ON p-ADIC PROPERTIES OF THE EICHLER-SELBERG TRACE FORMULA II

M. KOIKE

Introduction

Let \mathbb{S}_{k} be the space of cusp forms of weight k with respect to $S L(2, Z)$. Let p be a prime number and let $T_{k}(p)$ be the Hecke operator of degree p acting on \mathbb{S}_{k} as a linear endomorphism. Put $H_{k}(X)=$ $\operatorname{det}\left(I-T_{k}(p) X+p^{k-1} X^{2} I\right)$, where I is the identity operator on $\widetilde{\Im}_{k}$. $H_{k}(X)$ is a polynomial with coefficients of rational integers, which is called the Hecke polynomial.

In this paper, we shall prove the congruences between Hecke polynomials:

TheOrem. Let $p \geq 5$ be a prime number and let α be a positive integer. Let k be an even positive integer such that $k \geq 2 \alpha+2$ and $\operatorname{dim}_{C} \widetilde{S}_{k+p^{\alpha-p \alpha-1}}<p^{k-\alpha-1}$. Then we have

$$
H_{k^{\prime}}(X) \equiv H_{k}(X) \quad\left(\bmod p^{\alpha} Z[X]\right)
$$

for every even positive integer $k^{\prime}>k$ satisfying $k^{\prime} \equiv k\left(\bmod p^{\alpha}-p^{\alpha-1}\right)$.
In the case of $\alpha=1$, our theorem is a weaker version of the property of contraction of U_{p}, which was proved by Serre. The proof of our theorem makes essential use of the p-adic properties of the EichlerSelberg trace formula which is finer than what was proved in our previous paper [2].

§ 1. Congruences between traces of Hecke operators.

We fix a prime number p once and for all. For each positive integer n, let $T_{k}(n)$ be the Hecke operator of degree n acting on \mathbb{S}_{k} as a linear endomorphism. The Eichler-Selberg trace formula for $T_{k}(n)$ reads as follows:

[^0]\[

$$
\begin{align*}
\operatorname{tr} T_{k}(n)= & \sum_{\left\{\rho, \rho^{\prime}\right\}} \sum_{0 \ni \rho}-\frac{h_{0}}{w_{0}} F^{(k-2)}\left(\rho, \rho^{\prime}\right)-\sum_{\substack{d \mid n \\
d>0, d \leq \sqrt{n}}}^{\prime} d^{k-1} \\
& +\delta(\sqrt{n}) \frac{k-1}{12} n^{k / 2-1}+ \begin{cases}0 & (k>2), \\
\sum_{\substack{d \mid n \\
d>0}} d & (k=2),\end{cases} \tag{1}
\end{align*}
$$
\]

where we use the same notations as in [2].
We shall prove finer congruences between traces of Hecke operators than what was proved in our previous paper [2]. Our result is as follows:

Proposition. We assume $p \geq 5$. Let m and α be positive integers. Put $\operatorname{ord}_{p} m=\beta$. Let k^{\prime} and k be even positive integers satisfying (1) $k^{\prime} \equiv k\left(\bmod p^{\alpha}-p^{\alpha-1}\right)$ and (2) $k^{\prime}>k \geq \operatorname{Max}\{2 \alpha+2, \alpha+\beta+2\}$. Then we have

$$
\operatorname{tr} T_{k^{\prime}}\left(p^{m}\right) \equiv \operatorname{tr} T_{k}\left(p^{m}\right) \quad\left(\bmod p^{\alpha+\beta}\right)
$$

Remark. In order to prove congruences between traces of Hecke operators in our previous paper, we made use of the property that $h_{\text {o }}$ is merely a rational integer. On the other hand, the proof of Proposition makes essential use of the fact that h_{0} is the number of proper \mathfrak{o} ideal classes.

Proof. We consider the trace formula for $T_{k}\left(p^{m}\right) \bmod p^{\alpha+\beta}$. Since $k \geq 4$, the fourth summand is equal to zero. By the condition (2), the second (resp. third) summand is proved to be congruent to one (resp. zero) $\bmod p^{\alpha+\beta}$. Let us deal with the first summand. Let K be an imaginary quadratic field which contains ρ and ρ^{\prime} and let $\left(\frac{K}{p}\right)$ denote Kronecker's symbol. In the case of $\left(\frac{K}{p}\right)=-1$ or $0, F^{(k-2)}\left(\rho, \rho^{\prime}\right)$ is easily proved to be congruent to zero $\bmod p^{\alpha+\beta}$. So we may assume $\left(\frac{K}{p}\right)=1$, $p=\mathfrak{p} \cdot \mathfrak{p}^{\prime}$ with two prime ideals in K. If the conductor of \mathfrak{o} is divisible by $p, F^{(k-2)}\left(\rho, \rho^{\prime}\right)$ is congruent to zero $\bmod p^{\alpha+\beta}$. Hence we may assume the conductor of \mathfrak{o} is not divisible by p. Put $\mathfrak{p}_{0}=\mathfrak{p} \cap 0$ and $\mathfrak{p}_{0}^{\prime}=\mathfrak{p}^{\prime} \cap 0$. Let d be the smallest positive integer such that \mathfrak{p}_{0}^{d} is principal. Put $\gamma=\operatorname{ord}_{p} d$. We may put $\mathfrak{p}_{0}^{d}=\pi \mathrm{0}$ with $\pi \in \mathfrak{0}$, or what is the same as $\mathfrak{p}^{d}=\pi \mathfrak{o}_{1}, \mathfrak{o}_{1}$ being the maximal order of K. If ρ is not primitive, $F^{(k-2)}\left(\rho, \rho^{\prime}\right)$ is congruent to zero $\bmod p^{\alpha+\beta}$. So we may also assume that
ρ is primitive and that $\rho^{\prime} \equiv 0(\bmod \mathfrak{p})$. Since $\rho \cdot \rho^{\prime}=p^{m}$, we have $(\rho)=\mathfrak{p}^{\prime m}$. Hence $p^{\prime m p r-\beta}$ is principal and it is proved that there exists an imaginary quadratic integer ρ_{1} such that $\rho_{1}^{p \beta-r}=\rho$. Therefore we have

$$
\begin{aligned}
F^{\left(k^{\prime}-2\right)}\left(\rho, \rho^{\prime}\right) & \equiv \frac{1}{\rho-\rho^{\prime}} \cdot \rho^{k-1} \cdot \rho_{1}^{\left(k^{\prime}-k\right) p^{\beta-r}} & & \left(\bmod \mathfrak{p}^{\alpha+\beta-r}\right), \\
& \equiv \frac{\rho^{k-1}}{\rho-\rho^{\prime}} & & \left(\bmod \mathfrak{p}^{\alpha+\beta-r}\right), \\
& \equiv F^{(k-2)}\left(\rho, \rho^{\prime}\right) & & \left(\bmod \mathfrak{p}^{\alpha+\beta-r}\right) .
\end{aligned}
$$

Since h_{0} is divisible by d, we have $\operatorname{ord}_{p} h_{0} \geq \gamma$. Hence we have $\frac{h_{0}}{w_{0}} F^{\left(k^{\prime}-2\right)}\left(\rho, \rho^{\prime}\right) \equiv \frac{h_{0}}{w_{0}} F^{(k-2)}\left(\rho, \rho^{\prime}\right)\left(\bmod p^{\alpha+\beta}\right)$. Thus Proposition is completely proved.
Q.E.D.

In cases of $p=2,3$, we can prove following propositions by the same arguments as above:

Proposition. (Case of $p=2$.) Let m and α be positive integers. Put $\operatorname{ord}_{2} m=\beta$. Let k^{\prime} and k be even positive integers satisfying (1) $k^{\prime} \equiv k\left(\bmod 2^{\alpha}\right)$ and (2) $k^{\prime}>k \geq \operatorname{Max}\{2 \alpha+6, \alpha+\beta+4\}$. Then we have

$$
\operatorname{tr} T_{k^{\prime}}\left(2^{m}\right) \equiv \operatorname{tr} T_{k}\left(2^{m}\right) \quad\left(\bmod 2^{\alpha+\beta}\right)
$$

Proposition. (case of $p=3$.) Let m and α be positive integers. Put $\operatorname{ord}_{3} m=\beta$. Let k^{\prime} and k be even positive integers satisfying (1) $k^{\prime} \equiv k\left(\bmod 3^{\alpha}-3^{\alpha-1}\right)$ and (2) $k^{\prime}>k \geq \operatorname{Max}\{2 \alpha+4, \alpha+\beta+3\}$. Then we have

$$
\operatorname{tr} T_{b^{\prime}}\left(3^{m}\right) \equiv \operatorname{tr} T_{k}\left(3^{m}\right) \quad\left(\bmod 3^{\alpha+\beta}\right)
$$

§ 2. Preliminary lemmas

Let x_{1}, \cdots, x_{N} be indeterminates. For each positive integer n, we define $\quad S_{n}\left(x_{1}, \cdots, x_{N}\right)=\sum_{i=1}^{N} x_{i}^{n} \quad$ and $\quad F_{n}\left(x_{1}, \cdots, x_{N}\right)=(-1)^{n} \sum_{1 \leq i_{1}<\cdots<i_{n} \leq N} x_{i_{1}}$ $\cdots x_{i_{n}}$. We simply write S_{n} and F_{n} instead of $S_{n}\left(x_{1}, \cdots, x_{N}\right)$ and $F_{n}\left(x_{1}\right.$, \cdots, x_{N}). It is obvious that $F_{n}=0$ if n is greater than N. It is well known that there exist following relations between two functions S_{n} and F_{n}, which are called Newton's formulae;

$$
S_{n}+S_{n-1} F_{1}+\cdots+S_{1} F_{n-1}+n F_{n}=0
$$

By means of Newton's formulae, F_{n} (resp. S_{n}) can be described as a polynomial of $S_{i}\left(\right.$ resp. F_{i}) with $1 \leq i \leq n$ as follows:

$$
\begin{aligned}
& F_{n}=\sum_{r=1}^{n} \sum_{1 \leq i_{1}<\varkappa_{1}<j_{s}<i_{r} \leq n} a_{\substack{i_{1} \\
j_{1}, \ldots, \ldots, j_{r}}}^{\left(n_{i_{1}}\right)} S_{i_{1}}^{j_{1}} \cdots S_{i_{r}}^{j r}, \\
& { }_{s=1}^{T} i_{s} j_{s}=n \\
& S_{n}=\sum_{r=1}^{n} \sum_{1 \leq i_{1}<\cdots<j_{1}<i_{s} \leq n} b_{\substack{j_{i} \\
i_{1}, \ldots, \ldots, j_{r} \\
j_{1}, \ldots}}^{\left(n_{i}\right)} F_{i_{1}}^{j_{1}} \cdots F_{i_{r}}^{j_{r}}, \\
& { }_{s=1}^{n} i_{s} i_{s}=n
\end{aligned}
$$

where $a^{(n)}$ and $b^{(n)}$ are rational numbers. All these coefficients can be calculated as follows:

Lemma 1. We have

$$
\begin{equation*}
a_{\substack{\left.\left(i_{1}, \ldots, \ldots, i_{r}\right) \\ j_{1}, \ldots, j_{r}\right)}}^{(n)}=\left((-1)^{\sum_{s=1}^{r} j_{s}} \prod_{s=1}^{r} j_{s}!i_{s}^{j_{s}}\right)^{-1}, \tag{2}
\end{equation*}
$$

and

Proof. We use induction on n. It is obvious that (2) is valid for $n=1$. Suppose that (2) is valid for all $a^{(\ell)}$ with $1 \leq \ell \leq n-1$. By Newton's formulae, we have $F_{n}=-\frac{1}{n}\left(S_{n}+\sum_{k=1}^{n-1} S_{n-k} F_{k}\right)$. If $i_{1}=n$, (2) is obviously valid. So we may assume $i_{1}<n$. Then we have

$$
\begin{aligned}
a_{\left(\begin{array}{c}
\left.i_{1}, \ldots, \ldots, j_{r}\right)
\end{array}\right.}^{(n)} & =-\frac{1}{n}\left((-1)^{\left(\sum_{s=1}^{r} j_{s}\right)-1}\left[\sum_{s=1}^{r}\left\{\left(j_{s}-1\right)!i_{s}^{j_{s}-1} \prod_{k \neq s} j_{k}!i_{k}^{j_{k}}\right\}^{-1}\right]\right) \\
& =(-1)^{\sum_{s=1}^{r} j_{s}}\left(\prod_{s=1}^{r} j_{s}!i_{s}^{j_{s}}\right)^{-1} \frac{1}{n} \sum_{s=1}^{r} i_{s} j_{s} \\
& =(-1)^{s_{s=1}^{r} j_{s}}\left(\sum_{s=1}^{r} j_{s}!i_{s}^{j_{s}}\right)^{-1}
\end{aligned}
$$

Hence (2) is proved to be valid. Let us prove that (3) is valid. We also use induction on n. It is obvious that (3) is valid for $n=1$. Suppose that (3) is valid for all $b^{(\ell)}$ with $1 \leq \ell \leq n-1$. By Newton's
formulae, we have $S_{n}=-\left(n F_{n}+\sum_{k=1}^{n-1} S_{n-k} F_{k}\right)$. If $i_{1}=n$, it is obvious that (3) is valid. So we may assume $i_{1}<n$. Then we have

$$
\begin{aligned}
\substack{\begin{subarray}{c}{\left(i_{1}, \ldots, \ldots, i_{r}\right) \\
j_{1}, \ldots, j_{r}} }} & =-\sum_{s=1}^{r}(-1)^{\left(\sum_{s=1}^{r} j_{s}\right)-1} \frac{\left(\left(\sum_{s=1}^{r} j_{s}\right)-2\right)!}{\left(j_{s}-1\right)!\prod_{k \neq s} j_{k}!}\left(n-i_{s}\right), \\
& =(-1)^{{ }_{s=1}^{r} j_{s}} \frac{\left(\left(\sum_{s=1}^{r} j_{s}\right)-2\right)!}{\prod_{s=1}^{r} j_{s}!}\left(\sum_{s=1}^{r} j_{s} n-j_{s} i_{s}\right) \\
& =(-1)^{s,=1} \frac{\left(\left(\sum_{s=1}^{r} j_{s}\right)-1\right)!}{\sum_{s=1}^{r} j_{s}!} n .
\end{aligned}
$$

Therefore (3) is proved to be valid.
Q.E.D.

By making use of Lemma 1, we can prove the following lemma:
Lemma 2. Let $G(X)=\prod_{i=1}^{k}\left(1-a_{i} X\right)$ and $H(X)=\prod_{j=1}^{b}\left(1-b_{j} X\right) \quad$ be polynomials with coefficients of rational integers. Put $s_{n}=S_{n}\left(a_{1}, \cdots, a_{k}\right)$, $t_{n}=S_{n}\left(b_{1}, \cdots, b_{\ell}\right), \sigma_{n}=F_{n}\left(a_{1}, \cdots, a_{k}\right)$ and $\tau_{n}=F_{n}\left(b_{1}, \cdots, b_{\ell}\right)$. Let α be a positive integer. Then the following statements are equivalent:
(1) $s_{n} \equiv t_{n}\left(\bmod p^{\alpha+\circ \operatorname{rd}_{p} n}\right) \quad$ for every $n \geq 1$,
(2) $\sigma_{n} \equiv \tau_{n}\left(\bmod p^{\alpha}\right) \quad$ for every n with $1 \leq n \leq \operatorname{Max}\{k, \ell\}$,
(3) $\quad F(X) \equiv G(X)\left(\bmod p^{\alpha} Z[X]\right)$.

Proof. It is obvious that the statements (2) and (3) are equivalent. So we shall show that the statements (1) and (2) are equivalent. Let N be any positive integer. We assume that (1) $)_{N-1}: s_{n} \equiv t_{n}\left(\bmod p^{\alpha+\operatorname{ord}_{p} n}\right)$ for every $n \leq N-1$ and $(2)_{N-1}: \sigma_{n} \equiv \tau_{n}\left(\bmod p^{\alpha}\right)$ for every $n \leq N-1$. Under this assumption, we show that the following statements are equivalent:
$\begin{array}{lll}(1)_{N} & s_{n} \equiv t_{n}\left(\bmod p^{\alpha+\operatorname{ord}_{p} n}\right) & \text { for every } n \leq N, \\ (2)_{N} & \sigma_{n} \equiv \tau_{n}\left(\bmod p^{\alpha}\right) & \text { for every } n \leq N .\end{array}$
By making use of (3) in Lemma 1, we have

$$
\begin{aligned}
& s_{N}=-N \sigma_{N}+\sum_{r=1}^{N} \sum_{1 \leq i_{1}<\cdots<i_{1}<i_{s} \leq N} b_{\substack{\left.\left(i_{1}\right), \ldots, i_{r} \\
j_{1}, \ldots, j_{r}\right)}}^{(N)} \sigma_{i_{1}}^{j_{1}} \cdots \sigma_{i_{r}}^{j_{r}}, \\
& { }_{s=1}^{r} i_{s} i_{s}=N
\end{aligned}
$$

$$
\begin{aligned}
& t_{N}=-N \tau_{N}+\sum_{r=1}^{N} \sum_{1 \leq i_{1}<\sum_{1 \leq 1<}^{1 \leq j_{s}}<} \sum_{\substack{i_{r} \leq N}} b_{\substack{(N) \\
i_{1}, \ldots, \ldots, i_{j} \\
j_{2}, \ldots, j_{r}}}^{\left(\tau_{i_{1}}^{j_{1}}\right.} \cdots \tau_{i_{r}}^{j_{r}} . \\
& { }_{s=1}^{r=i_{s} i_{s}=N}
\end{aligned}
$$

Since $\frac{\left(\sum_{s=1}^{r} j_{s}\right)!}{\prod_{s=1}^{r} j_{s}!}$ is a rational integer, $\frac{j_{s}}{N} b_{\substack{\left.\left.\left(i_{1}\right), \ldots, i_{r}\right) \\ j_{1}, \ldots, j_{r}\right)}}^{(N)}$ and $\frac{\left(\sum_{s=1}^{r} j_{s}\right)}{N} b_{\substack{\left(i_{1}, \ldots, i_{r}\right) \\ j_{1}, \ldots, j_{r}}}^{(N)}$ are rational integers. Put $\beta=\operatorname{ord}_{p} N$ and $\gamma=\operatorname{Min}\left\{\operatorname{ord}_{p} j_{1}, \cdots, \operatorname{ord}_{p} j_{s}\right.$, $\left.\operatorname{ord}_{p} \sum_{s=1}^{r} j_{s}\right\}$. Then we have $\operatorname{ord}_{p} b_{\substack{i_{1}, \ldots, i_{r} \\ j_{1}, \ldots, j_{r}}}^{(N)} \geq \beta-\gamma$. By the condition (2) $)_{N-1}$, we have $\sigma_{i_{s}} \equiv \tau_{i_{s}}\left(\bmod p^{\alpha}\right)$ for every i_{s} with $1 \leq i_{s} \leq N-1$. Hence we have $\sigma_{i_{s}}^{j_{s}} \equiv \tau_{i_{s}}^{j_{s}}\left(\bmod p^{\alpha+\operatorname{ord}_{p} j_{s}}\right)$ for every i_{s} with $1 \leq i_{s} \leq N-1$. Therefore we have $s_{N}-N \sigma_{N} \equiv t_{N}-N \tau_{N}\left(\bmod p^{\alpha+\operatorname{ord}_{p} N}\right)$, so $s_{N}-t_{N} \equiv N\left(\sigma_{N}-\tau_{N}\right)$ $\left(\bmod p^{\alpha+\operatorname{ord}_{p} N}\right)$. From this, it follows immediately that (1) $)_{N}$ and $(2)_{N}$ are equivalent under the assumption that (1) $)_{N-1}$ and (2) $)_{N-1}$ are valid. Hence it is proved that (1) and (2) are equivalent.

§3. Congruences between Hecke polynomials

For any even positive integer k, we put $C_{k}(X)=\operatorname{det}\left(I-T_{k}(p) X\right)$ and $H_{k}(X)=\operatorname{det}\left(I-T_{k}(p) X+p^{k-1} X^{2} I\right)$ where I is the identity operator on $\Im_{k} . \quad C_{k}(X)$ and $H_{k}(X)$ are polynomials with coefficients of rational integers. $H_{k}(X)$ is usually called the Hecke polynomial.

Combining results in $\S 1$ and 2 , we can prove the following:
THEOREM 1. We assume $p \geq 5$. Let α be a positive integer. Let k be an even positive integer such that (1) $k \geq 2 \alpha+2$ and (2) $\operatorname{dim}_{C} \mathbb{S}_{k+p^{\alpha-p \alpha-1}}$ $<p^{k-\alpha-1}$. Then we have

$$
\begin{aligned}
H_{k^{\prime}}(X) \equiv H_{k}(X) & \left(\bmod p^{\alpha} Z[X]\right), \\
C_{k^{\prime}}(X) \equiv C_{k}(X) & \left(\bmod p^{\alpha} Z[X]\right),
\end{aligned}
$$

for every even positive integer $k^{\prime}>k$ satisfying $k^{\prime} \equiv k\left(\bmod p^{\alpha}-p^{\alpha-1}\right)$.
Proof. Since $k \geq 2 \alpha+2$, we have $H_{k}(X) \equiv C_{k}(X)\left(\bmod p^{\alpha} Z[X]\right)$. So we shall prove only $C_{k^{\prime}}(X) \equiv C_{k}(X)\left(\bmod p^{\alpha} Z[X]\right)$. By the dimension formula for ς_{k}, it is easily proved that $k+p^{\alpha}-p^{\alpha-1}$ also satisfies the condition (2) if k satisfies it. Hence we may prove our theorem only in case of $k^{\prime}=k+p^{\alpha}-p^{\alpha-1}$. Let m be any positive integer such that
$m<\operatorname{dim}_{C} \mathbb{S}_{k^{\prime}}$, and put $\beta=\operatorname{ord}_{p} m$. By the condition (2), we have $\beta<$ $k-\alpha-1$, so we have $\alpha+\beta+2 \leq k$. Hence, making use of Proposition 1, we have $\operatorname{tr} T_{k^{\prime}}\left(p^{m}\right) \equiv \operatorname{tr} T_{k}\left(p^{m}\right)\left(\bmod p^{\alpha+\beta}\right)$. On the other hand, by the recursion formula for $T_{k}\left(p^{m}\right)$, we have $\operatorname{tr} T_{k}\left(p^{m}\right) \equiv \operatorname{tr} T_{k}(p)^{m}\left(\bmod p^{k-1}\right)$. Therefore we have $\operatorname{tr} T_{k^{\prime}}(p)^{m} \equiv \operatorname{tr} T_{k}(p)^{m}\left(\bmod p^{\alpha+\beta}\right) . \quad$ Combining these congruences with Lemma 2, we obtain the proof of Theorem 1.
Q.E.D.

In cases of $p=2,3$, we can prove following theorems by the same arguments as above:

Theorem 1 (Case of $p=2$). Let α be a positive integer. Let k be an even positive integer such that $k \geq 2 \alpha+6$ and $\operatorname{dim}_{C} \Im_{k+2 \alpha}<2^{k-\alpha-3}$. Then we have

$$
H_{k^{\prime}}(X) \equiv H_{k}(X) \quad\left(\bmod 2^{\alpha} Z[X]\right)
$$

for every even positive integer $k^{\prime}>k$ satisfying $k^{\prime} \equiv k\left(\bmod 2^{\alpha}\right)$.
Theorem 1 (Case of $p=3$). Let α be a positive integer. Let k be an even positive integer such that $k \geq 2 \alpha+4$ and $\operatorname{dim}_{C} \mathbb{S}_{k+3^{\alpha-3 \alpha-1}}<$ $3^{k-\alpha-2}$. Then we have

$$
H_{k^{\prime}}(X) \equiv H_{k}(X) \quad\left(\bmod 3^{\alpha} Z[X]\right)
$$

for every even positive integer $k^{\prime}>k$ satisfying $k^{\prime} \equiv k\left(\bmod 3^{\alpha}-3^{\alpha-1}\right)$.
We give an application of Theorem 1. In the rest of this section, we assume $p \geq 5$ for the sake of simplicity. Let $k^{\prime}>k$ be even positive integers such that $k^{\prime} \equiv k(\bmod p-1)$ and $k \geq 4$. Then, it is obvious that k satisfies the condition (2) in Theorem 1 for $\alpha=1$. Put $n=\operatorname{dim}_{C} \Im_{k}$ and $n^{\prime}=\operatorname{dim}_{C} \widetilde{S}_{k^{\prime}}$. It is clear that $\operatorname{det}\left(X I-T_{k}(p)\right)=X^{n} \operatorname{det}\left(I-\frac{1}{X} T_{k}(p)\right)$, where I is the identity operator on \mathbb{S}_{k}. Therefore, from Theorem 1 follows

Corollary. Under the above conditions, we have

$$
\operatorname{det}\left(X I_{k^{\prime}}-T_{k^{\prime}}(p)\right) \equiv X^{n^{\prime}-n} \operatorname{det}\left(X I_{k}-T_{k}(p)\right) \quad(\bmod p Z[X])
$$

This result is equivalent to Serre's result [3, (i), Corollary to Theorem 6].

§4. p-adic Hecke polynomials

Let α be a positive integer. Put $X_{\alpha}=\boldsymbol{Z} /\left(p^{\alpha}-p^{\alpha-1}\right) Z$ if $p \neq 2$, and $X_{\alpha}=Z / 2^{\alpha-2} Z$ if $p=2 .\left\{X_{\alpha}\right\}$ forms a projective system naturally. We have

$$
X=\lim _{\leftarrow} X_{\alpha}= \begin{cases}Z_{p} \times Z /(p-1) Z & \text { if } p \neq 2, \\ Z_{2} & \text { if } p=2,\end{cases}
$$

where Z_{p} is the ring of p-adic integers. The canonical homomorphism $Z \rightarrow X$ is injective. We identify Z with a dense subgroup of X through this homomorphism.

Let \mathfrak{D} denote the ring of formal power series in X with coefficients in \boldsymbol{Z}_{p}. Let \mathfrak{m} be the maximal ideal of $\mathfrak{\rho}$. The powers of $\mathfrak{m}, \mathfrak{m}^{n}, n \geq 0$ define the \mathfrak{m}-adic topology on \mathfrak{N}.

We assume $p \geq 5$. Let $\left\{k_{\alpha}\right\}_{\alpha=1}^{\infty}$ be a sequence of monotonically increasing, even positive integers satisfying $k_{\alpha} \equiv k_{\alpha^{\prime}}\left(\bmod p^{\alpha}-p^{\alpha-1}\right)$ if $\alpha^{\prime}>\alpha, k_{\alpha} \geq 2^{\alpha}+2$ and $\operatorname{dim}_{C} \widetilde{S}_{k_{\alpha}+p^{\alpha-p^{\alpha-1}}}<p^{k_{\alpha}-\alpha-1}$. Then $\left\{k_{\alpha}\right\}_{\alpha=1}^{\infty}$ has a limit in X, which is denoted by \tilde{k}. By means of Theorem 1, there exists a common \mathfrak{m}-adic limit of $\left\{H_{k_{\alpha}}(X)\right\}$ and of $\left\{C_{k_{\alpha}}(X)\right\}$ in \mathfrak{O}. Put $\tilde{H}_{\bar{k}}(X)=$ $\lim _{\alpha \rightarrow \infty} H_{k_{\alpha}}(X)$. It is clear that $\tilde{H}_{\tilde{k}}(X)$ depends only on \tilde{k}, but not on the choice of sequences $\left\{k_{\alpha}\right\}$ with $\lim k_{\alpha}=\tilde{k}$. We call $\tilde{H}_{\tilde{k}}(X)$ the p-adic Hecke polynomial.

In the case where \tilde{k} belongs to $2 Z$, we shall show that $\tilde{H}_{\tilde{k}}(X)$ coincides with the Fredholm determinant of the p-adic Hecke operator $\tilde{U}_{k}(p)$ and that $\tilde{H}_{\bar{k}}(X)$ is an entire function.

Before this, we extend Lemma 1 as follows:
Lemma 3. Let $G(X)=1+\sum_{n \geq 1} \sigma_{n} X^{n}$ be a formal power series in X with coefficients σ_{n} in a field K, so that $\log G(X)=\sum_{n \geq 1}(-1)^{n} \frac{(G(X)-1)^{n}}{n}$ is also a formal power series in X with coefficients in K, which we write $-\sum_{n \geq 1} \frac{s_{n}}{n} X^{n}$, with $s_{n} \in K$. Then there exist following relations between σ_{n} and s_{n};

$$
\begin{align*}
& { }_{s=1}^{r} i_{s} i_{s} j_{s}=n \tag{4}
\end{align*}
$$

$$
\sigma_{n}=\sum_{r=1}^{n} \sum_{\substack{1 \leq i_{1}<\\ 1 \leq i \leq i_{s}<i_{r} \leq n \\ s=1 \\ s=1 \\ s_{s} j_{s}=n}} a_{\substack{i_{s}, \ldots, i_{1} \\ j_{1}, \ldots, j_{r}}}^{(n)} s_{i_{1}}^{j_{1}} \cdots s_{i_{r}}^{j_{r}},
$$

where $a^{(n)}$ and $b^{(n)}$ are the same as in Lemma 1.
Proof. If $G(X)$ is a polynomial in X with coefficients in K, (4) is equal to (2) and (3) in Lemma 1. Put $G_{n}(X)=1+\sum_{i=1}^{n} \sigma_{i} X^{i}$ and $\log G_{n}(X)=(-1) \sum_{i \geq 1} \frac{s_{i}^{(n)}}{i} X^{i}$. Then it is clear that $s_{i}^{(n)}=s_{i}$ for all i with $i \leq n$. Hence, from Lemma 1, (4) follows immediately.
Q.E.D.

Let \tilde{k} be an even integer and let $D_{\bar{k}}^{(p)}(X)$ be the Fredholm determinant of the p-adic Hecke operator $\tilde{U}_{\bar{k}}(p)$ which is defined in [2].

Theorem 2. We have

$$
\tilde{H}_{\tilde{k}}(X)=D_{\tilde{k}}^{(p)}(X), \quad \text { for } \tilde{k} \in \mathbf{2 Z}
$$

Proof. Let $\left\{k_{a}\right\}$ be a sequence of monotonically increasing, even positive integers satisfying $k_{\alpha} \equiv k_{\alpha^{\prime}}\left(\bmod p^{\alpha}-p^{\alpha-1}\right)$ for every $\alpha^{\prime} \geq \alpha$, $k_{\alpha} \leq 2 \alpha+2, \operatorname{dim}_{C} \mathbb{S}_{k_{\alpha}+p^{\alpha-p^{\alpha-1}}}<p^{k_{\alpha}-\alpha-1}$ and $\lim k_{\alpha}=\tilde{k}$. Put $H_{k_{\alpha}}(X)=1$ $+\sum_{n \geq 1} \sigma_{n}^{(\alpha)} X^{n}$ and $\log H_{k_{\alpha}}(X)=-\sum_{n \geq 1} \frac{s_{n}^{(\alpha)}}{n} X_{n}$ with $\sigma_{n}^{(\alpha)}$ and $s_{n}^{(\alpha)}$ in Z. When $\alpha \rightarrow \infty,\left\{\sigma_{n}^{(\alpha)}\right\}$ and $\left\{s_{n}^{(\alpha)}\right\}$ have p-adic limits which we deonte by σ_{n} and s_{n} respectively. Then we have $\tilde{H}_{\bar{k}}(X)=1+\sum_{n \geq 1} \sigma_{n} X^{n}$. Since $\sigma_{n}^{(\alpha)}$ and $s_{n}^{(\alpha)}$ satisfy the relations (4), σ_{n} and s_{n} also satisfy the relations (4). Hence we have $\log H_{\tilde{k}}(X)=-\sum_{n \geq 1} \frac{s_{n}}{n} X^{n}$. On the other hand, we have $s_{n}^{(\alpha)}=$ $\operatorname{tr} U_{k_{\alpha}}\left(p^{n}\right)$ by (41) in [1]. Hence, from Theorem 1 in [2], it follows that $s_{n}=\operatorname{tr} \tilde{U}_{\bar{k}}(p)^{n}$. Therefore we have $\tilde{H}_{\tilde{k}}(X)=D_{\tilde{k}}^{(p)}(X)$.
Q.E.D.

Since $D_{k}^{(p)}(X)$ is a p-adic entire function, we have the following:
Corollary. $\quad \tilde{H}_{\bar{k}}(X)$ is a p-adic entire function for $\tilde{k} \in 2 Z$.
Remark. It is obvious that the p-adic Hecke polynomials converge for all $x \in Z_{p}$.

Remark. In cases of $p=2,3$, the same argument as above can be applied.

Remark. Recently, Prof. B. Dwork kindly let me know a direct proof of Theorem is obtained from Adolphson's thesis and, at the same time, the condition on $\operatorname{dim}_{C} \widetilde{S}_{k+p \alpha_{-p \alpha-1}}$ can be discarded.

References

[1] Y. Ihara, Hecke polynomials as congruence ζ functions in elliptic modular case, Ann. of Math., 85 (1967), 267-295.
[2] M. Koike, On some p-adic properties of the Eichler-Selberg trace formula, Nagoya Math. J., vol. 56 (1974), 45-52.
[3] J.-P. Serre, Formes modulaires et fonctions zeta p-adiques, Modular functions of one variable III, Lecture note in math., Springer, Berlin-Heidelberg-New York, 1973.

Nagoya University

[^0]: Received May 12, 1976.

