M. Koike Nagoya Math. J. Vol. 64 (1976), 87-96

ON *p*-ADIC PROPERTIES OF THE EICHLER-SELBERG TRACE FORMULA II

M. KOIKE

Introduction

Let \mathfrak{S}_k be the space of cusp forms of weight k with respect to $SL(2, \mathbb{Z})$. Let p be a prime number and let $T_k(p)$ be the Hecke operator of degree p acting on \mathfrak{S}_k as a linear endomorphism. Put $H_k(X) = \det(I - T_k(p)X + p^{k-1}X^2I)$, where I is the identity operator on \mathfrak{S}_k . $H_k(X)$ is a polynomial with coefficients of rational integers, which is called the Hecke polynomial.

In this paper, we shall prove the congruences between Hecke polynomials:

THEOREM. Let $p \ge 5$ be a prime number and let α be a positive integer. Let k be an even positive integer such that $k \ge 2\alpha + 2$ and $\dim_{\mathbb{C}} \mathfrak{S}_{k+p^{\alpha}-p^{\alpha-1}} < p^{k-\alpha-1}$. Then we have

 $H_{k'}(X) \equiv H_k(X) \pmod{p^{\alpha} \mathbb{Z}[X]}$

for every even positive integer k' > k satisfying $k' \equiv k \pmod{p^{\alpha} - p^{\alpha^{-1}}}$.

In the case of $\alpha = 1$, our theorem is a weaker version of the property of contraction of U_p , which was proved by Serre. The proof of our theorem makes essential use of the *p*-adic properties of the Eichler-Selberg trace formula which is finer than what was proved in our previous paper [2].

§1. Congruences between traces of Hecke operators.

We fix a prime number p once and for all. For each positive integer n, let $T_k(n)$ be the Hecke operator of degree n acting on \mathfrak{S}_k as a linear endomorphism. The Eichler-Selberg trace formula for $T_k(n)$ reads as follows:

Received May 12, 1976.

MASAO KOIKE

(1)
$$\operatorname{tr} T_{k}(n) = \sum_{\{\rho, \rho'\}} \sum_{\sigma \ni \rho} -\frac{h_{\sigma}}{w_{\sigma}} F^{(k-2)}(\rho, \rho') - \sum_{\substack{d \mid n \\ d > 0, \ d \leq \sqrt{n}}} d^{k-1} + \delta(\sqrt{n}) \frac{k-1}{12} n^{k/2-1} + \begin{cases} 0 & (k > 2) \\ \sum_{\substack{d \mid n \\ d > 0}} d & (k = 2) \end{cases},$$

where we use the same notations as in [2].

We shall prove finer congruences between traces of Hecke operators than what was proved in our previous paper [2]. Our result is as follows:

PROPOSITION. We assume $p \ge 5$. Let m and α be positive integers. Put $\operatorname{ord}_p m = \beta$. Let k' and k be even positive integers satisfying (1) $k' \equiv k \pmod{p^{\alpha} - p^{\alpha-1}}$ and (2) $k' > k \ge \operatorname{Max} \{2\alpha + 2, \alpha + \beta + 2\}$. Then we have

$$\operatorname{tr} T_{k'}(p^m) \equiv \operatorname{tr} T_k(p^m) \qquad (\operatorname{mod} p^{\alpha+\beta}) \ .$$

Remark. In order to prove congruences between traces of Hecke operators in our previous paper, we made use of the property that h_{\circ} is merely a rational integer. On the other hand, the proof of Proposition makes essential use of the fact that h_{\circ} is the number of proper \circ -ideal classes.

Proof. We consider the trace formula for $T_k(p^m) \mod p^{\alpha+\beta}$. Since $k \ge 4$, the fourth summand is equal to zero. By the condition (2), the second (resp. third) summand is proved to be congruent to one (resp. zero) mod $p^{\alpha+\beta}$. Let us deal with the first summand. Let K be an imaginary quadratic field which contains ρ and ρ' and let $\left(\frac{K}{p}\right)$ denote Kronecker's symbol. In the case of $\left(\frac{K}{p}\right) = -1$ or 0, $F^{(k-2)}(\rho, \rho')$ is easily proved to be congruent to zero mod $p^{\alpha+\beta}$. So we may assume $\left(\frac{K}{p}\right) = 1$, $p = \mathfrak{p} \cdot \mathfrak{p}'$ with two prime ideals in K. If the conductor of \mathfrak{o} is divisible by p, $F^{(k-2)}(\rho, \rho')$ is congruent to zero mod $p^{\alpha+\beta}$. Hence we may assume the conductor of \mathfrak{o} is not divisible by p. Put $\mathfrak{p}_{\mathfrak{o}} = \mathfrak{p} \cap \mathfrak{o}$ and $\mathfrak{p}'_{\mathfrak{o}} = \mathfrak{p}' \cap \mathfrak{o}$. Let d be the smallest positive integer such that $\mathfrak{p}_{\mathfrak{o}}^d$ is principal. Put $\gamma = \operatorname{ord}_p d$. We may put $\mathfrak{p}_{\mathfrak{o}}^d = \pi\mathfrak{o}$ with $\pi \in \mathfrak{o}$, or what is the same as $\mathfrak{p}^d = \pi\mathfrak{o}_1$, \mathfrak{o}_1 being the maximal order of K. If ρ is not primitive, $F^{(k-2)}(\rho, \rho')$ is congruent to zero mod $p^{\alpha+\beta}$. So we may also assume that

88

 ρ is primitive and that $\rho' \equiv 0 \pmod{p}$. Since $\rho \cdot \rho' = p^m$, we have $(\rho) = \mathfrak{p}'^m$. Hence $\mathfrak{p}'^{mp^{r-\beta}}$ is principal and it is proved that there exists an imaginary quadratic integer ρ_1 such that $\rho_1^{\mathfrak{p}^{\beta-\gamma}} = \rho$. Therefore we have

$$\begin{split} F^{(k'-2)}(\rho,\rho') &\equiv \frac{1}{\rho-\rho'} \cdot \rho^{k-1} \cdot \rho_1^{(k'-k)p\beta-r} \qquad (\mathrm{mod} \ \mathfrak{p}^{\alpha+\beta-r}) \ ,\\ &\equiv \frac{\rho^{k-1}}{\rho-\rho'} \qquad (\mathrm{mod} \ \mathfrak{p}^{\alpha+\beta-r}) \ ,\\ &\equiv F^{(k-2)}(\rho,\rho') \qquad (\mathrm{mod} \ \mathfrak{p}^{\alpha+\beta-r}) \ . \end{split}$$

Since h_{\circ} is divisible by d, we have $\operatorname{ord}_{p} h_{\circ} \geq \gamma$. Hence we have $\frac{h_{\circ}}{w_{\circ}}F^{(k'-2)}(\rho, \rho') \equiv \frac{h_{\circ}}{w_{\circ}}F^{(k-2)}(\rho, \rho') \pmod{p^{\alpha+\beta}}$. Thus Proposition is completely proved. Q.E.D.

In cases of p = 2, 3, we can prove following propositions by the same arguments as above:

PROPOSITION. (Case of p = 2.) Let m and α be positive integers. Put $\operatorname{ord}_2 m = \beta$. Let k' and k be even positive integers satisfying (1) $k' \equiv k \pmod{2^{\alpha}}$ and (2) $k' > k \ge \max{2\alpha + 6, \alpha + \beta + 4}$. Then we have

$$\operatorname{tr} T_{k'}(2^m) \equiv \operatorname{tr} T_k(2^m) \qquad (\operatorname{mod} 2^{\alpha+\beta}) \ .$$

PROPOSITION. (case of p = 3.) Let *m* and α be positive integers. Put ord₃ $m = \beta$. Let k' and k be even positive integers satisfying (1) $k' \equiv k \pmod{3^{\alpha} - 3^{\alpha-1}}$ and (2) $k' > k \ge Max \{2\alpha + 4, \alpha + \beta + 3\}$. Then we have

$$\operatorname{tr} T_{k'}(3^m) \equiv \operatorname{tr} T_k(3^m) \qquad (\operatorname{mod} 3^{\alpha+\beta}).$$

§2. Preliminary lemmas

Let x_1, \dots, x_N be indeterminates. For each positive integer n, we define $S_n(x_1, \dots, x_N) = \sum_{i=1}^N x_i^n$ and $F_n(x_1, \dots, x_N) = (-1)^n \sum_{1 \le i_1 < \dots < i_n \le N} x_{i_1}$ $\dots x_{i_n}$. We simply write S_n and F_n instead of $S_n(x_1, \dots, x_N)$ and $F_n(x_1, \dots, x_N)$. It is obvious that $F_n = 0$ if n is greater than N. It is well known that there exist following relations between two functions S_n and F_n , which are called Newton's formulae;

$$S_n + S_{n-1}F_1 + \cdots + S_1F_{n-1} + nF_n = 0$$
.

MASAO KOIKE

By means of Newton's formulae, F_n (resp. S_n) can be described as a polynomial of S_i (resp. F_i) with $1 \le i \le n$ as follows:

$$F_{n} = \sum_{r=1}^{n} \sum_{\substack{1 \le i_{1} < \cdots < i_{r} \le n \\ 1 \le j_{s}}} a_{\binom{(i_{1}, \cdots, i_{r})}{j_{1}, \cdots, j_{r}}}^{(j_{1}, \cdots, j_{r})} S_{i_{1}}^{j_{1}} \cdots S_{i_{r}}^{j_{r}} ,$$

$$S_{n} = \sum_{r=1}^{n} \sum_{\substack{1 \le i_{1} < \cdots < i_{r} \le n \\ 1 \le j_{s}}} b_{\binom{(i_{1}, \cdots, i_{r})}{j_{1}, \cdots, j_{r}}}^{(n)} F_{i_{1}}^{j_{1}} \cdots F_{i_{r}}^{j_{r}} ,$$

where $a^{(n)}$ and $b^{(n)}$ are rational numbers. All these coefficients can be calculated as follows:

LEMMA 1. We have

(2)
$$a_{\binom{i_1}{j_1,\dots,j_r}}^{\binom{n}{j_1}} = \left((-1)^{\frac{j_2}{s-1}j_s} \prod_{s=1}^r j_s! i_s^{j_s}\right)^{-1},$$

and

(3)
$$b_{\binom{n}{j_1,\ldots,j_r}}^{\binom{n}{j_1,\ldots,j_r}} = (-1)^{\sum_{s=1}^r j_s} \frac{\left(\left(\sum_{s=1}^r j_s\right) - 1\right)!}{\prod_{s=1}^r j_s!} n$$
.

Proof. We use induction on n. It is obvious that (2) is valid for n = 1. Suppose that (2) is valid for all $a^{(\ell)}$ with $1 \le \ell \le n - 1$. By Newton's formulae, we have $F_n = -\frac{1}{n} \left(S_n + \sum_{k=1}^{n-1} S_{n-k} F_k \right)$. If $i_1 = n$, (2) is obviously valid. So we may assume $i_1 \le n$. Then we have

$$\begin{split} a^{(n)}_{\binom{j_1,\dots,j_r}{j_1,\dots,j_r}} &= -\frac{1}{n} \Big((-1)^{\binom{r}{s=1}j_s - 1} \left[\sum_{s=1}^r \left\{ (j_s - 1) ! \, i_s^{j_s - 1} \prod_{k \neq s} j_k ! \, i_k^{j_k} \right\}^{-1} \right] \Big) ,\\ &= (-1)^{s^{\frac{r}{\sum_1}j_s}} \left(\prod_{s=1}^r j_s ! \, i_s^{j_s} \right)^{-1} \frac{1}{n} \sum_{s=1}^r i_s j_s ,\\ &= (-1)^{s^{\frac{r}{\sum_1}j_s}} \left(\sum_{s=1}^r j_s ! \, i_s^{j_s} \right)^{-1} . \end{split}$$

Hence (2) is proved to be valid. Let us prove that (3) is valid. We also use induction on n. It is obvious that (3) is valid for n = 1. Suppose that (3) is valid for all $b^{(\ell)}$ with $1 \le \ell \le n - 1$. By Newton's

formulae, we have $S_n = -\left(nF_n + \sum_{k=1}^{n-1} S_{n-k}F_k\right)$. If $i_1 = n$, it is obvious that (3) is valid. So we may assume $i_1 < n$. Then we have

$$\begin{split} b_{\binom{n}{j_1,\ldots,j_r}}^{(n)} &= -\sum_{s=1}^r (-1)^{\binom{r}{s=1}j_s)-1} \frac{\left(\left(\sum_{s=1}^r j_s\right)-2\right)!}{(j_s-1)!\prod_{k\neq s}j_k!} (n-i_s) ,\\ &= (-1)^{s\sum_{s=1}^r j_s} \frac{\left(\left(\sum_{s=1}^r j_s\right)-2\right)!}{\prod_{s=1}^r j_s!} \left(\sum_{s=1}^r j_s n-j_s i_s\right) ,\\ &= (-1)^{s\sum_{s=1}^r j_s} \frac{\left(\left(\sum_{s=1}^r j_s\right)-1\right)!}{\sum_{s=1}^r j_s!} n . \end{split}$$

Therefore (3) is proved to be valid.

Q.E.D.

By making use of Lemma 1, we can prove the following lemma:

LEMMA 2. Let $G(X) = \prod_{i=1}^{k} (1 - a_i X)$ and $H(X) = \prod_{j=1}^{\ell} (1 - b_j X)$ be polynomials with coefficients of rational integers. Put $s_n = S_n(a_1, \dots, a_k)$, $t_n = S_n(b_1, \dots, b_\ell)$, $\sigma_n = F_n(a_1, \dots, a_k)$ and $\tau_n = F_n(b_1, \dots, b_\ell)$. Let α be a positive integer. Then the following statements are equivalent:

- (1) $s_n \equiv t_n \pmod{p^{\alpha + \operatorname{ord}_p n}}$ for every $n \ge 1$,
- (2) $\sigma_n \equiv \tau_n \pmod{p^{\alpha}}$ for every $n \text{ with } 1 \le n \le \max\{k, \ell\},$
- (3) $F(X) \equiv G(X) \pmod{p^{\alpha} \mathbb{Z}[X]}$.

Proof. It is obvious that the statements (2) and (3) are equivalent. So we shall show that the statements (1) and (2) are equivalent. Let N be any positive integer. We assume that $(1)_{N-1}$: $s_n \equiv t_n \pmod{p^{\alpha+\operatorname{ord} p^n}}$ for every $n \leq N-1$ and $(2)_{N-1}$: $\sigma_n \equiv \tau_n \pmod{p^{\alpha}}$ for every $n \leq N-1$. Under this assumption, we show that the following statements are equivalent:

- $(1)_N \quad s_n \equiv t_n \; (\text{mod } p^{\alpha + \text{ord}_p \; n}) \qquad \text{for every } n \leq N,$
- $(2)_N \quad \sigma_n \equiv \tau_n \pmod{p^a} \qquad \text{for every } n \leq N.$

By making use of (3) in Lemma 1, we have

$$s_N = -N\sigma_N + \sum_{r=1}^N \sum_{\substack{1 \le i_1 < \cdots < i_r \le N \ 1 \le j_s}} b^{(N)}_{\binom{i_1, \cdots, i_r}{j_1, \cdots, j_r}} \sigma^{j_1}_{i_1} \cdots \sigma^{j_r}_{i_r}$$
 ,

$$t_N = -N\tau_N + \sum_{r=1}^{N} \sum_{\substack{1 \le i_1 \le \cdots \le i_r \le N \\ 1 \le j_s \\ \sum_{i=1}^{r} i_s j_s = N}} b_{\binom{N}{i_1, \cdots, i_r}}^{(N)} \tau_{i_1}^{j_1} \cdots \tau_{i_r}^{j_r} \, .$$

Since
$$\frac{\left(\sum\limits_{s=1}^{r} j_{s}\right)!}{\prod\limits_{s=1}^{r} j_{s}!}$$
 is a rational integer, $\frac{j_{s}}{N}b_{\binom{(N)}{j_{1},\ldots,j_{r}}}^{(N)}$ and $\frac{\left(\sum\limits_{s=1}^{r} j_{s}\right)}{N}b_{\binom{(i_{1},\ldots,i_{r}}{j_{1},\ldots,j_{r}}}^{(N)}$

are rational integers. Put $\beta = \operatorname{ord}_p N$ and $\gamma = \operatorname{Min} \left\{ \operatorname{ord}_p j_1, \dots, \operatorname{ord}_p j_s, \operatorname{ord}_p \sum_{s=1}^r j_s \right\}$. Then we have $\operatorname{ord}_p b_{\binom{N}{j_1,\dots,j_r}}^{\binom{N}{j_1,\dots,j_r}} \geq \beta - \gamma$. By the condition $(2)_{N-1}$, we have $\sigma_{i_s} \equiv \tau_{i_s} \pmod{p^{\alpha}}$ for every i_s with $1 \leq i_s \leq N-1$. Hence we have $\sigma_{i_s}^{j_s} \equiv \tau_{i_s}^{j_s} \pmod{p^{\alpha+\operatorname{ord}_p j_s}}$ for every i_s with $1 \leq i_s \leq N-1$. Therefore we have $s_N - N\sigma_N \equiv t_N - N\tau_N \pmod{p^{\alpha+\operatorname{ord}_p N}}$, so $s_N - t_N \equiv N(\sigma_N - \tau_N) \pmod{p^{\alpha+\operatorname{ord}_p N}}$. From this, it follows immediately that $(1)_N$ and $(2)_N$ are equivalent under the assumption that $(1)_{N-1}$ and $(2)_{N-1}$ are valid. Hence it is proved that (1) and (2) are equivalent.

§3. Congruences between Hecke polynomials

For any even positive integer k, we put $C_k(X) = \det (I - T_k(p)X)$ and $H_k(X) = \det (I - T_k(p)X + p^{k-1}X^2I)$ where I is the identity operator on \mathfrak{S}_k . $C_k(X)$ and $H_k(X)$ are polynomials with coefficients of rational integers. $H_k(X)$ is usually called the Hecke polynomial.

Combining results in §1 and 2, we can prove the following:

THEOREM 1. We assume $p \ge 5$. Let α be a positive integer. Let k be an even positive integer such that (1) $k \ge 2\alpha + 2$ and (2) $\dim_{\mathcal{C}} \mathfrak{S}_{k+p^{\alpha}-p^{\alpha-1}}$ $< p^{k-\alpha-1}$. Then we have

$$\begin{split} H_{k'}(X) &\equiv H_k(X) \qquad (\mathrm{mod}\; p^{\alpha}Z[X]) \;, \\ C_{k'}(X) &\equiv C_k(X) \qquad (\mathrm{mod}\; p^{\alpha}Z[X]) \;, \end{split}$$

for every even positive integer k' > k satisfying $k' \equiv k \pmod{p^{\alpha} - p^{\alpha^{-1}}}$.

Proof. Since $k \ge 2\alpha + 2$, we have $H_k(X) \equiv C_k(X) \pmod{p^{\alpha} \mathbb{Z}[X]}$. So we shall prove only $C_{k'}(X) \equiv C_k(X) \pmod{p^{\alpha} \mathbb{Z}[X]}$. By the dimension formula for \mathfrak{S}_k , it is easily proved that $k + p^{\alpha} - p^{\alpha^{-1}}$ also satisfies the condition (2) if k satisfies it. Hence we may prove our theorem only in case of $k' = k + p^{\alpha} - p^{\alpha^{-1}}$. Let m be any positive integer such that

92

 $m \leq \dim_{\mathcal{C}} \mathfrak{S}_{k'}$, and put $\beta = \operatorname{ord}_{p} m$. By the condition (2), we have $\beta \leq k - \alpha - 1$, so we have $\alpha + \beta + 2 \leq k$. Hence, making use of Proposition 1, we have tr $T_{k'}(p^m) \equiv \operatorname{tr} T_k(p^m) \pmod{p^{\alpha+\beta}}$. On the other hand, by the recursion formula for $T_k(p^m)$, we have tr $T_k(p^m) \equiv \operatorname{tr} T_k(p)^m \pmod{p^{k-1}}$. Therefore we have tr $T_{k'}(p)^m \equiv \operatorname{tr} T_k(p)^m \pmod{p^{\alpha+\beta}}$. Combining these congruences with Lemma 2, we obtain the proof of Theorem 1.

Q.E.D.

In cases of p = 2, 3, we can prove following theorems by the same arguments as above:

THEOREM 1 (Case of p = 2). Let α be a positive integer. Let k be an even positive integer such that $k \ge 2\alpha + 6$ and $\dim_{\mathcal{C}} \mathfrak{S}_{k+2\alpha} \le 2^{k-\alpha-3}$. Then we have

$$H_{k'}(X) \equiv H_k(X) \qquad (\text{mod } 2^{\alpha} Z[X]) ,$$

for every even positive integer k' > k satisfying $k' \equiv k \pmod{2^{\alpha}}$.

THEOREM 1 (Case of p = 3). Let α be a positive integer. Let k be an even positive integer such that $k \ge 2\alpha + 4$ and $\dim_{\mathcal{C}} \mathfrak{S}_{k+3\alpha-3\alpha-1} < 3^{k-\alpha-2}$. Then we have

$$H_{k'}(X) \equiv H_k(X) \pmod{3^{\alpha} \mathbb{Z}[X]},$$

for every even positive integer k' > k satisfying $k' \equiv k \pmod{3^{\alpha} - 3^{\alpha-1}}$.

We give an application of Theorem 1. In the rest of this section, we assume $p \ge 5$ for the sake of simplicity. Let k' > k be even positive integers such that $k' \equiv k \pmod{p-1}$ and $k \ge 4$. Then, it is obvious that k satisfies the condition (2) in Theorem 1 for $\alpha = 1$. Put $n = \dim_{\mathcal{C}} \mathfrak{S}_k$ and $n' = \dim_{\mathcal{C}} \mathfrak{S}_{k'}$. It is clear that det $(XI - T_k(p)) = X^n \det \left(I - \frac{1}{X}T_k(p)\right)$, where I is the identity operator on \mathfrak{S}_k . Therefore, from Theorem 1 follows

COROLLARY. Under the above conditions, we have

 $\det \left(XI_{k'} - T_{k'}(p) \right) \equiv X^{n'-n} \det \left(XI_k - T_k(p) \right) \pmod{pZ[X]} .$

This result is equivalent to Serre's result [3, (i), Corollary to Theorem 6].

§4. *p*-adic Hecke polynomials

Let α be a positive integer. Put $X_{\alpha} = Z/(p^{\alpha} - p^{\alpha-1})Z$ if $p \neq 2$, and $X_{\alpha} = Z/2^{\alpha-2}Z$ if p = 2. $\{X_{\alpha}\}$ forms a projective system naturally. We have

$$X = \lim_{\leftarrow} X_{\alpha} = \begin{cases} Z_p \times Z/(p-1)Z & \text{if } p \neq 2, \\ Z_2 & \text{if } p = 2, \end{cases}$$

where Z_p is the ring of *p*-adic integers. The canonical homomorphism $Z \to X$ is injective. We identify Z with a dense subgroup of X through this homomorphism.

Let \mathfrak{O} denote the ring of formal power series in X with coefficients in \mathbb{Z}_p . Let \mathfrak{m} be the maximal ideal of \mathfrak{O} . The powers of $\mathfrak{m}, \mathfrak{m}^n, n \geq 0$ define the m-adic topology on \mathfrak{O} .

We assume $p \ge 5$. Let $\{k_{\alpha}\}_{\alpha=1}^{\infty}$ be a sequence of monotonically increasing, even positive integers satisfying $k_{\alpha} \equiv k_{\alpha'} \pmod{p^{\alpha} - p^{\alpha-1}}$ if $\alpha' > \alpha$, $k_{\alpha} \ge 2^{\alpha} + 2$ and $\dim_{C} \mathfrak{S}_{k_{\alpha} + p^{\alpha} - p^{\alpha-1}} < p^{k_{\alpha} - \alpha - 1}$. Then $\{k_{\alpha}\}_{\alpha=1}^{\infty}$ has a limit in X, which is denoted by \tilde{k} . By means of Theorem 1, there exists a common m-adic limit of $\{H_{k_{\alpha}}(X)\}$ and of $\{C_{k_{\alpha}}(X)\}$ in \mathfrak{O} . Put $\tilde{H}_{\tilde{k}}(X) = \lim_{\alpha \to \infty} H_{k_{\alpha}}(X)$. It is clear that $\tilde{H}_{\tilde{k}}(X)$ depends only on \tilde{k} , but not on the choice of sequences $\{k_{\alpha}\}$ with $\lim k_{\alpha} = \tilde{k}$. We call $\tilde{H}_{\tilde{k}}(X)$ the p-adic Hecke polynomial.

In the case where \tilde{k} belongs to 2Z, we shall show that $\tilde{H}_{\tilde{k}}(X)$ coincides with the Fredholm determinant of the *p*-adic Hecke operator $\tilde{U}_{k}(p)$ and that $\tilde{H}_{\tilde{k}}(X)$ is an entire function.

Before this, we extend Lemma 1 as follows:

LEMMA 3. Let $G(X) = 1 + \sum_{n\geq 1} \sigma_n X^n$ be a formal power series in Xwith coefficients σ_n in a field K, so that $\log G(X) = \sum_{n\geq 1} (-1)^n \frac{(G(X)-1)^n}{n}$ is also a formal power series in X with coefficients in K, which we write $-\sum_{n\geq 1} \frac{s_n}{n} X^n$, with $s_n \in K$. Then there exist following relations between σ_n and s_n ;

(4)
$$S_{n} = \sum_{r=1}^{n} \sum_{\substack{1 \le i_{1} < \cdots < i_{r} \le n \\ 1 \le j_{s}}} b_{\binom{n}{j_{1}, \cdots, j_{r}}}^{\binom{n}{j_{1}}} \sigma_{i_{1}}^{j_{1}} \cdots \sigma_{i_{r}}^{j_{r}},$$

94

$$\sigma_n = \sum_{r=1}^n \sum_{\substack{1 \le i_1 < \cdots < i_r \le n \\ 1 \le j_s}} a_{\binom{i_1, \cdots, i_r}{j_1, \cdots, j_r}}^{(n)} \mathcal{S}_{i_1}^{j_1} \cdots \mathcal{S}_{i_r}^{j_r} ,$$

where $a^{(n)}$ and $b^{(n)}$ are the same as in Lemma 1.

Proof. If G(X) is a polynomial in X with coefficients in K, (4) is equal to (2) and (3) in Lemma 1. Put $G_n(X) = 1 + \sum_{i=1}^n \sigma_i X^i$ and $\log G_n(X) = (-1) \sum_{i \ge 1} \frac{s_i^{(n)}}{i} X^i$. Then it is clear that $s_i^{(n)} = s_i$ for all i with $i \le n$. Hence, from Lemma 1, (4) follows immediately. Q.E.D.

Let \tilde{k} be an even integer and let $D_{\tilde{k}}^{(p)}(X)$ be the Fredholm determinant of the *p*-adic Hecke operator $\tilde{U}_{\tilde{k}}(p)$ which is defined in [2].

THEOREM 2. We have

$$ilde{H}_{ ilde{k}}(X) = D^{(p)}_{ ilde{k}}(X) , \quad for \ ilde{k} \in 2\mathbf{Z} .$$

Proof. Let $\{k_{\alpha}\}$ be a sequence of monotonically increasing, even positive integers satisfying $k_{\alpha} \equiv k_{\alpha'} \pmod{p^{\alpha} - p^{\alpha^{-1}}}$ for every $\alpha' \geq \alpha$, $k_{\alpha} \leq 2\alpha + 2$, $\dim_{\mathcal{C}} \mathfrak{S}_{k_{\alpha} + p^{\alpha} - p^{\alpha^{-1}}} \leq p^{k_{\alpha} - \alpha^{-1}}$ and $\lim k_{\alpha} = \tilde{k}$. Put $H_{k_{\alpha}}(X) = 1$ $+ \sum_{n\geq 1} \sigma_{n}^{(\alpha)} X^{n}$ and $\log H_{k_{\alpha}}(X) = -\sum_{n\geq 1} \frac{s_{n}^{(\alpha)}}{n} X_{n}$ with $\sigma_{n}^{(\alpha)}$ and $s_{n}^{(\alpha)}$ in Z. When $\alpha \to \infty$, $\{\sigma_{n}^{(\alpha)}\}$ and $\{s_{n}^{(\alpha)}\}$ have p-adic limits which we deonte by σ_{n} and s_{n} respectively. Then we have $\tilde{H}_{\tilde{k}}(X) = 1 + \sum_{n\geq 1} \sigma_{n} X^{n}$. Since $\sigma_{n}^{(\alpha)}$ and $s_{n}^{(\alpha)}$ satisfy the relations (4), σ_{n} and s_{n} also satisfy the relations (4). Hence we have $\log H_{\tilde{k}}(X) = -\sum_{n\geq 1} \frac{s_{n}}{n} X^{n}$. On the other hand, we have $s_{n}^{(\alpha)} =$ $\operatorname{tr} U_{k_{\alpha}}(p^{n})$ by (41) in [1]. Hence, from Theorem 1 in [2], it follows that $s_{n} = \operatorname{tr} \tilde{U}_{\tilde{k}}(p)^{n}$. Therefore we have $\tilde{H}_{\tilde{k}}(X) = D_{\tilde{k}}^{(p)}(X)$. Q.E.D.

Since $D_k^{(p)}(X)$ is a *p*-adic entire function, we have the following:

COROLLARY. $\tilde{H}_{\tilde{k}}(X)$ is a p-adic entire function for $\tilde{k} \in 2\mathbb{Z}$.

Remark. It is obvious that the *p*-adic Hecke polynomials converge for all $x \in \mathbb{Z}_p$.

Remark. In cases of p = 2, 3, the same argument as above can be applied.

MASAO KOIKE

Remark. Recently, Prof. B. Dwork kindly let me know a direct proof of Theorem is obtained from Adolphson's thesis and, at the same time, the condition on $\dim_{\mathbb{C}} \mathfrak{S}_{k+p\alpha-p\alpha-1}$ can be discarded.

REFERENCES

- [1] Y. Ihara, Hecke polynomials as congruence ζ functions in elliptic modular case, Ann. of Math., 85 (1967), 267-295.
- [2] M. Koike, On some p-adic properties of the Eichler-Selberg trace formula, Nagoya Math. J., vol. 56 (1974), 45-52.
- [3] J.-P. Serre, Formes modulaires et fonctions zeta p-adiques, Modular functions of one variable III, Lecture note in math., Springer, Berlin-Heidelberg-New York, 1973.

Nagoya University