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ON p-ADIC PROPERTIES OF THE EICHLER-SELBERG

TRACE FORMULA II

M. KOIKE

Introduction

Let ©fc be the space of cusp forms of weight k with respect to
SL(2, Z). Let p be a prime number and let Tk(p) be the Hecke operator
of degree p acting on ©fc as a linear endomorphism. Put Hk(X) =
det (/ - Tk(p)X + pk'lX2I), where / is the identity operator on ©4. Hk(X)
is a polynomial with coefficients of rational integers, which is called the
Hecke polynomial.

In this paper, we shall prove the congruences between Hecke
polynomials:

THEOREM. Let p > 5 be a prime number and let a be a positive
integer. Let k be an even positive integer such that k>2a + 2 and
dimc(Bk+pa_pa-1<pk~a~\ Then we have

(mod p«Z[X])

for every even positive integer kf > k satisfying kf = k (mod pa — p"'1).

In the case of a = 1, our theorem is a weaker version of the pro-
perty of contraction of Up, which was proved by Serre. The proof of
our theorem makes essential use of the p-adic properties of the Eichler-
Selberg trace formula which is finer than what was proved in our pre-
vious paper [2].

§1. Congruences between traces of Hecke operators.

We fix a prime number p once and for all. For each positive
integer n, let Tk(ri) be the Hecke operator of degree n acting on Sfc as
a linear endomorphism. The Eichler-Selberg trace formula for Tk(ri)
reads as follows:
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= 2 ) ,
>o

where we use the same notations as in [2].

We shall prove finer congruences between traces of Hecke operators

than what was proved in our previous paper [2]. Our result is as follows:

PROPOSITION. We assume p>5. Let m and a be positive integers.

Put ordp m = β. Let kr and k be even positive integers satisfying (1)

k' ΞΞ k (mod pa — p"'1) and (2) k'> k> Max {2a + 2, a + β + 2}. Then we

have

tr Tk,(Pm) = t r Tk(pm) (mod pa+β) .

Remark. In order to prove congruences between traces of Hecke

operators in our previous paper, we made use of the property that h0

is merely a rational integer. On the other hand, the proof of Proposi-

tion makes essential use of the fact that h0 is the number of proper o-

ideal classes.

Proof. We consider the trace formula for Tk(pm) mod pa+β. Since

k > 4, the fourth summand is equal to zero. By the condition (2), the

second (resp. third) summand is proved to be congruent to one (resp.

zero) modpa+β. Let us deal with the first summand. Let K be an im-

aginary quadratic field which contains p and pr and let ( — ) denote
\ p I

Kronecker's symbol. In the case of ( — ) = —1 or 0, F{k~2\p>pr) is easily
\ p I

proved to be congruent to zero mod pa+β. So we may assume ( — j = 1,

p = ρ.j/ with two prime ideals in K. If the conductor of o is divisible

by p, F{k~2Xp>pf) is congruent to zero moάpa+β. Hence we may assume

the conductor of o is not divisible by p. Put p0 = p Π o and pi = p' Π o.

Let d be the smallest positive integer such that p* is principal. Put

γ = ordp d. We may put #J = τro with π e o, or what is the same as

pd = πou d being the maximal order of K. If p is not primitive,

Fa~2)(p, p') is congruent to zero moάpa+β. So we may also assume that
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p is primitive and that pf = 0 (mod p). Since p p' = p m , we have (̂ o) = p'm.

Hence ρ'mPr~β is principal and it is proved that there exists an imaginary

quadratic integer px such that pf ~r = p. Therefore we have

F'k'-2\p,p') = ±—.p*-i.p<*-W-r

= —£ (mod:

Since h0 is divisible by d, we have ordp h0 > γ. Hence we have

2H*-F(k'-2)(pfp') = -A.Fik'2)(p9p
/) (modpβ +0. Thus Proposition is completely

proved. Q.E.D.

In cases of p = 2,3, we can prove following propositions by the

same arguments as above:

PROPOSITION. (Case of p = 2.) Let m and a be positive integers.

Put ord2 m = β. Let kf and k be even positive integers satisfying (1)

k' = k (mod 2") and (2) k'>k> Max {2a + 6, a + β + 4}. Then we have

t r 2V(2m) = t r Γ f e(2w) (mod 2 β + 0 .

PROPOSITION, (case of p = 3.) Lei m and a be positive integers.

Put ord3 m = β. Let kr and k be even positive integers satisfying (1)

k' = k (mod3* - 3"-1) and (2) k'> k> Max{2a + 4, α + β + 3}. Tftew

we have

t r 2V(3m) = t r Tfc(3m) (mod 3β+0

§2. Preliminary lemmas

Let x19 , xN be indeterminates. For each positive integer n, we
N

define Sn(x19 , ##) = 2 ^? ^ n d Fn(x19 , αjjv ) = ( — X)n Σ ^ x

# %w We simply write Sn and F w instead of Sn(x19 ,a?^) and Fn(x19

• ,a?^). It is obvious that Fn = 0 if w is greater than N. It is well

known that there exist following relations between two functions Sn and

Fn9 which are called Newton's formulae;

&n i ^n — l" 1 i * ~
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By means of Newton's formulae, Fn (resp. Sn) can be described as a
polynomial of Si (resp. Ft) with 1 < i < n as follows:

Fn=± Σ <,...,«ryS/ί Sΰ >
r-l l<.H<—<lr<.n \jι, ,ίr>

where am and bm are rational numbers. All these coefficients can be
calculated as follows:

LEMMA 1. We have

(2) afcU,*o = ( ( - i r 1 " Π 3.! ίί4) ,
\Jι, ,JtJ \ l /

( 3 )

Proof. We use induction on w. It is obvious that (2) is valid for

n = l. Suppose that (2) is valid for all aw with l<β<n — 1. By

Newton's formulae, we have F w = -—(sn + J^Sn.kFk). If ix = n, (2)

is obviously valid. So we may assume ίγ < n. Then we have

Vi, ,/r/ tl \ Ls = l I fc^s J J/

'=1 (Π
\s=i

Hence (2) is proved to be valid. Let us prove that (3) is valid. We
also use induction on n. It is obvious that (3) is valid for n = 1.
Suppose that (3) is valid for all bω with 1 < t < n — 1. By Newton's



TRACE FORMULA 91

formulae, we have Sn = —(nFn + Σ S B . / i ) . If h = n, it is obvious

that (3) is valid. So we may assume iλ < n. Then we have

0. - 1 ) ! Π :?*!

Πί.i

Therefore (3) is proved to be valid. Q.E.D.

By making use of Lemma 1, we can prove the following lemma:

LEMMA 2. Let G(X) = f\ (1 - atX) and H(X) = {[ (1 - b<X) be

polynomials with coefficients of rational integers. Put sn = Sn(a19 -,ak),

*n = iSΛ(&i> > &̂)> on = F n (θi, , αΛ) and τw = Fn(b19 , 6^. Lei a be

a positive integer. Then the following statements are equivalent:

(1) sn = ίn (mod pa+oτάPn) for every n > 1,

(2) σn = τn (mod pa) /or every n with 1 <n< Max {A;, £},

(3) F(Z) = G(Z) (mod paZ[X]).

Proof. It is obvious that the statements (2) and (3) are equivalent.

So we shall show that the statements (1) and (2) are equivalent. Let JV

be any positive integer. We assume that (l)iNΓ_1: sn = tn (modpa+OIdpn) for

every n < N — 1 and (2)^_!: σn = τn (mod pa) for every n < N — 1. Under

this assumption, we show that the following statements are equivalent:

(ΐ)N sn == tn (mod pα+ord*w) for every n<N,

(2)N σn ΞΞ τn (mod pa) for every n<N.

By making use of (3) in Lemma 1, we have

sN = -NσN + Σ Σ
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tN = ~NτN + Σ Σ

(t) A (ti.)
Since N " 1 7 is a rational integer, ~ls-bW... ir, and x " 1 7 &ffλ.. <tΛΛ . . 2V vi'. '/rJ JV w '̂ v

11 ŝ

are rational integers. Put β = ord^IV and f = Min jordp Ί, ,ord p/,,

r \

ordp J ] jλ. Then we have ordp bffit...tirΛ > β — γ. By the condition (2)^^,

we have σίβ = τu (mod pα) for every is with l < i s < N — 1 . Hence we

have σ{; = τ/; (mod pβ+0ΓdJ»^ ) for every iβ with 1 < is < N — 1. Therefore

we have sN — iV^ ~tN — NτN (mod p-^+^p^), go sN — tN = N(σN — τN)

(modpa+OTdpN). From this, it follows immediately that (1)^ and (2)^ are

equivalent under the assumption that (1)^.1 and (2)^.! are valid. Hence

it is proved that (1) and (2) are equivalent. Q.E.D.

§ 3 . Congruences between Hecke polynomials

For any even positive integer k, we put Ck(X) = det (/ — Tk(p)X)

and Hk(X) = det (/ - Tk(p)X + φk~ιX2I) where / is the identity operator

on ©j. Ck(X) and Hk(X) are polynomials with coefficients of rational

integers. Hk(X) is usually called the Hecke polynomial.

Combining results in §1 and 2, we can prove the following:

THEOREM 1. We assume p>5. Let a be a positive integer. Let k be

an even positive integer such that (1) k> 2a + 2 and (2) άixac

<S>ki.va_va-1

< pk~a~ι. Then we have

H
k
,(X) = H

k
(X) (mod p

a
Z[X]) ,

= C
k
(X) (mod p

a
ZlX]) ,

for every even positive integer kf > k satisfying k' = fc (mod pa — pa~ι).

Proof. Since k > 2a + 2, we have Hk(X) ~ Ck(X) (mod paZ[X\). So

we shall prove only Ck,(X) = Ck(X) (mod paZ[X]). By the dimension

formula for ©fc, it is easily proved that k + pa — p"'1 also satisfies the

condition (2) if k satisfies it. Hence we may prove our theorem only

in case of k' — k + p" — pa~ι. Let m be any positive integer such that
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m < dime @fc,, and put β = ordp m. By the condition (2), we have β <

k — a — 1, so we have a + β + 2 < k. Hence, making use of Proposi-

tion 1, we have tr Tk,(pm) = t r Tk(pm) (mod p"+β). On the other hand, by

the recursion formula for Tk(pm), we have t r Tk{pm) = tr Tk{p)m (modp*"1).

Therefore we have tr Tk,(p)m = t r Tk(p)m (modpa+β). Combining these

congruences with Lemma 2, we obtain the proof of Theorem 1.

Q.E.D.

In cases of p = 2,3, we can prove following theorems by the same

arguments as above:

THEOREM 1 (Case of p = 2). Let a be a positive integer. Let k

be an even positive integer such that k > 2a + 6 and dim^ ©fc+2« < 2k~a~\

Then we have

for every even positive integer kf > k satisfying kf = k (mod 2α).

THEOREM 1 (Case of p = 3). Let a be a positive integer. Let k

be an even positive integer such that k > 2a + 4 and άimc(Bk+3a_3a-i <

3 fc"α"2. Then we have

Hk.(X) = Hk(X) (mod 3«Z[X]) ,

for every even positive integer k' > k satisfying k' = k (mod 3α — S"'1).

We give an application of Theorem 1. In the rest of this section,

we assume p > 5 for the sake of simplicity. Let kf > k be even positive

integers such that k' = k (mod p — 1) and fc > 4. Then, it is obvious

that k satisfies the condition (2) in Theorem 1 for a = 1. Put n = dim^ ©^

and ^ = dim0 ©Λ,. It is clear that det (Z/ - ΓΛ(p)) = Xn det (/ - - L r Λ (

\ X

where / is the identity operator on ©Λ. Therefore, from Theorem 1

follows

COROLLARY. Under the above conditions, we have

det (XIk, - TAp)) = Xn'~n det (XIk - Tk(p)) (mod pZ[X]) .

This result is equivalent to Serre's result [3, (i), Corollary to Theorem

6].
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§4. p-adic Hecke polynomials

Let a be a positive integer. Put Xa = Z/(pa - p«~ι)Z iί pφ2, and

Xa = Z/2a~2Z if p = 2. {Zβ} forms a projective system naturally. We

have

(Z, x Z/(p - ΐ)Z ifpφ2,

<- [Z2 if P = 2 ,

where Z p is the ring of p-adic integers. The canonical homomorphism

Z-+X is injective. We identify Z with a dense subgroup of X through

this homomorphism.

Let O denote the ring of formal power series in X with coefficients

in Zp. Let m be the maximal ideal of O. The powers of m, mTO, w > 0

define the m-adic topology on £).

We assume p > 5. Let {&«}?=! be a sequence of monotonically in-

creasing, even positive integers satisfying ka = ka, (mod pa — p""1) if

ctf>a, ka>2a + 2 and dimσ @fcβ+p«.pβ-i < p* — x . Then {ka}U has a limit

in X, which is denoted by k. By means of Theorem 1, there exists a

common m-adic limit of {Hktt{X)} and of {Cka(Xj) in O. Put H^X) =

limiϊ f c α(Z). It is clear that ^ ( X ) depends only on ίc, but not on the

choice of sequences {ka} with lim fcα = fc. We call ff£(X) the p-adic Hecke

polynomial.

In the case where k belongs to 2Z, we shall show that HuPO coincides

with the Fredholm determinant of the p-adic Hecke operator Uk(p) and

that Hn(X) is an entire function.

Before this, we extend Lemma 1 as follows:

LEMMA 3. Let G(X) = 1 + Σ σn%n be a formal power series in X

(G(X) — Dn

with coefficients σn in a field K, so that log G(X) = Σi-l)71-^-1 —

is also a formal power series in X with coefficients in K, which we

write — Σ —X7 1, with sn e K. Then there exist following relations be-
w î n

tween σn and sn;

( 4 )
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n
Π Y"1 V /7 ( 7 l ) Q '̂l . . . QJr
On — Z-i Z J a(ii,~>,ίr\bii bU >

r = l l^ii< <ir̂ w \jw',jr'

Σ isjs=n
β = i

where a{n)- and bin) are the same as in Lemma 1.

Proof. If G(X) is a polynomial in X with coefficients in K, (4) is

equal to (2) and (3) in Lemma 1. Put Gn(X) = 1 + Σ ^X* and
ί = l

log Gn(X) = (-1) Σ -^-X*. Then it is clear that β{"> = β< for all ί with

i<n. Hence, from Lemma 1, (4) follows immediately. Q.E.D.

Let k be an even integer and let Df\X) be the Fredholm determinant

of the p-adic Hecke operator U^(p) which is defined in [2].

THEOREM 2. We have

Hn{X) = Df\X) , for ίce2Z .

Proof. Let {ka} be a sequence of monotonically increasing, even

positive integers satisfying ka = fcα/ (mod p" — pa~ι) for every a! > a,

K < 2a + 2, dime ©*β+p«_p«-i < 2?Λα~α"1 and lim ka = k. Put Hka(X) = 1

+ ΣσPX* and logfίΛ α(Z) = - Σ - ^ - ^ n with σ{

n

a) and 4α ) in Z. When

a—> oo, {̂ α)} and {4α)} have ^-adic limits which we deonte by σn and sn

respectively. Then we have HR(X) = 1 + Σ σnXn Since σ(

n

a) and s(

n

a)

satisfy the relations (4), σn and sn also satisfy the relations (4). Hence

we have logH^X) = — Σ——X n . On the other hand, we have s(

n

a) =

n î n

t r Uka(Vn) by (41) in [1]. Hence, from Theorem 1 in [2], it follows that

sn = t r U%(p)n. Therefore we have H%(X) = Df(X). Q.E.D.

Since Dk

v\X) is a p-adic entire function, we have the following:

COROLLARY. HK(X) is a p-adic entire function for k e 2Z.

Remark. It is obvious that the p-adic Hecke polynomials converge

for all x e Zp.

Remark. In cases of p = 2,3, the same argument as above can be

applied.
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Remark. Recently, Prof. B. Dwork kindly let me know a direct

proof of Theorem is obtained from Adolphson's thesis and, at the same

time, the condition on dimσ©4+1,β_1,β_1 can be discarded.
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