1 F_j^{\mu_1}, \cdots, F_j^{\mu_\ell} = c_\ell F_q^{\mu_\ell}
$$

\n
$$
F_j^{\mu_{\ell+1}} \cdots F_j^{\mu_{\ell+a_1}} F_j^{\mu_{\ell+a_1}} F_j^{\mu_{\ell+t+1}} = c_{\ell+1} F_q^{\mu_{\ell+1}} \cdots F_q^{\mu_{\ell+a_1}} F_q^{\mu_{\ell+t+1}}
$$

\n
$$
F_j^{\mu_{\ell+a_1+1}} \cdots F_j^{\mu_{\ell+a_2}} F_j^{\mu_{\ell+t+2}} = c_{\ell+2} F_q^{\mu_{\ell+a_1+1}} \cdots F_q^{\mu_{\ell+a_2}} F_q^{\mu_{\ell+a_2+2}}
$$

\n
$$
\cdots \cdots \cdots \cdots \cdots
$$

\n
$$
F_j^{\mu_{\ell+a_{k-1}+1}} \cdots F_j^{\mu_{\ell+t}} F_j^{\mu_{\ell+a_k+2}} = c_{\ell+k} F_q^{\mu_{\ell+a_{k-1}+1}} \cdots F_q^{\mu_{\ell+t}} F_q^{\mu_{2N+2}},
$$

 $where \ c_i \in C^*, \ 0 \leqq t \leqq N, \ 2 \leqq \ell \leqq N + 1, \ k = 2N - \ell - t + 2, \ a_{\epsilon} - a_{\epsilon-1} \leqq$ $t - k + 1$ (put $a_0 = 0$, $a_k = t$).

The proof is evident by Proposition 6.3 except the assertion $\ell \leq$ $N + 1$. This is due to the fact that, if $\ell \geq N + 2$, f is (linearly) degenerate as was shown in the proof of Theorem II in [3], p. 12.

6.3. Now, we give the uniqueness theorem of meromorphic maps stated in §1.

THEOREM 6.10. Let f, g be meromorphic maps of C^n into $P^N(C)$ *such that* $f(C^n) \subset H_i$, $g(C^n) \subset H_i$ and $v(f, H_i) = v(g, H_i)$ for $2N + 3$ *hyperplanes H^t in general position. If f or g is algebraically non-degenerate, then* $f \equiv g$.

Proof. Assume that $f \not\equiv g$ and consider the functions h_1, \dots, h_{2N+3} defined as (2.4). By (2.8) and Lemma 3.4, there are at least three mutually distinct indices, say 1, 2, 3, such that $h_1 \sim h_2 \sim h_3$. Apply Pro position 6.3 to maps f, g and $2N + 2$ hyperplanes H_2, \dots, H_{2N+3} . After a suitable change of indices, we may put

$$
[h_2]: \cdots : [h_{2N+3}]
$$

= 1: 1: $\cdots : 1 : \beta_1 : \cdots : \beta_t : (\beta_1 \cdots \beta_{a_1})^{-1} : \cdots : (\beta_{a_{k-1}+1} \cdots \beta_t)^{-1},$

 $\text{where} \;\; \beta_1, \, \cdots, \beta_t \, \in H^*/C^*, \;\; t = t([h_1], \, \cdots, [h_{2N+3}]) \;\; (\geq 1), \;\; 1 \leq a_1 \leq \, \cdots \leq a_{k-1}$ $\leq t$ and 1 is repeated $2N + 2 - t - k$ times. Then, if we take functions *η_i* with $[\eta_i] = \beta_i$ ($1 \leq i \leq t$) and represent functions h_i ($1 \leq i \leq 2N + 2$) as

$$
h_i = c_i \eta_1^{i_{i1}} \cdots \eta_i^{i_{it}} \qquad (c_i \in \mathbb{C}^*, \ell_{ij} \in \mathbb{Z}) ,
$$

 $h_{2-kt} = 1$ and $\ell_{it} = 0$ for any other *i* because h_{2N+3} is omitted. This contradicts Lemma 6.5. Thus, we can conlcude $f \equiv g$. q.e.d.

In Theorem 6.3, the number $2N + 3$ of given hyperplanes cannot be replaced by $2N + 2$. In fact, we can construct two distinct algebraically non-degenerate moromorphic maps f and g of $Cⁿ$ into $P^N(C)$ such that $\nu(f, H_i) = \nu(g, H_i)$ for $2N + 2$ hyperplanes H_i in general position. Put $N = 2M$ in the case N is even and $N = 2M + 1$ in the case N is odd. Take $2N + 2$ hyperplanes H_1, \cdots, H_{2N+2} defined as (2.3) which are located in general position and satisfies the conditions;

(i) $a_i^j = \delta_i^j$ $(1 \le i,j \le N + 1),$

 (iii) $a_{N+M+i+1}^{j} = a_{N+i+1}^{M+j}, a_{N+M+i+1}^{M+j} = a_{N+i+1}^{j}$ $(1 \leq i, j \leq M)$,

 (iii) $a^{N+1}_{N+i+1} = a^i_{2N+2} = 1$ $(1 \leq i \leq N + 1)$ in the case *N* is even and $a_{N+M+i+1}^{\star} = a_{N+i+1}^{\star}, \; a_{N+M+i+1}^{\star} = a_{N+i+1}^{\star}, \; a_{2N+1}^{\star} = a_{2N+1}^{\star\star}, \; a_{2N+2}^{\star} = -a_{2N+2}^{\star\star} \; \; (1 \leq i \leq n)$ *M*), $a_{2N+1}^N = a_{2N+1}^{N+1}$, $a_{2N+2}^N = -a_{2N+2}^{N+1}$ in the case *N* is odd.

And, choosing algebraically independent functions η_1, \dots, η_N in H^* , we p ut

 $(\eta_1^*, \eta_2^*, \cdots, \eta_{2N+2}^*)$: $=(\eta_1, \cdots, \eta_M, \eta_1^{-1}, \cdots, \eta_M^{-1}, 1, \eta_{M+1}, \cdots, \eta_{2M}, \eta_{M+1}^{-1}, \cdots, \eta_{2M}^{-1}, 1)$

in the case *N* is even and

$$
(\eta_1^*, \eta_2^*, \cdots, \eta_{2N+2}^*)
$$

$$
:= (\eta_1, \cdots, \eta_M, \eta_1^{-1}, \cdots, \eta_M^{-1}, \eta_N, \eta_N^{-1}, \eta_{M+1}, \cdots, \eta_{2M}, \eta_{M+1}^{-1}, \cdots, \eta_{2M}^{-1}, 1, -1)
$$

in the case *N* is odd. We define meromorphic maps $f = f_1 : f_2 : \cdots : f_{N+1}$

and $g = g_1: g_2: \cdots: g_{N+1}$ of C^n into $P^N(C)$ by the condition

(6.11)
$$
\sum_{i=1}^{N+1} \beta_i^j g_j = 0 \qquad (1 \le i \le N)
$$

and

$$
f_i = \eta_i^* g_i \qquad 1 \leq i \leq N+1 \;,
$$

where

$$
\beta_i^j := a_{N+i+1}^j(\eta_{N+i+1}^* - \eta_j^*) \; .
$$

As is easily seen,

 $\det (\beta_i^j) \equiv 0$.

Therefore, in addition to (6.11), we have

$$
\sum_{j=1}^{N+1} a_i^j f_j = \eta_i^* \left(\sum_{j=1}^{N+1} a_i^j g_j \right) \qquad (1 \le i \le 2N+2)
$$

and so f and g satisfy the desired conditions $\nu(f, H_i) = \nu(g,$ $(1 \leq i \leq 2N + 2).$

§7. Meromorphic maps into $P^2(C)$ or $P^3(C)$.

7.1. In the last section of the previous paper [3], the author in vestigated the possible types of relations between two meromorphic maps f and g of C^n into $P^2(C)$ satisfying the condition $\nu(f, H_i) = \nu(g, H_i)$ for six hyperplanes H_i ($1 \leq i \leq 6$) in general position. In this place, we shall study them for the possible cases more precisely under the assump tion that f or g is algebraically non-degenerate. In the following, we shall exclude the trivial case $f \equiv g$.

According to Proposition 6.3, the functions $h_i := F_f^{H_i}/F_g^{H_i}$ ($1 \le i \le 6$) defined as (2.4) may be assumed to be written as (6.4) with some β_1 , \cdots , β_t in H^*/C^* after a suitable change of indices, where $t = t([h_1],$ \cdots , $[h_6]$). Here, 1 appears at most three times by the assumption $f \neq g$. So, $t = 2$ and there are only two possible cases;

- $\alpha)$ $[h_1]: \cdots :[h_{\mathfrak{s}}]=1:1:1:$
- (β) $[h_1]: \cdots : [h_6]=1:1: \beta_1:$

Let us study first the case (α) .^{*} By suitable choices of homogeneous coordinates on $P^2(C)$ and admissible representations $f = f_1 : f_2 : f_3$ and $g = g_1 : g_2 : g_3$, we may put

(7.1)
$$
H_i: w_i = 0 \t (i = 1, 2, 3)
$$

$$
H_i: aw_1 + bw_2 + w_3 = 0
$$

$$
H_i: cw_1 + dw_2 + w_3 = 0
$$

$$
H_6: w_1 + w_2 + w_3 = 0
$$

and

(7.2)
$$
f_1 = x_1 g_1, f_2 = x_2 g_2, f_3 = g_3
$$

$$
F_f^{H_4} = \eta_1 F_g^{H_4}, F_f^{H_5} = \eta_2 F_g^{H_4}, F_f^{H_6} = x_3 (\eta_1 \eta_2)^{-1} F_g^{H_6},
$$

where $a, b, c, d, x_1, x_2, x_3 \in \mathbb{C}^*$, $\eta_1, \eta_2 \in H^*$ with $t([\eta_1], [\eta_2]) = 2$ and $F_f^{\pi_i}, F_g^{\pi_i}$ are holomorphic functions defined as (2.2) for the above H_i , f and g . We have then

$$
F_f^{H_4} F_f^{H_5} F_f^{H_6} = x_3 F_g^{H_4} F_g^{H_5} F_g^{H_6}.
$$

Here, the left hand side can be rewritten with g_1, g_2, g_3 . Since g may be assumed to be algebraically non-degenerate, this is regarded as an identity of polynomials of independent variables g_1, g_2, g_3 . By the uniqueness of factorization of a polynomial each factor in one side of this identity coincides with some factor in the other side. From this fact, we can conclude easily

$$
x_1 = \omega , \quad x_2 = \omega^2 , \quad x_3 = 1
$$

and

$$
a=\omega\ ,\quad b=\omega^{\scriptscriptstyle 2}\ ,\quad c=\omega^{\scriptscriptstyle 2}\ ,\quad d=\omega
$$

after a suitable change of indices, where ω denotes a primitive third root of unity. Then, by eliminating f_1, f_2, f_3 from the relations (7.2) and resolving g_1, g_2, g_3 we obtain

$$
g = g_1 \colon g_2 \colon g_3 = 1 + \omega^2 \eta_1 + \omega \eta_1 \eta_2 \colon \omega^2 + \eta_1 + \omega \eta_1 \eta_2 \colon \omega(1 + \eta_1 + \eta_1 \eta_2) ,
$$

$$
(h_1,\cdots,h_6)=(1,c_2,c_3,h,h^*,c_4(hh^*)^{-1})
$$

should be called to be of the type (VIII).

^{*)} In [3], pp. $21 \sim 22$, some statements should be corrected. By corrected calculations given in this paper the relation (7.4) in [3], p. 21 has a system of solutions with the desired properties as an equation with unknowns c^i and a^i_j . The type

which is algebraically non-degenerate. And, if we consider a trans formation

$$
L_{\scriptscriptstyle 1}\colon\>\> w_{\scriptscriptstyle 1}\!: w_{\scriptscriptstyle 2}\!: w_{\scriptscriptstyle 3} \mapsto \omega w_{\scriptscriptstyle 1}\!: \omega^{\scriptscriptstyle 2} w_{\scriptscriptstyle 2}\!: w_{\scriptscriptstyle 3}
$$

of $P^2(C)$, f and g are related as $L_i \cdot g = f$. We note here that L_i is a projective linear transformation of $P^2(C)$ onto itself which maps hyperplanes H_1, H_2, \dots, H_6 onto $H_1, H_2, H_3, H_5, H_6, H_4$ respectively.

Let us consider next the case (β) . For the given hyperplanes (7.1) and the above functions f_i , g_i , $F_f^{H_i}$ and $F_g^{H_i}$, we may put

(7.3)
$$
f_1 = \eta_1 g_1, \quad f_2 = \eta_2 g_2, \quad f_3 = g_3
$$

$$
F_f^{H_4} = y_1 \eta_1^{-1} g_1, \quad F_f^{H_5} = y_2 \eta_2^{-1} F_g^{H_5}, \quad F_f^{H_6} = y_3 F_g^{H_6}
$$

after a change of indices, where $y_1, y_2, y_3 \in \mathbb{C}^*$, $\eta_1, \eta_2 \in H^*$ and $= 2$. By eliminating f_i, g_i from these relations, we get

$$
\begin{vmatrix} a(\eta_1^2-y_1) & b(\eta_1\eta_2-y_1) & \eta_1-y_1 \\ c(\eta_1\eta_2-y_2) & d(\eta_2^2-y_2) & \eta_2-y_2 \\ \eta_1-y_3 & \eta_2-y_3 & 1-y_3 \end{vmatrix} \equiv 0 \; ,
$$

which may be regarded as an identity with independent variables η_1, η_2 . By elementary calculations we see

$$
y_1 = y_2 = y_3 = 1 , b + c = 2a , a = d .
$$

On the other hand, we have by (7.3)

$$
f_3 = g_3
$$

\n
$$
f_1(af_1 + bf_2 + f_3) = g_1(ag_1 + bg_2 + g_3)
$$

\n
$$
f_2(cf_1 + df_2 + f_3) = g_2(cg_1 + dg_2 + g_3)
$$

\n
$$
f_1 + f_2 = g_1 + g_2
$$

which implies $f_1 = g_1$ or $f_1 = \frac{ag_1 + og_2 + g_3}{h}$. The former is the excluded $\frac{a}{a}$

case $f \equiv g$. For the latter case, we obtain

$$
g = g_1: g_2: g_3 = 1 - \eta_2: \eta_1 - 1: (a - b)\eta_1\eta_2 + a\eta_1 - a\eta_2 + b - a
$$

and maps f and g are related as $L_2 \cdot g = f$ with a projective linear transformation

$$
L_2: w_1: w_2: w_3 \mapsto \frac{aw_1 + bw_2 + w_3}{b-a} : \frac{cw_1 + dw_2 + w_3}{c-d} : w_3
$$

of $P^2(C)$ which maps H_1, H_2, \dots, H_6 onto $H_4, H_5, H_3, H_1, H_2, H_6$, respectively.

7.2. We shall study next algebraically non-degenerate meromorphic maps f and g of C^n into $P^3(C)$ such that $f \not\equiv g$ and $\nu(f, H_i) = \nu(g, H_i)$ for eight hyperplanes H_i ($1 \leq i \leq 8$) in general position. For the functions h_i ($1 \le i \le 8$) defined as (2.6), since we have only to consider the case $t = t([h_1], \dots, [h_s]) \leq 4$, the possible cases of Proposition 6.3 are reduced to the following four types;

$$
\begin{array}{ll}\n(\gamma) & [h_1]: \cdots: [h_s] = 1:1:1:1: \beta_1: \beta_2: \beta_3: (\beta_1\beta_2\beta_3)^{-1} \text{ ,} \\
(\delta) & [h_1]: \cdots: [h_s] = 1:1:1:1: \beta_1: \beta_1^{-1}: \beta_2: \beta_2^{-1} \text{ ,} \n\end{array}
$$

$$
\text{(e)} \quad [h_1]: \cdots: [h_s] = 1:1:1: \beta_1: \beta_2: (\beta_1 \beta_2)^{-1}: \beta_3: \beta_3^{-1} ,
$$

 $(\zeta) \quad [h_{\scriptscriptstyle 1}] \colon \cdots \colon [h_{\scriptscriptstyle 8}] = 1 \colon 1 \colon \beta_{\scriptscriptstyle 1} \colon \beta_{\scriptscriptstyle 1} \colon \beta_{\scriptscriptstyle 2} \colon \beta_{\scriptscriptstyle 2}^{-1} \colon \beta_{\scriptscriptstyle 3} \colon \beta_{\scriptscriptstyle 3}^{-1} \: .$

We can choose homogeneous coordinates on $P^3(C)$ so that

(7.4)
$$
H_i: w_i = 0 \t (i = 1, 2, 3, 4) \n H_{j+i}: a_j^1 w_1 + a_j^2 w_2 + a_j^3 w_3 + a_j^4 w_4 = 0 \t (j = 1, 2, 3, 4) ,
$$

where we may assume $a_i^j = 1$ whenever $i = 4$ or $j = 4$.

For the case (γ) or (δ), meromorphic maps $f = f_1 : f_2 : f_3 : f_4$ and $g = g_1: g_2: g_3: g_4$ are related as

(7.5)
$$
f_1 = x_1 g_1, \quad f_2 = x_2 g_2, \quad f_3 = x_3 g_3, \quad f_4 = g_4
$$

with some $x_1, x_2, x_3 \in \mathbb{C}^*$. Let us consider the functions $F_f^{H_i}$ and $F_g^{H_i}$ defined as (2.2). We obtain a relation

$$
F^{H_5}_\textit{f}F^{H_6}_\textit{f}F^{H_7}_\textit{f}F^{H_8}_\textit{f} = x_\textit{i}F^{H_5}_\textit{a}F^{H_6}_\textit{a}F^{H_7}_\textit{a}F^{H_8}_\textit{a}
$$

in the case (γ) and

$$
F_f^{H_5} F_f^{H_6} = x'_4 F_g^{H_6} F_g^{H_6} ,
$$

$$
F_f^{H_7} F_f^{H_8} = x'_5 F_g^{H_7} F_g^{H_8} ,
$$

in the case (δ), where $x_4, x'_4, x'_6 \in \mathbb{C}^*$. By (7.5), the left hand sides of these relations can be rewritten with g_1, \dots, g_4 By the assumption, g_1 , \ldots , g_4 may be considered as independent variables in the obtained relations. In both cases *(γ)* and (3), by comparing the factors of the both sides of these identities as in the consideration of the case (α) , we can conclude that all possible choices of constants *a{* with the desired pro perty contradict the assumption that any minor of the matrix *(a{)* does not vanish. The cases *(γ)* and *(β)* are both impossible.

Next, we shall study the case (ϵ) . We may put then

$$
\begin{array}{ll} f_1=x_1g_1\; , & f_2=x_2g_2\; , & f_3=x_3(\eta_1\eta_2)^{-1}g_3\; , & f_4=x_4\eta_3^{-1}g_4 \\ \sum\limits_{j=1}^4 a_i^ff_j=\eta_i\left(\sum\limits_{j=1}^4 a_i^fg_j\right) \qquad (i=1,2,3,4) \end{array}
$$

after a change of indices, where $x_1, \dots, x_4 \in C^*$, $\eta_1, \eta_2, \eta_3 \in H^*$, $t([\eta_1], [\eta_2],$ $[\eta_3]$ = 3 and, for convenience' sake, $\eta_4 \equiv 1$. Eliminating f_1, \dots, f_4, g_1 , \cdots , g_4 from these relations, we get

$$
\det\left(a_i^1\!(\eta_i-x_1),a_i^2\!(\eta_i-x_2),a_i^3\!(\eta_i\eta_1\eta_2-x_3),\eta_i\eta_3-x_4;1\leqq i\leqq 4\right)\equiv 0\;,
$$

which may be regarded as an identity with independent variables η_1, η_2, η_3 . Substitute $\eta_1 = \eta_2 = \eta_3 = 1$. By the assumption for a_i^j , we obtain $x_1 = 1$, $x_2 = 1$, $x_3 = 1$ or $x_4 = 1$. Let $x_1 = 1$. If we put $\eta_3 = \eta_4 = 1$, we see $x_2 = 1$ or $x_4 = 1$. For the case $x_1 = x_2 = 1$, we get by substituting $\eta_1 = 1$ an absurd identity

$$
(a_2^1a_3^2-a_2^2a_3^1)(a_1^3-1)(\eta_2-1)(\eta_3-1)(\eta_2-x_3)(\eta_3-x_4)=0.
$$

And, the case $x_1 = x_4 = 1$ is reduced to the case $x_1 = x_2 = 1$ by substituting $\gamma_3 = 1$. Thus, the case $x_1 = 1$ does not occur. By the same argument, we can show that the case $x_2 = 1$ is also impossible. Moreover, the case $x_3 = 1$ and the case $x_4 = 1$ are reduced to the case $x_1 = 1$ or $x_2 = 1$ by substituting $\eta_1 = \eta_2 = 1$ and $\eta_1 = \eta_3 = 1$ respectively. Concludingly, there is no possibility of the case (ϵ) .

As was shown above, the case (ζ) only is possible. In this case $f = f_1 : f_2 : f_3 : f_4$ and $g = g_1 : g_2 : g_3 : g_4$ may be considered to be related as

(7.6)
$$
f_i = x_i \eta_i^{-1} g_i
$$

$$
\sum_{j=1}^4 a_i^i f_j = \eta_i \left(\sum_{j=1}^4 a_i^i g_j \right) \qquad (1 \le i \le 4)
$$

after changing indices, where $x_1, \dots, x_4 \in C^*$, $\eta_1, \eta_2, \eta_3 \in H^*$, $=$ 3 and η_4 \equiv 1. As in the case (ε), we have an identity

(7.7)
$$
\det (a_i^j (\eta_i \eta_j - x_i); 1 \le i, j \le 4) \equiv 0 ,
$$

with independent variables η_1, η_2, η_3 and we can conclude that

$$
x_{\scriptscriptstyle 1} = x_{\scriptscriptstyle 2} = x_{\scriptscriptstyle 3} = 1\;,\qquad x_{\scriptscriptstyle 4} = -1
$$

by substituting suitable particular values of η_1, η_2, η_3 into (7.7). Here, we can find constants a_i^j such that (7.7) holds identically regarding η_1, η_2, η_3

as independent variables and any minor of the matrix *(a{)* does not vanish. And, for hyperplanes H_i defined as (7.4) with these constants *a{* we can take two distinct algebraically non-degenerate meromorphic maps f and g such that $\nu(f, H_i) = \nu(g, H_i)$ ($1 \leq i \leq 8$). We note here the example for the particular case $N = 3$ given in § 6.3 is a special type of the case stated here. As is easily seen by (7.6) , the set $V_{f,g}$ given in Definition 5.1 is included in an algebraic set

$$
z_i\left(\sum_{j=1}^4 a_i' z_j\right) = w_i\left(\sum_{j=1}^4 a_i' w_j\right) \qquad (i = 1, 2, 3)
$$

$$
\tilde{V}; \quad z_1 + z_2 + z_3 + z_4 = w_1 + w_2 + w_3 + w_4
$$

$$
z_4 = -w_4 ,
$$

where $(z_1 : z_2 : z_3 : z_4, w_1 : w_2 : w_3 : w_4)$ is a system of homogeneous coordinates on $P^3(C) \times P^3(C)$. The author does not know geometric meanings of the condition (7.7) for constants a_i and the algebric set \tilde{V} . Further studies in this direction are expected.

Added in proof: Recently, the author found a gap in the proof of Lemma 6.5. This is filled by the more precise study of possible types of h_i 's. The details are to be published elsewhere.

REFERENCES

- [1] E. Borel, Sur les zéros des fonctions entières, Acta Math., 20 (1897), 357-396.
- [2] H. Fujimoto, On meromorphic maps into the complex projective space, J. Math. Soc. Japan 26 (1974), 272-288.
- [3] H. Fujimoto, The uniqueness problem of meromorphic maps into the complex pro jective space, Nagoya Math. J., 58 (1975), 1-23.
- [4] R. Nevanlinna, Einige Eindeutigkeitssatze in der Theorie der meromorphen Funk tionen, Acta Math., 48 (1926), 367-391.
- [5] G. Pόlya, Bestimmung einer ganzen Funktionen endlichen Geschlechts durch vierer lei Stellen, Math. Tidsskrift B, København 1921, 19-21.

Nagoya University