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§ 1. Introduction.

In the previous paper [3], the author generalized the uniqueness
theorems of meromorphic functions given by G. Pόlya in [5] and R.
Nevanlinna in [4] to the case of meromorphic maps of Cn into the Λ7-
dimensional complex protective space PN(C). He studied two meromorphic
maps / and g of Cn into PN(C) such that, for q hyperplanes if* in PN(C)
with f(Cn) ίξ Hif g(Cn) <ξ Ht located in general position, the pull-backs
v(f,Hi) and v(g,Hi) of divisors (Hi) on PN(C) by / and g are equal to
each other. Under some additional assumptions, he revealed the existence
of some special types of relations between / and g. For example, he
showed that, if / or g is non-degenerate, namely, the image is not in-
cluded in any hyperplane in PN(C) and q = SN + 2, then / = g.

We consider in this paper meromorphic maps into PN(C) which are
algebraically non-degenerate, namely, whose images are not included in
any proper subvariety of PN(C). We give the following theorem.

THEOREM. Let f,g be meromorphic maps of Cn into PN(C) such
that v(f, H^ = v(g, Hi) for 2N + 3 hyperplanes Ht located in general
position. If f or g is algebraically non-degenerate, then f = g.

To show this, after giving some preliminaries (§ 2), we provide in § 3
some combinatorial lemmas which act essential roles in this paper. A
main one of them is proved in §4. And, in §5, the smallest algebraic
set Vftg in PN(C) which includes the set (/ x g)(Cn) is studied in the
case that 22V + 2 hyperplanes Ht with v(f, Ht) = v(g, J9ΓJ are given. It
is shown that Vft0 is an at most 2V-dimensional irreducible algebraic set.
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After these preparations, we prove the above theorem in § 6. We show

also the existence of some special types of relations between algebraically

non-degenerate meromorphic maps / and g such that v(f, Ht) = v(g, £Q

for 22V + 2 hyperplanes Hi in general position. In the last section, we

study meromorphic maps into P\C) or P\C) more precisely. For the

above meromorphic maps / and g, it is shown that they are related as

L-g=f with a special type of protective linear transformation L of

PN(C) in the case N = 2 and the algebraic set VftQ is included in an

algebraic set defined by some special types of equations of degree at

most two in the case N — 3.

§ 2. Preliminaries.

2.1. We shall recall some notations and results in the previous

paper [3],

Let / be a meromorphic map of Cn into PN(C). For arbitrarily fixed

homogeneous coordinates w1: w2: : wN+1 on PN(C), we can find holo-

morphic functions fλ{z)9 -9fN+i(z) on Cn such that the analytic set

(2.1) / ( / ) :={zeC; A(z) = . . . = fN+1(z) = 0}

is of codimension at least two and / is represented as

: /,(«): . : fN+1(z) (zeCn- /(/)) .

In the following, we shall call such a representation an admissible re-

presentation of f on Cn. As is easily seen, for two admissible repre-

sentations

/ = /i fz' * * ' /N+I — f\ ft: * :
 /N+I

of /,/i//i (=fi/fi (2 ^ i ^ N + 1)) is a nowhere zero holomorphic func-

tion on Cn. For a given hyperplane

H: aιwx + a2w2 + + <LN+1WN+I = 0

in PN(C) with f(Cn) 6; H, we define a holomorphic function

(2.2) Ff: = aιfλ + ... + α^+1/^+1

with an admissible representation / = / i : / 2 : ••• :/ΛΓ+I on Cn and denote

by v(f,H)(d) the zero multiplicity of Ff at a point aeCn, which is

uniquely determined independently of any choices of homogeneous co-

ordinates and admissible representations.
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Now, let us consider two non-constant meromorphic maps / and g

of Cn into PN(C) and q ( ^ 2N + 2) hyperplanes

(2.3) Ht: a\wλ + a\w2 + . . + αf+1wN+1 =0 (l^i^q)

in PN(C) located in general position. We shall study these maps under

the assumption that f(Cn) ξ Hί9 g(Cn) K Ht and v(f, Ht) = v(g, Ht) for

any i. We define functions

(2.4) hi = F?/F*<

with holomorphic functions Fψ and Ff* defined as (2.2) for arbitrarily

fixed admissible representations of / and g. By the assumption, each

hi is a nowhere zero holomorphic function on Cn and the ratios hi/hj

are uniquely determined independently of any choices of homogeneous

coordinates, representations (2.3) of Ht and admissible representations of

/ and g.

For the case q = 2N + 2, by eliminating fl9 •• ,/ΛΓ+1, g19--,gN+i

from the identities

αJΛ + + αf+ 1A+ 1 = ΛiCαJft + - - + af+1gN+1) ,

we obtain a relation

(2.5) det (αj, , αf+1, M l , , M f + 1 1 ̂  i ^ 2N + 2) = 0 .

Then, by the Laplace' expansion formula, we can show easily

(2.6) Among holomorphic functions hi satisfying the relation (2.5) there

is a relation of the type

l<ίl<' '<ίN+l^N + 2

where Ail...iN+1 are non-zero constants (cf., [3], Proposition 3.5).

2.2. Let /f* be the multiplicative group of all nowhere zero holo-

morphic functions on Cn. We may regard the set C* — C — {0} as a

subgroup of H*. Then, the factor group G: =H*/C* is a torsionfree

abelian group. We denote by [h] the class in G containing an element

h in H*. For two elements h, fc* e//*, by the notation h — h* we mean

[h] - [fe*] in G.

As an easy consequence of the classical theorem of E. Borel, we

know the following fact ([1], [2] and [3], Remark to Corollary 4.2).



120 HIROTAKA FUJIMOTO

(2.7) Let hu -—thpeH* satisfy the relation

a% + a% + . . . + aphp = 0

for some a1e C*. Then, for any hi9 there exists some hj (i Φ j)

such that hi ~ hj.

By (2.6) and (2.7), we can conclude

(2.8) Let al9a29 -9a2N+2 be elements in H*/C*. Assume that (2.5) holds

for suitable ht e H* with at = [fej and a (22V + 2) x (2V + 1) matrix

A = (a{) whose minors of degree N + 1 do not vanish. Then, for

any ix, , iN+1 (1 <Ξ ̂  < < iN+1 ^ 2N + 2), ίfcere exist some

3ι> > JV+I ^ i ^ 1 ^ Ji < < ?V+i ^ 2iV + 2 and {il9 , %+1} Φ

tfeαί

And, we have also

(2.9) Let hί9h29 -9ht be elements in H* such that h^hp h\*έC* /or

αn^/ integers (£ί9 , -#e) (Φ (0, , 0)). Then, for any not identically

zero polynomial P(X19 , X4), P(fei, , ht) does not vanish

identically.

For the proof, see Proposition 4.5 in [3].

§3. Combinatorial lemmas.

3.1. Let G be a torsionfree abelian group. Take a g-tuple A = (a19

---,aq) of elements at in G. We denote by {{a19 ••-,«,}}, or simply A,

the subgroup of G generated by α l f , <̂ α and t(A) the rank of A, where

t(A) = 0 means ax = = αα = 1 (=the unit elements of G). It has a

basis βι, - ",βt (ί = ί(A)) and each α̂  is uniquely represented as

(3.1) α < = jSf^ #•

with suitable integers £it. We may regard G as a subgroup of G ®z Q9

where Z and Q denote the additive groups of all integers and of all

rational numbers respectively. Then, we can choose some aiχ9 , au

among a19 , aq as a basis of the subgroup of G®ZQ generated by

#i> -" 9 aq as a Q-module.

(3.2) There exists a basis {β19 •••,&} of {{a19 , αrj} in G sw& ίfeαί, /or
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suitable il9 , it and non-zero integers Sτ9 βiτ — aiτ9 namely, £irσ = 0

(σ Φ τ) in the representation (3.1).

In the followings, we shall call a basis of A with the property as

in (3.2) to be an adequate basis for A.

For convenience' sake, we introduce some notations. For the set

Ir: = {1,2, , r}9 we mean by a combination ((i19 , is)) in Ir the set

of integers i19 , is with 1 <̂  ix < < is <̂  r. And, we indicate by $ r>s

the set of all combinations of s elements in Ir. For an arbitrarily fixed

r-tuple A = (a19 , ar) of elements in G, we use an abbreviated notation

A7 = atιau -" att

when / = ((iί9 i2, - , i5)) 6 $ r > s.

DEFINITION 3.3. Let q ^ r > s ^ 1. A g-tuple A = (a19<χ2, ••-,aq) of

elements in G is called to have the property (Pr,s) if any chosen r-tuple

A ' = («*,-••,"*) ( l ^ & i < ••• <K^Q\ put A /: = (αί , . . . ,α;) = (αlfcl,

• > Λ̂r)> satisfies the condition that for any / in $ r > 5 there exists some

J in %rtS with / =£ / such that

Let A = (a19 , α )̂ be a g-tuple of elements in G with the property

(Pr,s)- To study relations among aί9 we choose a basis β19 ••-,& for

which each α t is represented as (3.1). Then, we can find integers p19

• - -9Pt such that, when we put

+ ^ 2 + + ^ t Pί (1 ^ < ^ ?) ,

^έ = ^̂  holds only if

(cf., [3], (2.2)).

LEMMA 3.4. In the above situation, if the indices i of at are chosen

so that

A ^ 2̂ ̂  ^ tq,

then
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and so

Cίs = (Xs + ι = — CXq + s_r + ι .

For the proof, see Lemma 2.6 in [3].

Since q + s — r + l^is + 1*>2 in any case, we have

LEMMA 3.5. For any q-tuple A = (aί9 ,<χq), i/ A Ms the property

(Pr,s) (1 ^ s < r ^ g), ίfeerβ βα isί two distinct indices i, j such that at — as.

3.2. Let us introduce another notation. For elements a19 a2, , αg,

aficcfy — ,(x* in G, by the notation

: a2:
= a?

we mean that at = ]3αf (1 ^ i ^ q) for some j8 e G.

Now, we give the following main lemma.

LEMMA 3.6. Let 1 <̂  s < q <̂  2s and A = (a ,̂ . . , aq) be a q-tuple

elements in G with the property (Pq,s) and assume at = 1 for some i.

Then,

( i) the rank t(A) of {{alf ,aj} is noί larger than s — 1,

(ii) i/ ί(A) = s — l, g = 2s and a basis ft, , /},_! o/ {{«!, , aq}}

can be chosen so that, after suitable changes of indices, aU'

represented as one of the following two types;

(A) s is odd and

aλ:a2: . . . : a2, = 1: 1: βx: ft: β2: β2: •• : f t_ 1 : f t_ 1

(B) aλ: a2: : a2 5

= 1: : 1: ft: : β8_λ: (ft ft^)"1: (βai+i * βaX1

where O ^ f e ^ s — 1, a, — a,_! <*s — k (put a0 = 0) /or an /̂ /c and

^niί element 1 appears s — k + 1 times in the right hand side.

The proof of Lemma 3.6 will be given in the next section.

3.3. We shall show here that A = (a19 -,a2s) of the type (A) or

(B) of Lemma 3.6 satisfies actually the condition (P2«.*)

Let us consider first A = (a19 ,α2 ) of the type (A). Since s is

odd, for any given combination / = ((ily ,ΐs)) e$ 2 s , s we can find some

aτo with 1 ^ τ0 <; s such that one of ar2ro and or2τo+1 equals some aiτ and
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the other does not equal any aίl9 ai2, « «, ais. Exchanging indices if neces-

sary, we may assume 2r0 = iτ and 2r0 + 1 Φ ix, , i s. Then, if we put

J: =(0\, . . . , iτ_u 2τ0 + 1, ir+1, , is)) (e $2s,s)> it satisfies the conditions

I Φ J and Aj = Aj. This shows that A has the property (P2S,S)

We study next A = (a19 — >,a2s) of the type (B). Take an arbitrary

combinations / = ((ix, ,i,)) e$2*,« Firstly, we consider the case ft,

-..,*,} Π {1,2, -. , s - k + l}Φφ. If {1,2, . . , s - f c + l j i i f t , •• ,ί,},

for example, ix = 1, i2 ̂  2, then a combination / = ((2, i2, , i5)) satisfies

the conditions I Φ J and A7 = Aj. We assume now {1,2, , s — k + 1}

C ft, , ίβ}. Let

. . . < it ̂  2s - fe < i/+1 < < i, ̂  2s .

Then, there exists some aio (i0 ̂  2s — k + 1) with the expression

aio — (βaκ+lβaκ+2 ' ' * ^ - H I ) " " 1

for some K (0 ̂  K ̂  k — 1) such that α ίo ̂  α ί / + i , . . . , au and ̂  Φ ais_k+2,

. , ait for any σ (aκ + 1 ̂  <τ ̂  αβ+i). In fact, if not, at least one βt among

α<f-*+ί» ><xu i s u s e d t o express each at (i^2s — k + ΐ) with α€ Φ au+1,

•• 9aia as (3.1) and so at least k — (s — £) elements in {ais_k+2, ,<χ̂ }

are necessary. But, the number of elements ais_k+2, , aif is only k —

s + ^ — 1. Therefore, we can choose a suitable au satisfying the desired

condition. Then, since aκ+1 — aκ <̂  s — k,

a i χ a ί 2 a u = a λ a 2 a s _ k + 1 a ί s _ k + 2 • • • « « ,

= «!••• OC8_k_aκ+1 + ataioβaκ+1 βaκ+1

ais-k+2 ' ' ' aίs '

If we define a combination J = (0Ί, , js)) e %2S)S so that

{al9 , <XS-k-aκ+1 + aκ> MίO9 βaκ+l> " ' 9 βaκ+1>
 ais-k+2> * ' ' > a ί s } = { α j i > ^ a > ' * ' a j , } >

it satisfies the conditions I Φ J and A7 = Aj.

It remains to examine the case {1,2, , s — k + 1} Π ft, , Q = ̂ .

Let us assume

s-HKii< <i^2s-K i,+1 < - < is ̂  2s .

Then, there exists some aίτo {I + 1 ̂  τ0 ̂  s) such that
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for a suitable κr (0 <J κf <ί k — 1) and each βσ (ag, + 1 <̂  σ <g αc/+1) coincides

with α<r (1 ^ τ ^ ^). In fact, if not, for each at of aii+lf •>, ait some

j9σ with βσe{aiιf '"9ai4} appears in the expression of at as (3.1). But,

there are only s — I — 1 /J, with βσ Φ all9 , # ί r So, a suitable α ί r o

has the desired property. Then, if we define a combination J = (O'ί,

• , #)) e &»,« so that

we get the desired conclusions I ψJ and Aτ = Aj.

§4. The proof of the main lemma.

4.1. This section is devoted to the proof of Lemma 3.6. Let A =

(<*!, , ccq) (l<^s < q <:2s) be a g-tuple of elements in G with the pro-

perty (Pq,s) and α t = 1 for some i. We note here we may assume aio = 1

for an arbitrarily preassigned i0. Indeed, we may study a new g-tuple

A': = (a&ϊ*, •• ,αβαϋ1) instead of the original A. For, by the assump-

tion, {to, ,αβ}} = {{αrxαΓβS * -><x<Pu}} a n d so ί(A0 = t(A).

Lemma 3.6 will be proved by the induction on s. For the case

5 = 1, we have necessarily q = 2 and â  = a2 (=1), which gives the

desired conclusion. Consider next the case 8 = 2. Then q = 3 or g = 4

and, after suitable changes of indices, we may assume αx = α2 = 1 by

Lemma 3.5 and the above remark. If q = 3, taking a combination / =

((1,2)) e $3,2> we choose some ((i, j)) e Ss,2 with ((<, /)) φ ((1,2)) and α , ^ =

axa2 — 1. Then, necessarily, at = 1 or ^ = 1. In any case, ax = a2 = αr3

== 1, whence *(«„ α2, α3) = 0. For the case s = 2 and g = 4, we choose

again a combination ((i, j)) with ((i, j)) ^ ((1,2)) and ataj = ^α j . If at = 1

or efy = 1, we may write

«!: a2: ^ 3 : a4 = 1 : 1 : 1 : /?

with some βeG by & suitable change of indices. And, if a€Φl and

ajΦl, it may be written

aχi a2: a3: a4 = 1:1: β : β ' 1 ,

where βΦl. In any case, t(a19 ,αr4) ̂  1 and, if t(al9 ,α4) = 1, (αlf

• ,«r4) is of the type (B).

In the following, we assume s ^ 3 and Lemma 3.6 is valid if s is

replaced by a number smaller than s. And, we consider the case t: =
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^ s — 1 only, because, if otherwise, we have nothing to prove. Let

Mo: = {i a% = 1} and m 0: = #M0, where #M denotes the number of ele-

ments in a set M. Since A may be replaced by {α^ 1 , , α̂ arΓo1} for

any i0, we may assume m0 *> #{i; α4 = α̂ } for any j (l^j^q). Then,

m0 Ξ> 2 by Lemma 3.5. Now, we take an adequate base βί9" 9βt of

{{αi, « ,αJ} as in (3.2) and express each at as (3.1) with integers £iv.

The proof of Lemma 3.6 are given separately for each of the following

two cases;

Case a. For each τ (1 <^τ <^t), £U9 , £qv are all non-negative or

all non-positive.

Case β. For some r, there exist distinct indices i, y with ^ i τ > 0

and βjτ < 0.

4.2. The proof of Lemma 3.6 for the case a. For each τ, after a

replacement of βτ by jSr1 if necessary, it may be assumed that £ίτ ^ 0

for any i. Put

Mτ: = {i; ^ r =ffc 0, £ir+1 = . . = ^ = 0}

and raτ: = #^r for each τ (1 ̂  τ ^ ί).

We shall show first the following fact.

(4.1) For any subset {τ19 ,τ t t} o/ the set {1,2, •,£} o/ indices, mΓ1 +

mra + + m r α ̂  s.

Proof. Assume that m r i + + mTu = s for some τ19 - ,τu and put

M * : = I Γ 1 U I Γ 2 U . U Mτu = {^,4, . . , i j ,

where 1 ^ ^ < <τu^t and 1 ^ ii < ΐ2 < < iβ 5ί <?. By the assump-

tion, there exists some J = (OΊ, , js)) e %Qι8 such that I Φ J and

(4.2) atlai2 α ί f = α ^ α i t .

If M t Π I * = ^, by expressing the both sides of (4.2) with βl9 ' 9βt

and observing the exponents of βt we see

whence ^ J r ί = 0 (1 <̂  r ^ s) because βit ^ 0 for any i. So, Mέ Π {/̂

...,/,} = ^. And, if MtΠ M* Φ φ, then MtaM*. In this case,
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s s
V1 0 V1 0 V /?
Z J ϋJtt — 2-i *itt — 2LL *it 9
τ = l r = l ieMt

whence Mt c {jlfj2, -,jt} I n any case, we have

. M t n ft, • - - , < , } = M t n & , . . . , ? , } .

Cancel α< with i e Λf£ in the both sides of (4.2) and observe the exponents

of βt_x of the obtained relation. Then, we can conclude that, if

Mt-! Π ft, - , i,} = ikfί_! n ft, > ί,} = Φ

and, if Λft-1 Π M* ̂  j5,

Jlίt.x c{ii, •• ,is} Π ft, •••,?',}.

Therefore,

(AT,.! U Mt) ΓΊ ft, ,it}=(Afl.1 U Mt) Π ft, . .-,?,}.

Repeating this process, we get finally

( I f l U ^ U U l ^ U ft, . - .,<,} = (Mo U U Mt) Π ft, . . . , j f} .

This contradicts the assumption / ψ J. Thus, we have the conclusion

(4.1).

We shall prove next

(4.3) Under the above assumption, we have always t ^ s — 1. And, if

t = s — 1, ίftew g = 2s and one of the following two cases occurs

(a) m0 = s — 1, mx = m2 = = m,^ = 1,

(b) m0 = mx = . = ms_j = 2.

Proof. We define the number <7X, , σt so that

mσ i ^ mσ2 ̂  ^ mσ ί .

Since m0 ̂  2 and mff ̂  1 for any σ,

2s ^ g = m0 + (mffl + + wσ()

^ 2 + mσ i + (t - 1)

^mσi + s

and so mσi ^ s. Take the largest number u0 such that

m*: =mσi + nισ2+ + mσtto ^ s .
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By (4.1), m* < s. Assume u0 = t. Then,

s -l<:t<:mσί + mσz+ . + mσt < s .

So, t = s — 1, mσ i = . . . = m ί ( = 1 and τno = q — (m1 + + m^ = q —

s + 1. If 9 = 2s, m0 = s + 1 and so the case (a) of (4.3) occurs. For

the case g <£ 2s — 1, we have m0 ^ s. We may put

ax\a2\ : αβ = 1 : 1 : : 1: βx: : βs_λ ,

where {ft, , j8β-i} is a basis of {{alf ,αj} and 1 is repeated at most

s times. For a combination / = ((1,2, - , s)), it is easily seen that there

is no combination J e %q>s with I Φ J and Ax = Aj. The case u0 = t and

g ^ 2s — 1 does not occur.

Now, let us consider the case uQ < t. Then, m* + m<Tίto+1 > s and

mσuo+1 ^ 2 . Let v: = #{^: m* = !}• β y ί 4- 1) ' m * + ^ = m * + m . t _, + i +
. . . + mσt < s. So,

' y ^ s — m* — 1 ^ (m* + ^ f f t t 0 + 1 — 1) — m* — 1 = mσuϋ+1 — 2<^ maχ — 2 .

On the other hand, since mσ2 jΞ> ^ ^ ^ β ^ 2,

2s ;> g = m0 + mσi + (mσ2 + . . . + mσt_υ) + (mσt_v+1 + + mσ)

>2 + mσi + 2(t-v -1) + v

^τnσi-v + 2t.

Thus, we conclude t ^ s — 1. Let ί = s — 1. Then,

mσ i ^ v + 2s - 2(s - 1) = v + 2 ^ mσuo+1 ^ mσi .

We have necessarily m: = mσ i = = mσwo+1 = v + 2. Moreover, we

can show m = mστ for any r with τ<Lt — v. In fact, if ma r < m for some

T with τ <Lt — v, putting v': = s — m* — m,r, we see 0 ^ v/ ^ v and

m* + mσr + mat_v/+1 + . . . + mσt = s ,

which contradicts (4.1). From these facts, it follows that

2s ^ g = m0 + (mσi + • + mσtj + (m,t_.+1 + + m0t)

— m(s — m + 2)

and so m2 — (s + 2)m + 2s ^ 0. Then, m ^ s or m ^ 2, We know m <*s

and the case m = s contradicts the assumption (4.1). Therefore m = 2.
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This implies that v = 0 and m1 — m2 = = mt = 2. In this case, since

(2 ^ ) ra0 = g - (m, + + mt) ^ 2s - (2s - 2) = 2 ,

the case (b) of (4.3) occurs. The proof of (4.3) is completed.

We go back to the proof of Lemma 3.6 for the case (a). The con-

clusion (i) of Lemma 3.6 was already shown in (4.3). We shall prove

(ii) under the assumption t = s — 1.

If the case (a) of (4.3) occurs, q = 2s and we may write

ax: a2: : a2s = 1: 1: . : 1: βx: : βs^ ,

where {βu •• ,ft_i} is a basis of {{a19 •• ,α:2J} and 1 is repeated s + 1

times in the right-hand side. This is a special case of the type (B) of

Lemma 3.6.

We assume now the case (b) of (4.3) occurs. Then, changing indices,

we may put

Mo: = {1,2} , Mλ: = {3,4}, , Ms_, = {2s - 1,2s}

and

α i = αr2 = 1 , a2τ+1 = $ ' , α2r+2 = # " # • ^ ,

where 1 ^ r ^ s — 1 and £rf ίaτ are integers with ix > 0, ^rr > 0, ίστ ^ 0

for any σ,r. Here, we can show that

A* : = (OΓJ, αr2, - - , <*2s_4)

satisfies the condition (P2S_4,S_2). In fact, for any given combination

/* = ((i19 . . . , is_2)) of elements in {1,2, , 2s — 4}, if we take a combina-

tion J: = (OΊ, ,i,)) e $2S,S with J φl: = ((ix, ...,i s_2,2s — 1,2s)) and

Aj = Aj, we see easily

1 ^ ?Ί < < h-2 ^ 2s - 4 < js_λ = 2s-l<js = 2s

by observing the exponents of βs_x and /3S_2 in the expression of the both

sides of the relation AΣ = Aj with 3̂r (1 <Ξ τ ^ s — 1). Therefore, / * : =

(0Ί> >3s-2Ϊ) e $2s-4,5-2 satisfies the conditions /* Φ J* and A*^* = A*7*.

By the induction hypothesis, A* = (a19 , ̂ 2S_4) is of the type (A) or

(B). But, there is no possibility of the type (B), because βiτ ^ 0 for any

i, τ and %Me = 2 (0 ^ σ <; s — 1). So, A* is of the type (A), namely, s

is odd and α2r+i = α2τ+2 if 1 ^ τ ^ s — 3. Now, for a combination / : =
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((3,4, . . . , 2r + 1,2r + 2,2s - 2,2s - 1,2s)) e &,,, take some / = ((Λ, .../,))

with / =£ / and A7 = Aj according to the assumption, where r = s ~~

By expressing A7 = Aj with ft, , ft_x and observing the exponents of

βs-i> we have necessarily /s_3 ^ 2s — 4, j8_x = 2s — 1, j s = 2s and j8_2 =

2s — 3 or =2s — 2. If ;,_2 = 2s — 2, then there is a non-trivial algebraic

relation among ft, , /35_2, which is a contradiction. So, /,_2 = 2s — 3.

Moreover, if we observe the exponents of ft, •• ,ft_3, it is easily seen

that j\ = 3, j2 = 4, ., /β_s = 2r + 2. The relation Aj = Aj implies

2̂s-2 = tf2s-3. For / ' : = ((1,2, , 2r + 1,2r + 2,2s)) taking a combination

Jf with J" :£ Γ and A7, = Aj,, we can show also α 2 ί - 1 = α?2s in the same

manner as the above. Therefore, A is of the type (A), which completes

the proof of Lemma 3.6 for the case a.

4.3. The proof of Lemma 3.6 for the case ft Changing indices, for

the exponents £it of ft in the expression (3.1) of at (1 ^ i <ί q) we may

assume that

tit ^ ^ 4 + + u = = 4+ +»β* = 0 > 4. + + »o+« ^ ^ ^ f

where w+ ^ 1 and ^_: = q — (w+ + n0) ^ 1 by the assumption. Moreover,

after a replacement of ft by ft"1 if necessary, we may assume n+<^n_.

We shall show first

(4.4) Under the above assumptions, 1 <; s — w+ < n0 ^ 2(s — w+) ami

A* = (αrn++1, ,α«++no) Λαs ίΛe property (PTOo,s_w+).

Proof. Since {ft, , ft} is an adequate basis, α<r = ^ Γ ( r̂ ^ 0) for

suitable <x, , it, whence Άiτt = 0 for τ = 1,2, -, t — 1. Therefore,

n0 ^ m0 + (ί - 1) ^ 2 + (t - 1) ^ s .

We have then

w0 > s — %+ > s — (n + + n_) — s — (q — n0) lztn0 — s^>0 .

And, since w+ ^ n_,

2(s — w+) ^ 2s — (n+ + n_) ^> q — (q — n0) = nQ .

Now, let us take an arbi t rary combination /*: = ((<n + +i, •••,*,)) of ele-

ments in {n+ + 1, ,w+ + n0}. By the assumption of A = (α^, , α β ) ,
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for a combination / : = ((1,2, -,n+,in++1, •• ,i#)) there is some / = (0\,

—>jt)) € %q,s with J Φ I and A7 = A,/. Observe the exponents of βt of

Aj and Aj. As is easily seen,

λ = 1, , L+ = ^ + , : n+ + 1 ^ j n + + 1 < <js^n+ + n0.

This concludes A*7* = A*j* for a combination / * : = ((/n + + 1, ., /,)) (=£/*).

The assertion (4.4) is proved.

Obviously, the system {β19 -,βt-i} is a basis of {{an++19 -9(χn++no}}.

We can conclude from the induction hypothesis

t — l<^s — n+ — l<:s — 2

and so t ^ s — 1. This completes the proof of (i) of Lemma 3.6. Let

t = s — 1. Then, by the above inequalities, n+ = 1 and A* = (tfn++i,

•• >«n++n0) is °f the type (A) or of the type (B). In any case, nQ =

2(s — w+) = 2s — 2 and

w_ = « — (n0 + n+) ^ 2s - (2s — 2 + 1) = 1 ,

whence n_ = 1 and g = 2s. In this situation, we shall show

(4.5) A* cannot be of the type (A).

Proof. Let A* be of the type (A). Then, we may put

ax. . α 2 s — J.. J. . pi . pi . . p s_2 . ps_2 Ps-i Pi Ps-i

by a suitable change of indices, where s — 1 is odd and £0, ί
f

τ are integers

with i, > 0 (1 ^ σ ^ s — 1) and fs_τ < 0. Consider first the case that

some fτ with 1 ^ τ ^ s — 2, say £'19 is positive. Putting r = s/2, for

/ : = ((3,4, . . . , 2r - 1,2r, 2s - 1,2s)) e & s, s we take / = ((ju , js)) e %2S>8

such that J Φl and Aτ = A^. By comparing the exponents of βλ of A7

and Aj, we see easily j s = 2s. And, by observing the exponents of / ^

of them, we have also js_x — 2s — 1. Then, since I Φ J9 we get a non-

trivial relation among $,•••, &_!, which is impossible. Consider next

the case ^ fg 0 for any τ. Take in this case a combination / ; e %2S)S such

that J7 Φ V and A^ = AΓ for / ' : = ((1,2, . . , 2r - 1,2r)) e & ... By

comparing the exponents of β19 , βs_! of the both sides of Ar = Av, we

have necessarily a non-trivial relation among β19 , j8β-1. This is a con-

tradiction. Thus, (4.5) holds.

To complete the proof, it suffices to show
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(4.6) In the case A* is of the type (B), (alf ,α2 ί) is also of the type

(B).

Proof. Changing indices, we assume A* = (a19 •- ,a2s_2). We may

put by the assumption

ax: a2: : a2s

= 1: : 1: β[: . : β's.2: {β[ • • β'aiT
ι: : (&ft_2+1 • j S ^ ) " 1 : a2s_x: a2s

and # = $ (1 ^ r ^ s - 2), α2 β - 1 = β j-Λ <*2S = #*#* βti for a basis

{A> * 9 βs-ι} of {{«!, , a2s}}, where 1 appears s — k + 1 times repeatedly

and 1 <̂  A; <̂  s — 1, αΛ — αΛ_i ^ s — k and ^ , , £s_u f19 , ̂  are in-

tegers with βτ > 0, <_! < 0. Then, l'τ ^ 0 if 1 ^ τ ^ α f c - 1. In fact, for

example, if £[ < 0, we have a non-trivial relation among $,•••, ft^i by

observing a combination J G ̂ 2S,S with J Φ I, Aj = Aτ for / : = ((s — fc + 3,

. , 2s - k, 2s — 1,2s)). Now, for Γ: = ((s - k + 2, -, 2s — k - 1,2s -

1,2s)) let us take a combination J'': = (0\, ,/s)) with /7 ^ Γ, AJf = A7,.

If ί̂ > 0 for some r (1 ίg τ ^ s — 2), then we have easily j s = 2s and a

non-trivial relation among β, , j9β_i- Therefore, ^ ^ 0 for any r (1 ^

r ^ s — 1) and, particularly, t,'τ — 0 if 1 ^ τ ^ α^.i. Moreover, as is easily

seen, none of ajτ (1 ^ τ ^ s) are equal to α -̂fc* > <̂2s-2> <̂2s If we cancel

out some of as_k+2> >«2s-x;-i> 2̂s-i i n the both sides of the relation

Av — Aj,, we obtain

where l ^ & ^ s — fc + 1, ak_λ < τλ < < τδ_! ^ s — 1 and 1 ^ OΊ <

•• < σ δ ^ s — fc + 1. Changing notations and indices suitably, we may

put

If we replace each $Γ by βr9 we get the conclusion that A is of the type

(B). We have thus Lemma 3.6.

§ 5. The smallest algebraic set including the image of / x g.

5.1. Let f,g be meromorphic maps of Cn into PN(C). Assume that,

for 2N + 2 hyperplanes H19 ,H2N+2 in P^CC) located in general posi-

tion, f(Cn) K Hί9 g(Cn) ξ iϊ* and v{f, Ht) = v(flr, ίίί) (1 ^ < ^ 2N + 2).

DEFINITION 5.1. We define the set VftQ to be the smallest algebraic
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set in PN(C) X PN(C) which contains points (/ X g){z) = (f(z), g(z)) for

any zeCn — (/(/) U /(#)), where /(/) and I(g) are sets defined as (2.1)

for the maps / and g.

(5.2) Vftg is an irreducible algebraic set.

Indeed, if VftQ = 1^ U 7 2 for two algebraic sets V19 V2 with Vt Q Vft0

then Ai: == (/ X g)~ι(Yd (i = 1,2) are analytic sets in Cn and Cn — Aγ\j

A2. Since Cw is irreducible, Cn = Aj or C* = A2. Therefore, YftQ = VΊ

or V/>α = V2, which contradicts the assumption.

As in §2, taking admissible representations of / and g, we define

holomorphic functions Fψ, Ff* by (2.2) for each Hi (1 ̂  i <: 2ΛΓ + 2) and

/^ = Fψ\Fψ, where at least one ht is assumed to be constant by a

suitable choice of admissible representations.

We shall prove now the following theorem.

THEOREM 5.3. Suppose that among the functions h19 , hzN+2 there

exist 2s functions hίl9 ,hUi such that the canonical images ax: = [fê J,

---,a2s: = [hiis] of hi into the factor group H*/C* do not satisfy the

condition (P2S,S). Then, for the number t — t([fej, ,[h2N+2])

dim Vffg^N - s + t .

Before the proof of Theorem 5.3, we shall give

COROLLARY 5.4. (i) VftQ is always of dimension ^ N.

(ii) // dim YStQ = N, the system ([hj, , [h2N+2]) in H*/C* has the

property (P2M,M) f°r the number t = t([hj, , [h2N+2]).

Proof of Corollary 5.4. We choose hil9 , hίit among h19 , h2N+2

suitably such that t = *(!><,], , [fcij). Then, ([fe€l], , [/ 2̂ί]) do not

satisfy the condition (P 2 M). For, if not, ί([feέl], , [feίaί]) <̂  ί — 1 by

Lemma 3.6, (i). Putting s = t, we can apply Theorem 5.3. So, under

the assumption that Theorem 5.3 is valid, we obtain

dim Vf>g ^ (N - β) + s = N .

On the other hand, if some (2ί + 2)-tuple ([htί], , [hiu+t]) (1 ̂ ^ < <

i2ί+2 ^ 2iV + 2) do not satisfy the condition (P2M,t+i)> w e c a n conclude

dim Vft0 ^N-(t + ΐ) + t = N-l

from Theorem 5.3, which shows the conclusion (ii) of Corollary 5.4.
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5.2. The proof of Theorem 5.3. Suppose that for 2s functions of h19

• . , /Z'2i\Γ+2> S&y Kl9 > hs9 htf + 29 ' ' ' > f^N+s+u ( L " Ί L ' ' ' 9 [hsU \ΆN+U9 ' ' ' 9 l^N + s + lV

do not satisfy the condition (P2βf,). Since functions h€ are not changed
by a change of homogeneous coordinates on PN(C) the hyperplanes Ht

may be written as

Hi: a\wx + - . . + a?+1wN+1 = 0 (1 g ί ^ 2N + 2)

such that α/ = 3/ (1 ^ i, j ^N + 1), where 3/ = 0 if i =£ i and = 1 if

i = j . Then, any minor of a matrix (β*N+J+1; 1 ^ i, j ^ N + ΐ) does not

vanish. Let us take functions ηί9 , ηt e H* such that {fyj, , [ηt]} gives

a basis for {{[fcj, , [h2N+2]}} in # * / C * . Then each ^ (1 ^ i ^ 2N + 2)

can be written uniquely as

(5.5) hi = c<7ί«9ί« ^ " (c, e C*, ^ ί r e Z)

and ^ - . ^ ί C * for any £reZ with (^, ^2, , ̂ β) Φ (0,0, . , 0). Put
^ ί + 1 = —. (£n - ) . . . . + ^^) and define rational functions

Ht(u) = CiVi{1vin ttftί1 (1 ^ i ^ 2iV + 2)

of ί + 1 variables u = (u19 , % + 1 ) . Each jff€(^) is written as ίί̂ OO =

Ht(u)/Hi(u) with homogeneous polynomials ίf^(^) = ĉ  Πriί^<+Γ and

H7OO = Πίiϊ^ί** °f the same degree, where ^ = max (£tt, 0), ^ =

—min (£iτ,Q). Now, we consider the space X: = P'(C) X P*(C) X P^(C)

and an algebraic set 7* consisting of all points

(u, v, w) = (^ : . : wt+1, ^ : - - : v^+1, wx: . . . : w^+1) e Z

satisfying the equations

( N+l \ /N + l \

Σ ΦήHTiu) = cβ(Σ cιίwήHt{u)
(1 ^ i ^ 22V + 2) for some non-zero constant c0. Let TΓ̂  (i = 1,2,3) be

the canonical projections defined as TΓ^, V, W) = w, ττ2(^, v,w) = v and

π3(u,v,w) = w ((u,v9w)eV*). We define an algebraic set 7** as the

union of all irreducible components V* of F* satisfying the conditions

(5.7) (1) ^(7*) = PKC) ,
2N+2

(2) ffl(F*) <X U Ht and ίr,(7 ) 6; U Ht.

And, we put V: = (ττ2 x 7Γ3)(7**), which is a subvariety of PN(C). Then,
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(5.8) Vf>g C V .

To see this, we recall the definition of hi and the relation (5.5).

For admissible representations / = fx: :fN+i and g = gx: : <7#+i,

it holds that

(1 ^ t ^ 2iV + 2) ,

where ηt+ι = 1. This shows that, for a holomorphic map 7 = 371:72 •

. : ? ί + 1 of C* into Pι(C),

(yxfx g){z): = (?(*), /(*), fir(«)) e 7* ( ^ e C κ - (/(/) U I(g))) .

Then, by the same argument as in the proof of (5.2) we see easily

(η X / X g)(Cn) c V*o for an irreducible component V% of 7*. On the

other hand, by the assumption, f(Cn) c ^(7*) , #(CW) c ττ2(7f0), f(Cn) ($

| J? ΐ ί 2 ffi and g(Cn) iζ U'=i+2 B"i Therefore, 7* satisfies the condition (2)

of (5.7). Moreover, by the property of the functions ητ and the conclu-

sion (2.9), η(Cn) does not included in any proper subvariety of Pύ(C).

So, η(Cn) c π^Vf) implies ^(7*) = Pι{C). By definition, 7* c 7**. And,

we see

(/ X g)(Cn) C (ττ2 X τr3)(7**) = 7 .

We have thus (5.8) by the definition of VftQ.

Now, consider the equations

(5.9) ± a{(Ht(u) - Hj(u))wj = - Σ* α/ίff^) - H / w ) ^
3=1 y=s+i

(N + 2 S j ^ N + s + 1)

obtained by substitutions of vt — CoH^Wi (1 <£ i <£ N + 1) into the rela-

tions (5.6)ί for i = N + 2, •• ,N + s + l. We can prove here the fol-

lowing fact, which will be shown later.

(5.10) Ψ(u): = d e t ( a ' N + i + 1 ( H N + ί + 1 ( u ) - Hό{u)) ; l £ i , j £ 8 ) & 0 .

By virtue of (5.10), the equations (5.9) can be resolved as

wτ = Φτ(ul9 , uul, ws+1, . . , % + 1 ) (1 ^ τ ^ s)

with rational functions Φr, whose denominators χr may be chosen as

functions of u19 , wί+1 only. This implies that for any point (u, v, w)

= (ux: : w ί+1,^i: : vN+1, wt: : w^+1) in 7** ww , ws are uniquely
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determined by the values ulf , ut+19 ws+1, , wN+1 if χτ(u) ψ 0 (1 <̂  τ <; s).

On the other hand, each Vj (1 ̂  j <^ N + 1) is determined by u19 , uM9

w19 , Wjv+i in view of (5.6)£ for i = 1,2, , N + 1 if uλu2 uM Φ 0.

From these facts, we can conclude the map π* of F** into O X C^" s

defined as

π*(uλ: . : wί+1, ̂ : . . : ̂ + 1 , ̂ : . . . : wN+1)

\\ut+1

9 ' utλ.J
y \wN+ι' ' wN+1/J

is injective if the definition domain is restricted to the range

χτ(u) Φ0 (1 ̂  τ ^ s) .

By definition, any irreducible component of V** intersects with the range

(5.11) in X. It follows

dim Vftg ̂  dim V ^ dim 7** ^t + (N - s) .

Because, in general, in the case there exists a holomorphic map / of an

irreducible complex space Xx into X2, we can conclude dim X1 ^ dim X2

if / is injective on some non-empty open set, and dim X2 <̂  dim Xλ if /

is surjective.

To complete the proof of Theorem 5.3, it remains to prove the

assertion (5.10). To this end, we rewrite Ψ(u) as

where Is is the unit matrix of order s and A — (αf+ί+1; 1 ^ i, j fg s),

Γs = WHM 1 ^ i, j ^ s) and A/ - (a>N+i+1HN+i+1(u) 1 ^ ί, / ^ s). Then,

we see

where Γ/ = (β{ht 1 ^ i, / ^ s) and A" = (aJ

N+i+ίhN+ί+1 1 ^ i, y ^ s). On

the other hand, it is easily seen that any minor of a 2s x s matrix (^)

of order s does not vanish. If Ψ(τj) = 0, then ([fej, , [/̂ J, [hN+2],

- ,[hN+8+iΊ) satisfies the condition (P2s,s) by (2.8), which contradicts the
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assumption. Therefore, Ψ{η) ̂  0. We can conclude the assertion (5.10).

§6. Algebraically non-degenerate meromorphic maps*

6.1. We give first

DEFINITION 6.1. Let / be a meromorphic map of Cn into PN(C).

We shall call / to be algebraically non-degenerate if f(Cn) is not in-

cluded in any proper subvariety of PN(C).

As in the previous sections, consider meromorphic maps /, g of Cn

into PN(C) such that for hyperplanes Hu , H2N+2 in general position

Hif g(Cn) K Ht and v(f, Hτ) = v(g, Hz) (1 ̂  i ̂  2N + 2).

(6.2) If f or g is algebraically non-degenerate, then the algebraic set

Vftg defined as in Definition 5.1 is of dimension N.

Proof. It may be assumed that / is algebraically non-degenerate.

Obviously, f(Cn) c ^(Vf>g). By the assumption, πx(yftg) cannot be a

proper subvariety of PN(C). Therefore

dim Vftg ^ dim π^VfJ = N .

Corollary 5.4 yields dim Vf>g == N. q.e.d.

Let hi (1 ̂  i ̂  2N + 2) be functions defined as (2.4) and assume that

at least one of them is constant.

PROPOSITION 6.3. In the above situation, if f or g is algebraically

non-degenerate, there exist elements β19 ••-,& in H*/C* such that

Uh\: [h2]: - : [h2N+2]

= 1:1: . . . : 1: ft: . . . : ft: (ft ftj"1: : (βak_1+1 ft)"1 ,

where 1 appears 2N — k — t + 2 times repeatedly in the right hand side

and t = t([hj], , I>22\r+2])> α, — &«-i ^ ί — fc + 1 (Zeί 0-0 = 0 α^d αfc = ί)

To prove this, we need the following

LEMMA 6.5. Assume that hi (1 <S i <; 2ΛΓ + 2) are represented as

K = c i 7 ί V ' ϊ ί " ( c ^ e C*^ ^^ € Z)

with functions ηlf , ̂  e /ί*, where t = ί([fcj, , [fe2̂ +2l)
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is no possibility that, for some τ, exactly one of integers £lτ9 S2τ,
is not zero and the others vanish.

Proof. Without loss of generality, we may assume

As is stated in § 2, there is a relation (2.5) among hly , h2N+2. Therefore

det (αj, -9ar\a,\Hfy)9 • ,αf+1fl4(?) 1 £ i £ 2N + 2) = 0 ,

where Hfy) are given by substitutions of uτ = ^r into

Hi(u) = C ^ H ^ " ttf" .

According to (2.9), we have then

det (αj, .,αf+1,c0H*(w), -,αf+1£Γt(w) 1 ^ i ^ 2N + 2) = 0

as a rational function of u19 - ,ut. Substitute nt = 0 into this identity.
We get by the assumption

det

It then follows

. nN+1

' f a x ,

. ΠN+1

9 ^ 2 2 7 + 2 ?

^ 2 2 ^ "

9 v

= 0 .

det

αj,

N + 1

^ i V + l
N + 1

h
= 0 .

In this situation, by the well-known argument any solutions (xιy

V\9 - - >Viv+i) of the linear equations

N+l N+l

Σ Φs = Σ

satisfy simultaneously an equation

ΐ)

Σ

for any fixed 2. In particularly, the identities
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yield

This shows /(Cw) c ff^+2> which contradicts the assumption. We have

thus Lemma 6.5. q.e.d.

6.2. Proof of Proposition 6.3. By the assumption and (6.2), dim VftQ

= N and, by virtue of Corollary 5.4, (ii), the system ([fej, , [Jι2N+2\)

satisfies the condition (P2e+2,t+i)« In Lemma 3.4 considering the case

q = 22V + 2, r = 2t + 2 and s = t + 1, we can conclude that 22V — 2f + 2

elements of [ΛJ, , [^+2] a r e equal to each others. By suitable choices

of an admissible representation of / and indices, we may assume

ίli ~ "'2 ^^ *^2t + 3 '*"*' * * * /"*~' ^2iV + 2 ' ' -*•

Then, A: = ([hj, , [h2t+2D satisfies the condition (P2ί+2,ί+i) and t =

According to Lemma 3.6, ([hj, •• ,[λ2 t +j) is represented as one of the

types (A) and (B) of Lemma 3.6, (ii) if we put s =. t + 1 and at = [fcj.

For the case of the type (B), we may put by a suitable change of indices

[hj : [/y : - : [h2N+2]

= 1 : 1 : : 1: ft: : ft: (β1 ^ J " 1 : : (j8βl_1+1 /3J"1 ,

where 1 appears 2N + 2 — (t + k) times and aκ — »._! <^t + 1 — k.

Moreover, by Lemma 6.5 there is no possibility ak < t. We have the

conclusion of Proposition 6.3.

Let us consider the case A is of the type (A). We may put then

(6.6) [ΛJ: [ΛJ: : lh2N+2] = 1: 1: ft: ft: - : ft: ft: 1: : 1

with suitable ft, ,ft in £Γ*/C*, where £ is an even number. We shall

show here t — N. Suppose t < N. As was already seen, any chosen

2ί + 2 elements among [fej, , 17^+2L particularly, a^: = [fej, , ,α2ί+i

= [̂ 2ί+iL 2̂«+2 = t^ί+al satisfies the condition (P2ί+2,ί+i) F ° r a combina-

tion / = ((1,2, . . . , ί, 2ί + 2)) e ^2ί+2,ί+i observe / = (0\, , /ί+i)) 6 ^2ί+2,ί+i

such that J Φl and
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Then, we have necessarily a relation among β19 , βt because t is even.

This is a contradition. Thus, t = N.

To complete the proof of Proposition 6.3, we shall prove that (6.6)

cannot occur for t = N. Assume the contrary. Changing indices, we

may put hN+1 = 1 and hN+i+1 = c^ (1 <̂  ί <̂  N + 1) for some constants

CiβC*, where [ΛJ, , [hN] give a basis of {{[fej, , [h2N+2]}}. Moreover,

for these choices of indices, given hyperplanes

Hi: a}w1 + a\w2 + + af+1wN+1 = 0 (1 ^ i ^ 2N + 2)

may be assumed to satisfy the condition that a{ = β| (1 ^ i, j ^ N + 1).

Then, by substituting / 4 = fe^t (1 ^ i ^ ΛΓ + 1) into the identities

(6.7), NΣ a>N+ί+1fj = C.Λ, f Σ a>N+i+1gj) (1 ̂  i ^ N + 2) ,

we have relations

a\hx + a\h2 + . . - + of hN + af+1 = 0 (1 ^ < ̂  N + 1) ,

where

Eliminate ^ , - - ,hN from these equations. We obtain

χ(&, , QN+I) : = det (αί 1 ^ i , ; ^ N + 1) = 0 .

By the assumption, we may consider $r to be algebraically non-degenerate.

So, there is no non-trivial algebraic relation among gly , gN+ι. This

implies that χ vanishes identically as a polynomial of independent vari-

ables g19 ',gN+ι- In particular, for any i, if we put gt = 1, & = . . . =

Λ-i = Λ+i = = gN+ι = 0,

χ(0 , . . . , 0 , 1 , 0 , . . . , 0 )

1 c^ + 1 αV + 2 « a\N+2 = 0 .

Therefore, cx = c2 = « = c^+j = 1, because a) Φ 0 by the assumption

that Hu , H2N+2 are located in general position. Since

by the algebraically non-degeneracy of g, we can solve the functions hi

from N equations (6.7)* (1 ^ i ^ JV) by the well-known Cramer's formula.
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For example, we get hx = 1. This contradicts the fact that ([fej, , [hN])
is a basis of {{[/zj, , [h2N+2\}} We have thus the desired conclusion.
Proposition 6.3 is completely proved. q.e.d.

Remark 6.8. We cannot assert that all cases of the conclusion of
Proposition 6.3 occur. In fact, for example, in the case N = 3, the only
case t = 3, k = 3, aγ = a2 = a3 = 1 is possible (cf., § 7.2).

Proposition 6.3 can be restated in a form not including the functions
hi explicitly. In the same situation as in Proposition 6.3, we consider
holomorphic functions Ff = Σ"=ϊ Mf$ and Ff*' = £fJί α/flr, (1 ^ i ^
2N + 2) defined as (2.2), where

Hi: a\wx + + a?+1wN+1 = 0

and / , # have admissible representations / = f x : / 2 : :/^+ 1, r̂ = gx; g2:

••-'• 9N+\ respectively.

THEOREM 6.9. // either f or g is algebraically non-degenerate,
there are relations between f and g such that, after a suitable change
of indices,

where ct e C*, 0 ^ ί ^ JV, 2 ^ £ ̂  iV + 1, k = 2N — £ — t + 2, a, — a.^^
t — k + 1 (put aQ = 0, ak = t).

The proof is evident by Proposition 6.3 except the assertion ^ <̂
N + 1. This is due to the fact that, if £ :> 2V + 2, / is (linearly) de-
generate as was shown in the proof of Theorem II in [3], p. 12.

6.3. Now, we give the uniqueness theorem of meromorphic maps
stated in §1.

THEOREM 6.10. Let f,g be meromorphic maps of Cn into PN(C)
such that f(Cn)KHiy g(Cn) ξ Ht and v(f, Ht) = v(g, H,) for 2N + 3
hyperplanes Ht in general position. If f or g is algebraically non-de-
generate, then f = g.
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Proof. Assume that / & g and consider the functions hlf , h2N+z

defined as (2.4). By (2.8) and Lemma 3.4, there are at least three
mutually distinct indices, say 1,2,3, such that hι~ h2~ fe3. Apply Pro-
position 6.3 to maps /,g and 2N + 2 hyperplanes H2, ,H2N+3. After
a suitable change of indices, we may put

[h2]: : [h2N+3]

= 1 : 1 : . . : 1: ft: : ft: (ft • ftj"1: : (βak_1+1 ft)"1 ,

where fa •• ,βteH*IC*, t = t([fcj, , [ ^ + J ) (^D> 1 ^ «i < <α*-i
< £ and 1 is repeated 22V + 2 — t — k times. Then, if we take functions
ηi with [ηt] = ft (1 <̂  i <> ί) and represent functions ht (1 ̂  i ^ 2N + 2)
as

ηίu (Ci e C*, £tJ e Z) ,

2-kt = 1 a-n(i ^ί = 0 for any other ί because h2N+z is omitted. This
contradicts Lemma 6.5. Thus, we can conlcude/Ξ#. q.e.d.

In Theorem 6.3, the number 2N + 3 of given hyperplanes cannot be
replaced by 2N + 2. In fact, we can construct two distinct algebraically
non-degenerate moromorphic maps / and g of Cn into PN(C) such that
v(f, Hi) = v(g, Hi) for 2N + 2 hyperplanes Hi in general position. Put
N = 2M in the case N is even and N = 2M + 1 in the case 2V is odd.
Take 22V + 2 hyperplanes Hl9 ,H2N+2 defined as (2.3) which are located
in general position and satisfies the conditions;

( i ) a{ = δί a^i,3£N + ΐ),

( i i ) aJ

N+M+i+1 = a%ii+1,a%-tj

M+M = α £ + ί + 1 (1 ^i9j<L M),

(ii i) α ^ ί J + 1 = a\N+2 = l ( l ^ ί ^ N + l) i n t h e c a s e N i s e v e n a n d

W'JV+Λf + i + l — "W + i + l* "'iV + ilf + i + l — W'iV + ϊ + lJ &2N+1 — U/2N + l9 a2N + 2 — ^ 2 ^ + 2 \* ^ » ^

Λ0> ^ + 1 = αϊ^+i* ^ + 2 = —(^2N+2 in the case N is odd.

And, choosing algebraically independent functions ηlf •••,37̂  in fl"*, we

p u t

in the case N is even and

(?i 9^2 y ' * 9 V2N+2)

'• = 0 ? i > ' > 9 J O 9 Γ S > V M 1 , V N > V N \ V M + I > " ' 9 y 2 M > V M \ I 9 ' " 9 η * M 9 1 > — 1 )

in the case N is odd. We define meromorphic maps / = fx:f2\ :fN+i
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and g = gx: g2:

(6.11)

and

where

gN+1 of Cn into P*(C) by the condition

N+l

Σ
i = l

fi = ηΐΰi ^i^N + 1 ,

As is easily seen,

det (βί) = 0 .

Therefore, in addition to (6.11), we have

g ofΛ = Vt ( g α/ (1 £ < ^ 2iV + 2)

and so / and g satisfy the desired conditions v(f, H^
(l^i^2N + 2).

= v(g,

§7. Meromorphic maps into P\C) or P\C).

7.1. In the last section of the previous paper [3], the author in-
vestigated the possible types of relations between two meromorphic maps
/ and g of Cn into P\C) satisfying the condition v(f, if*) = v(g, H^ for
six hyperplanes Hi (1 <Ξ i ^ 6) in general position. In this place, we
shall study them for the possible cases more precisely under the assump-
tion that / or g is algebraically non-degenerate. In the following, we
shall exclude the trivial case f = g.

According to Proposition 6.3, the functions h^: = F**/Ff* (1 ^ i ^ 6)
defined as (2.4) may be assumed to be written as (6.4) with some βl9

•••,& in H*/C* after a suitable change of indices, where t =
• > [/*J) Here, 1 appears at most three times by the assumption
So, t = 2 and there are only two possible cases

(a)

(β)

[ΛJ: :[ΛJ = 1 : 1 : 1 :

:[hj = 1:1: βii
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Let us study first the case (α).*) By suitable choices of homogeneous
coordinates on P\C) and admissible representations / = fλ: f2: /3 and
9 = ΰι: #2 #3> we may put

Hi'.Wi^O (ί = 1,2,3)

# 4 : α^i + &w2 + w3 = 0

ίf5: cw1 + dw2 + w3 = 0

£Γ6: wλ + w2 + wz = 0

and

Ff = η,F% Ff =

where α, 6, c, ώ, »„ a;2, ^3 e C*, 371,372 e i/* with ί([^J, [>;2]) = 2 and F^s Ffέ

are holomorphic functions defined as (2.2) for the above Hif f and g.

We have then

FfFfFf = x3Ff*Ff*Ff* .

Here, the left hand side can be rewritten with g19 g2, gz. Since g may
be assumed to be algebraically non-degenerate, this is regarded as an
identity of polynomials of independent variables g19g29gz' By the
uniqueness of factorization of a polynomial each factor in one side of
this identity coincides with some factor in the other side. From this
fact, we can conclude easily

χ1 = ω , x2 = ω2

 9 #3 = 1

a n d

a = ω , & = ω 2 , c = ω2 , d = ω

after a suitable change of indices, where α> denotes a primitive third

root of unity. Then, by eliminating /i ,/ 2 ,/ 3 from the relations (7.2) and

resolving gx,g2,g% we obtain

9 = #1 #2 #3 = 1 + ω2^ + ωηxη2: ω
2 + ηλ + ωη<η2: ω(l + ^ + M2) >

*) In [3], pp. 21 ~ 22, some statements should be corrected. By corrected calcula-
tions given in this paper the relation (7.4) in [3], p. 21 has a system of solutions with
the desired properties as an equation with unknowns cι and c^ . The type

(Λi, ,Λβ) = α,ca,β8Λ,Λ
should be called to be of the type (VIII).
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which is algebraically non-degenerate. And, if we consider a trans-
formation

Lx: w1: w2: wz «-> ωw1: ω2w2: w3

of P\C), f and g are related as Lx g = /. We note here that Lj is a
projective linear transformation of P\C) onto itself which maps hyper-
planes Hlf H2, , H6 onto JTj, lϊ2, H3, iϊ5, iϊ6, iΪ4 respectively.

Let us consider next the case (β). For the given hyperplanes (7.1)
and the above functions fi9 gi9 Fψ and Ff*9 we may put

/l = VlOl > f* = 9202 > / 3 = ^3

a(η\ - l/i) 6(^2 - yj η, - y1

- y2) η2 - y2

after a change of indices, where ^ ^ ^ e C * , ηlfη2eH* and
= 2. By eliminating /<, gt from these relations, we get

Ξ O ,

which may be regarded as an identity with independent variables ηί9η2.
By elementary calculations we see

2/1 = 2/2 = 2/3 = 1, 6 + c = 2α, a = d .

On the other hand, we have by (7.3)

fi(βfι + &/2 + /s)
Λίc/i + d/2 + /3) = ΛCCΛ + d 2̂ + gz)

/1 + Λ = ΰι + Qi 9

which implies fx = ĵ or fx = α^1 "*"—^2 "̂ " ̂ 3 . The former is the excluded
6 — α

case / = g. For the latter case, we obtain

9 = Λ #2 ^3 = 1 - V2 'Vι - 1 : (β - 6)77^2 + α^x - α^2 + 6 — a

and maps / and g are related as L2-g=f with a projective linear
transformation

L2: ^ tg,:*;,»-» ^ 1 + ^ + ^ 3 . c ^ + dw2 + w3 . ^
b — a c — d
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of P\C) which maps H19 H2, , Hβ onto H4, Hδ, H3, H19 H2, H6, respectively.

7.2. We shall study next algebraically non-degenerate meromorphic

maps / and g of Cn into P\C) such that / =έ g and v(f, Hz) = v(g, HJ

for eight hyperplanes Hi (1 <̂  % <^ 8) in general position. For the func-

tions hi (1 <̂  i ^ 8) defined as (2.6), since we have only to consider the

case t = tflTiJ, , [hj) <̂  4, the possible cases of Proposition 6.3 are

reduced to the following four types;

(r) [W: : [ΛJ = 1 : 1 : 1 : 1 : ft: ft: ft

(ί) [ΛJ: •• :[ΛJ = 1 : 1 : 1 : 1 : fr: βϊ1'-β2: βϊ1,

(ε) [fej: : [ftj = 1 : 1 : 1 : ft: j82: (ftft)"1: ft: ft"1,

(0 [W: : [ΛJ = 1:1: ft: ft"1: ft: ft"1: ft: ft"1 .

We can choose homogeneous coordinates on P\C) so that

Hi:wi = 0 (i = 1,2,3,4)
(7.4)

H^+4: αjwx + αjw2 + a)wz + α^w4 = 0 (j = 1,2,3,4) ,

where we may assume α/ = 1 whenever i = 4 or = 4.

For the case (f) or (3), meromorphic maps / = fλ: / 2 : / 3 : / 4 and

# = ^ i : ̂ 2: 9z' QA a re related as

(7.5) /i - ajift , / 2 = ^2δr2 , / 3 = α?3^3 , A = Λ

with some ^ , a?2, ̂ 3 e C * . Let us consider the functions F^€ and Ff«
defined as (2.2). We obtain a relation

in the case (y) and

FfFf = xίFf*Ff° ,
FfFf = aίFfFf ,

in the case (5), where xi9 x[, x'δe C*. By (7.5), the left hand sides of

these relations can be rewritten with gu - , #4 By the assumption, ^j,

• , #4 may be considered as independent variables in the obtained rela-

tions. In both cases (γ) and (3), by comparing the factors of the both

sides of these identities as in the consideration of the case (a), we can

conclude that all possible choices of constants a{ with the desired pro-

perty contradict the assumption that any minor of the matrix (a{) does

not vanish. The cases (γ) and (β) are both impossible.
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Next, we shall study the case (ε). We may put then

/i = #i#i > / 2 = #202 > /s = xώjiy^g* , / 4 = αĵ B"1^

Σ a{fj = 7 < ( έ α/^) (i = 1,2,3,4)

after a change of indices, where xl9 , # 4 e C*, ηi, η2* y* e H*9 tdηj, [η2],

[η3]) = 3 and, for convenience' sake, 774 = 1. Eliminating /Ί, ,/4, ̂ ,

• , g4 from these relations, we get

det(a\(ηt - xj,a2^ - x2),(fiknw% - x3),yflz - α4 1 ̂ i ^ 4 ) = 0 ,

which may be regarded as an identity with independent variables ηx, η2, ηz.

Substitute ηγ = η2 = η3 = 1. By the assumption for α|, we obtain xx = 1,

x2 = l, a?3 = 1 or #4 = 1. Let ̂  = 1. If we put ̂  = ̂ 4 = 1, we see

x2 = 1 or ίc4 = 1. For the case x1 = χ2 = l9 we get by substituting ηx = 1

an absurd identity

- 1X93 - D0?2 - xd% - x4) = 0 .

And, the case xx — x4 = 1 is reduced to the case x1 = x2 = 1 by substituting

373 = 1. Thus, the case x1 = 1 does not occur. By the same argument,

we can show that the case x2 = 1 is also impossible. Moreover, the case

xz = 1 and the case a?4 = 1 are reduced to the case a?x = 1 or x2 = 1 by

substituting ηx = gy2 = 1 and ^ = ̂ 3 = 1 respectively. Concludingly, there

is no possibility of the case (ε).

As was shown above, the case (ζ) only is possible. In this case

/ = / i : f2: / 3 : / 4 and # = &: g2: ^ 3 : ^4 may be considered to be related as

ft = ^ Γ 1 ^
(7.6) 4

ΣΣ
after changing indices, where x19 , # 4 e C * , ηuη2,η3eH*,

= 3 and 374 = 1. As in the case (ε), we have an identity

(7.7) det (a{(ηtηj - xt) 1 ̂  i, y ^ 4) = 0 ,

with independent variables ηί9η29ηz and we can conclude that

Juχ — - IΛ!/2 •— ίvβ —— JL , vC4 —— ~~" JL

by substituting suitable particular values of η19τ]29η3 into (7.7). Here, we

can find constants a[ such that (7.7) holds identically regarding ηx,η2>ηz
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as independent variables and any minor of the matrix (a{) does not
vanish. And, for hyperplanes Ht defined as (7.4) with these constants
a{ we can take two distinct algebraically non-degenerate meromorphic
maps / and g such that v(f, £Q = v(g, H^ (1^£<*8). We note here
the example for the particular case N = 3 given in § 6.3 is a special
type of the case stated here. As is easily seen by (7.6), the set Vf>g

given in Definition 5.1 is included in an algebraic set

( Σ ΦJ) = Wi ( Σ a>ίu>j) « = h 2,3)

V; zx + z2 + zz + z4 = w1 + w2 + wz + wA

where (z1: z2: z3: z4, w1:w2'.w3: w4) is a system of homogeneous coordinates
on P\C) x P%C). The author does not know geometric meanings of the
condition (7.7) for constants a{ and the algebric set V. Further studies
in this direction are expected.

Added in proof: Recently, the author found a gap in the proof of
Lemma 6.5. This is filled by the more precise study of possible types
of hi&. The details are to be published elsewhere.
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