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DIFFERENTIAL EQUATIONS AND AN ANALOG OF THE

PALEY-WIENER THEOREM FOR LINEAR

SEMISIMPLE LIE GROUPS

KENNETH D. JOHNSON

§ 1. Introduction

Let G be a noncompact linear semisimple Lie group. Fix G = KAN
an Iwasawa decomposition of G. That is, K is a maximal compact sub-
group of G, A is a vector subgroup with AdA consisting of semisimple
transformations and A normalizes N, a simply connected nilpotent sub-
group of G. Let M; denote the normalizer of A in K, M the centralizer
of A in K, and W = M'/M the restricted Weyl group of G. Fix Θ a
Cartan involution of G which leaves every element of K fixed and set
N = ON. We denote the Lie algebras of G,KyA, N, N, and M respectively
by ®,®,%%% and 3K respectively.

For g e G set g = 2£(#) exp H(g)n(g) where K(g) e ϋΓ, £Γ(#) e 2ί, and
w(</) e N and exp I* is an isomorphism from 21 to A with inverse log.
Recall that λ e Si* is called a root if ©a = {X e ©: [#, Z] = Λ(#)X for all
H e Si} ^ {0} and Λ is a positive root if <&λ c 9Ϊ. Let P denote the set
of all positive roots and let L be the semilattice of all elements of SI*
of the form Σ*ep c ^ and ĉ  is a nonnegative integer.

Let 7 be a finite dimensional vector space and let K act on V via
the double representation τ. That is, for v eV and fej, k2e K

τ(k19 k2): v > τ(kx) v τ(k2Y
ι.

Consider the C°° functions f:G-+V for which f{kxgk2) = τ{k^)f{g)τ{k2)
(k19k2eK). We denote these functions by C°°(G, τ) and we denote the
C°°-functions with compact support by C~(G, τ) and the Schwartz functions
in C~(G,τ) by ίf(G,r).

Consider / e ^(G,r) and for v e 2ί*? meM set
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18 KENNETH D. JOHNSON

gf(v)(m) = ί da f f(man)e(p-ίv)(loea)dn
JA JN

where for ίfeSί p(H) = %tradHm and for ωeM, set

: v) = I χXmf)gf

Now ψ/(ω : v ) e 7 f where VM — {v eV: τ(m)v = w(m) for all meM} and
in fact ψf(ω: v) e F^(ω) where VM(ώ) = £7 (̂7 )̂ and

.βθ = β̂, χJm)τ(m)vdm .

In general for A e F 1 we define the Eisenstein integral of Harish-
Chandra by setting

JK

Remark. Our notation for the Eisenstein integral differs slightly
from Harish-Chandra's Eisenstein integral only in that we shall have no
need to specify the parabolic subgroup P = MAN which defines the
integral.

Part of the Plancherel formula of Harish-Chandra [61, [71 tells us
that for / e &(G, τ) there is a function fA e #(G, τ) where

ω: v):v: x)μ(ω: v)dv

and F = / - fA e V(G, τ) with

ί F(gn)dn = 0
JN

where N is the unipotent radical of P = MAN. Moreover, the function
μ: M x %% —> C satisfies the following conditions:

1) v -> μ(ω: v) is meromorphic on Sί̂ (ω e M)
2) v -> μ(α>: v) is analytic and > 0 on 2l*(co e M) and,
3) F o r seW μiβω: sv) = μ(ω: v).
In the following we will say that a function F e ^(G, τ) is a quasi-

cusp form if

f F(gn)dn = 0 .
JN
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We denote the space of quasi-cusp forms by &q(G9 τ).
The main result of this paper (Theorem 3.1) gives a weak analog of

the classical Paley-Wiener theorem in characterizing the support of a
function / e C~(G, τ) in terms of growth conditions on the "Fourier-
Laplace transform" ψf(ω:v).

We first state some results concerning some estimates which we shall
need in the proof of the Paley-Wiener theorem.

In Section 3 we prove our result which contains a rather ambiguous
residue function which we treat somewhat further in Section 4. In
Section 5 we apply our results to the study of some partial differential
operators on G.

§2. Some estimates.

Let V be as in section one, let A e VM and consider the Eisenstein
integral E(A: v: x). Let 2Γ = {H e St: λ(H) > 0 for all λeP} and set A+

= expSI+. Harish-Chandra in Warner [16] has given a useful expansion
of E(A: v: a) for ae A+ which we now describe.

For aeA+ and seW there exist functions c: W x 3ί*? —> End VM and
Φs: A x Srg — EndP* such that E(A: v. a) = Σ,61Γ<Pf(α: »)(<>(«: »)(A)).
Furthermore, we have that

φs(a: i>) = Σ Γμ(isv-p)e{Uv-p-μ){l0*a)

where for μeL v-> Γμ(ίsv — p) is a rational function with image in
End (VM). Here Γo = /.

For ^ e 2T* there is an # , e 2T such that λ(H) = β(ίf, fί,) for all if e 2T
where B is the Killing form of ©. For v e 2ί* write — & = £ + iη when
f, 9 e «*. For Ho e 2T set T(J3Ό) = {̂  6 Si* :HξeH0 + 2ί+}. The Γ/s now
satisfy the following

LEMMA 2.1 (Lemma 2.3 [13]). ί ^ # o e2ί α^d H1e
<%+. Then there

is a polynomial pHo(y) cmd a polynomial K(v) > 0 depending on pHo, HQ and

Hλ such that

For the proof of this lemma we refer to [13]. We now need some
estimates on the functions c(s:v).

We say that for a e A+ a -> oo if ||logα|| = JS(log a, log α)1/2 ~> oo and
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there is an ε > 0 such t h a t for all λeP λ(logά) > ε | | logα | | . Then from

Harish-Chandra [6], [7] we have for AeVM and y e SI* t h a t

lim (e ' ( l o ε a)E(A: v: α) - Σ <*(β: v)(A)eiMl0S α )) = 0 .
α-»°o seW

Again from Harish-Chandra [6], [7] we have that the map v->c(s:v)e
End (VM) is meromorphic and hence we see that if Re iv(\og a) > 0 for
all a e A+

log e(p-iv)ao^a)E(A: v: a) = c ( l : ι>)(A).
a-*oo

Hence for Re^(logα) > 0 and all aeA+ we obtain

c(X: v) = [_Aoτ{K{n)yιe^ίv^){mn))dn .
JN

More generally we obtain t h a t if Re isi<log a) > 0 for all a e A+ and s e Ψ

log e^-' ' ^ ^ C A : \>: α) = c(s:

and in this case an elementary calculation yields

c{s: v)(A) = τ(w)jς(v) o A o ji{v)τ{w)"1 (w e s)

where

iΐb) = L β'̂ '

and

= ί e^

with iV*! = {̂  e AT: wnw~λ e iV} and ΛΓ2 = {̂  e iV: ^^^~1 e N}.
We wish to apply estimates of the form found in Lemma 3.1 of [13].

To do so we first need a product formula for the functions jΐ(v) and
Λ"(y) which may be attributed to Gindikin and Karpelevic [4] and Schiίf-
mann [15]. A more general product formula has been obtained by
Harish-Chandra [7].

Let Pt = {aeP: s"1α:>0} and P; = {aeP: s'ιa < 0}. Then

= Σ ®- and %=

and for α e P where a/2eP let 9ΐα = ©_α + @_2α. If asPt set
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Na

and if aeP~ set

•-ΛΛ = Γ e«v

If |PS

+| = & and |P5~| = t we may put an ordering on Ps

+ where Ps

+ =
{a19 , αft} on an ordering on P~ where Ps~ = {λ19 , ̂ } where α, < α€

and λt < λi+1 such that #(v) = ;ίfc(y) ^(v) and ^(^) = jjjiv) ;?7».
The proof of this fact follows immediately from Gindikin-Karpelevic [4]
or more precisely from the proof of their main theorem. From Lemma
3.2 of [13] we have the following lemma

LEMMA 2.2. Given δ > 0 there is an R > 0 and an integer N > 0
such that if \(v9a}\> R and |arg<V, a} + π/2\ > δ for aeP$ the matrix
entries of jϊiv)'1 are bounded in absolute value by \(v9a}\N. Hence there
is an Rx > 0 and an Λ7Ί > 0 for which the matrix entries of jtiv)"1 are
bounded in absolute value by πaeP+\(y9ά}\Nl if \(v,ay\ > R9 and |arg<V, ay
+ τr/2| > δ for aePf. (Here |arg z\ < π.) Furthermore there is an R' > 0
and an integer N' > 0 for which the matrix entries of /"O)"1 are bounded
in absolute value by πaePΓ \(y9ay\N' if \(y9ay\ > Rr and \arg(v9ay — π/2\
> δ for aePj.

Using the inner product on VM we now compute the adjoint of c(s: v)
for ye2ί*. Fixing wes as before and letting B e End VM

9 we see
that

c(s: v)*(B) = Vΐ(v))

Moreover, we see that C/rM)* is the limit of operators of the form

f
J N2

where λ —> v (ve 21*) and O's
+(v))* is the limit of operators of the form

where λ-+v (v e 81*).
We now compute the adjoint of c(s:v) for ve2ϊ*. For wes and

BeVM we see that
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c(s: v)*(B) = j;(y)* o T(W)~1 o B o τ(w) o #(1,)* .

For ieSlg let

J7Q) = f e-^+
Jϊ\r2

and

and denote their meromorphic continuations by the same symbols. Then
O'."W)* = Λ-ω and O'ίW)* = JΪV). Letting C(β :*)(£) = J r u M w ) " ^ ^ )
X Jί(λ) we see that the function λ-+C(s: X) is defined meromorphically
and for v e 21* C(s: v) = c(s: v)*. It is a trivial fact to see that J~(u) =
ΰtSv) ' i^W and J+(y) = j~x{v) yjft(̂ ) where the «< and ^ are as before.

We conclude this section with the following observation. Suppose
/ is a holomorphic function on Cn and suppose that / satisfies the
following estimate. There are constants C and A > 0 and an integer
N > n for which

where ||2|| = «2,2»1/2 and for z = 2 + iy with ί,^eΛn Im2 = y.
Suppose m > 0 is an integer and let c19 , cn, λeC. We assume

that [z: cιzι + + v » - i = 0} Π /?w = 0. Let ^(2) = (c 2 - ;)"
where c = (Cj, , cn). Then the following formula holds.

ί f flr(a?i, , a?»)A»i •••*»„
J -oo J - c o

= f f #Oi + iy,»i, ••

— 2πi\ " \ Resz ίflr(«, x2, , a?n),

The above observation is useful since the singularities of the function
v -»Γμ(isv — p) (μe L) and v-> c(s: v)~ι have their singularities on hyper-
planes and are meromorphic with polynomial growth.

§ 3 . A Paley-Wiener theorem

We now describe our analog of the classical Paley-Wiener theorem.
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We suppose first that / e C?(G, τ) and f(g) = 0 for σ(g) > A where if
g = kxak2 with k19k2eK and a e A σ(g) = (JS(log α, log α))1/2 or we say
/eCj(G,τ). Observe that the map v-> ψ /α): y) is holomorphic and
satisfies

(1) For N > 0 an integer there is a constant CN such that

(2) For s eW we have

c(s: v)(ψf(ω: ι/)) = c(l: su)(ψf(sω:

We now derive a third condition which is satisfied by the function
: î ) for ω c r,^. We have that

= Σ f : g)μ(ω: v)dv .

Moreover, picking an η e SI* with || 371| small and with no v -> Γμ(is(v + iή)
— p) (μe L) having a singularity for any v e 21* we have

/A(9) = Σ f ^(Ψ/(ω: * + ά?): * + ά?: ̂ )/i(ω: v + iη)dv

and by Lemma 2.1 we have for αeA +

fAiβ) = Σ Σ Σ f Γμ{isv - p)c(s:ι>)(ψf(ω: v))μ(ω: p)ew—'-'>^β>dp

The Maass-Selberg relations of Harish-Chandra [6], [7] state that

I I φ : p)(ψ,(ω: 1;))||2 = ||C(s: i ; )(ψ>: v))||2 = ^(ω: vYιdω \\ψf(ω: v)\\2

for D e 21*. Hence we have μ(ω: P ) " 1 ^ = c(s: v)C(s: y),Fjf(β,). Thus,

/ί(ω: v)c(s: v)(ψf(ω: y)) = ^ ω C(s: i/)~1(ψ/((y: 1/)) .

For ί ί e 2t and 3 6 W consider the tube T(s, H) = {v e « ί : - # I m s w e 2ί+

+ H}. Then the following lemma now follows from Lemmas 2.1 and 2.2

LEMMA 3.1. Given Hηe% and seW there are a finite number of

hyperplanes F19 , F r in- 21*? which intersect T(s9 Hη) and for which the

functions v-> ^(ΐsv — ô) (μeL) and v->C(s: v)"1 are analytic on T(s9H)

~(F X U U Fr). Furthermore, there is a C> 0 such that {v: —(lmv,a}

> C for all aeP} T(s,H) F* = 0 for all l<i<r.

Now setting for s e W and a
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/ΛM = Σ ΣdJ Γμ(ίsv -

Using our remarks at the end of Section 2, we see that fΛ,8(a) =
ss (/)(α) + /,,,(α) where Ress (f)(a) is a residue integral over the im-

aginary part of the hyperplanes F19 , Fr and

= Σ Σ f - p)C(s:

with —ίί^ e 2ί+ and ||ϋ|| > C. By the standard method used in the clas-
sical Paley-Wiener theorem we see that /e,s(α) = 0 if σ(a) > A. Letting
Res (/) = Σse* Res, (/) and /. = Σse* /.,, and using the Plancherel for-
mula we now see that there is an F e &q(G, τ) such that

(3) / = / e + Res(/) + F
and Res /(α) + F(a) = 0 for aeA+ with σ(a) > A.

Now for A > 0 let ^(A9τ) be the space of all functions F: M x 2ίg
—> V such that F(ω: v) = 0 if α> 6; τ | l f and F satisfies the following con-
ditions.

I) VN(F) = supω,v (1 + \\v\\)Ne-A^ \\F(ω: i;)|j < oo
II) c(β: p)(F(ω: v)) = c ( l : 8»)(F(sω: sv))

III) The function

= Σ ί E(F(ω:v):v: g)μ(ω:

differs from a function in C~(G,τ) by a function H in tfq(G,τ). More-
over, for # regular /(#) = Res/(#) + fe(g) with fe(g) = 0 for F(sr) > A.

THEOREM 3.1. A function f e C°°(G, τ) is in C2(G, τ) + ^q{G, τ) if and
only if its Fourier-Laplace transform is in

Proof. It is clear that if / e C2(G, τ) + ^q(G9 τ) its Fourier-Laplace
transform is in ^(A,r).

Suppose 0 Φ F e 0>(A, r). By Theorem 3.1 of Arthur [1] we have that

f(9) = Σ f E(F(ω: v):v:g) μ(ω: v)dv =£ 0 .

By Lemma 2.2 of [13] we have that f^^q(G9τ). By assumption there
is an He^q(G,τ) for which f-H eCc°°(G,r). However our arguments in
obtaining 3) guarantee that 0 Φ f — He C2(G9τ). This completes our
proof.
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COROLLARY 1. A function f e Cζ(G, τ) is in C%(G, τ) if and only if
for every integer N > 0 there is a CN > 0 such that

COROLLARY 2. Let 0>(τ) be the union of all 0>(A,τ). Then a function
f e C°°(G, τ) is in C~(G, τ) + ^q(Gf τ) if and only if its Four ier-Laplace
transform is in 0>(τ).

§ 4. The function Res/

We inject here a few remarks concerning the function Res / where
feC°χ(G,τ). Although we have strong reason to believe that Res/ ex-
tends to a function in ^q(G,τ) and thus /, extends to a function in
C2(G,τ) we can only establish this for some special cases which we
describe in this section. We first give a more detailed description of
Res/.

Let P denote the set of positive restricted roots and let A = {al9 •••,
a£} be the simple restricted roots in P. Let {λ19 , λe) = SΔ be dual to A
(i.e. 2(Qί9 aj}/(ap aj» = 3€i). For F C A let CF = A - F and let Ψ C \d
be dual to F and °F dual to CF. Let Sί(F) (2ί(°F)) be the linear span
of {Ha: a e F} ({ffβ: * e °F}) and set A(F) = exp 2I(F) (AC0^) = exp «(°F)).
Observe that if H e ST £Γ = Hx + H2 where Hx e %{F) and £T2 e WF) and
this decomposition is unique. Furthermore, if H e Sί+ H ~ H1 + H2 where
# ! e 2T(ίy = {iϊ e 2T(F): α(fl) > 0 for all aeF} and H2 = Σ ^ Λ where
the sum is over °F and each cλ > 0. (It is easy to see that the converse
holds only when F = A or F = 0). Now for αeA + we set a = aλa2

where H = log a and α€ = exp Hi as above.
Continuing our integration process described at the end of Section 2

and allowing F to vary we see that the function Res / is a finite sum
of functions of the form

μβL

where ηv-μ(ad e End (7*), — ίfImve3ϊ+, L is the semilattice described in
Section 2, the series converges absolutely for aeA+ and ήv(a) = 0 for
ff(&i) > A as do all ηv-μ's.

The following lemma is an immediate consequence of this expansion.

LEMMA 4.1. // Res/(α) = 0 for all aeA+ with σ(a) > C then
Res/ = 0.
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THEOREM 4.1. If G has split rank one R e s / extends to a (quasi)

cusp form. If G has only one conjugacy class of Cartan subgroup

Res / = 0.

Proof. The case where G has split rank one has been treated in [13]

and the case where G has only one conjugacy class of Cartan subgroup

follows from Lemma 4.1.

COROLLARY. Suppose G has split rank one or has only one conjugacy

class of Cartan subgroup. Then if feCζ{G,τ) f = fε.

§5. Applications to differential equations

Let £/(©) be the complexified enveloping algebra of © and let £7(©)®

be the centralizer of $ in [/(©). If feC°°(G) and X e © set Xf(g) =

(d/dt)f(exv -tXg)\t=0 and extend this action to all of [/(©). Let £'(G)

denote the distributions with compact support.

In [14] a sufficient condition for D e Z7(©)β to be injective as an

operator D: £'(G) -> S\G) was established. In this section we prove the

converse of this result. We first recall the definition of the principal

series.

Let ω: M -» Gl(H) be an irreducible unitary representation of M and

let ve$ί%. ω and v define a representation FWiV of the group MAN = B

on H by setting Vω^(mari) = e(ίι>+pHlosa)ω(m) (meM, aeA, neN). Now

let ΐP'1' be the set of all measurable functions f:G-+H such that:

1) f(gv) = V^(p)-ιf(g) (geG, peB); and,

2) ί ||/(&)||2dfc = | | / | | 2 < o o .
JK

Now Hω*v becomes a Hubert space with inner product

(u, v) = (u(k), v(k))dk
JK

and left translation induces a representation πω,v of G on Hωv and we

call the pairs (πω,v,H
<0>v) the principal series of G. Let JK>" denote the

ίΓ-finite vectors of Hω>\ Observe that πΛtV induces a representation of

Z7(©) on Xω'v and that as a Z-module Xω'y is isomorphic to the space

X(ω) = {u: K —> H: u is left K-finite and u(km) = ω(m)~ιu(k) for all k e K,

meM}. We abuse notation and identify Xω>v with X(ω).

We now restate Lemma 3.1 of [14]. (Injectivity criterion) Suppose
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D e Z7(©)®. Suppose for no ω e M is there a finite dimensional subspace

U c X(ω) such that 7Γ..XD): U -* C7 and det τrω>y(ί>) ̂  = 0 for all y. Then

D: <T(G) -> £'(G) is injective.

Observe that πω^v defines a linear map

by setting

πmtV(f)u = ί f(x)π.t£x)udx (f e CC~(G, τ), w e H - ) .

If we set θΛtV(f) = Σi- i (fl»iV(f)ui9 ut) where {^: i ^ 1} is an orthonormal

basis of fΓβ|J, we obtain by a simple calculation that θωi_X£(x)~1f) —

E(ψf(ω:υ):v: x) where £(x) (r(x)) denotes left (right) translation by x.

(Although the Eisenstein integral may be obtained from a distribution

on G our treatment here is useful in the study of differential equations.)

We may now select u19 -,ud an orthonormal set of vectors in Rω~v

such that

i = l

where for h e C?(G)

(πat.χh)uifUi) = h(x)(πmt_Xx)ui9Ui)dx .
JG

We now prove the converse of the injectivity criterion.

Suppose that D e U(®Y and for ω0 e M we have a finite dimensional

K-invariant subspace U c X(ω0) such that π^XD): C7 —> Z7 and det π^XD)^

= 0 for all ve2ϊ$. Without loss of generality we may assume that

ff,M(fl) = 0 on U. Let τ be the representation of K on [/ and let 7 =

End Z7 and extend τ to a double representation of Z on 7.

Now let F: M x Sίg -> 7 ^ be such that F(ω: y) = 0 if ω Φ sω0 for some

s e W. Suppose also that F satisfies conditions I, II and III of Section 3.

Set

f(x) = Σ f E(F(ω:v):v: x)μ(ω: p)dy .

There is an H e Vq(G9τ) such that f + He CC

TO(G,τ). Also a simple
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calculation yields

Df{x) = Σ ί E(πω _V(P)oF(ω:v):v: x)u(ω: v)dv

and thus Of = 0 and if G = / + iϊ we see that DG e <&q(G, τ) Π CC°°(G, r)
and by [14] DG = 0. Hence we have proved

THEOREM 5.1. Suppose DeU(®)*. D: £'(G)-* #'(G) is injectίve if
and only if for no ωem is there a finite dimensional subspace UcX(ω)
such that πωyXD): U-> U and detπm%£D)\Ό = 0 for all ve%$.

For r > 0 let 7r(0) = {geG:σ(g) < r}

THEOREM 5.2 (P-convexity). Suppose D e Z7(®)® satisfies the injectivity
criterion. Suppose T e S\G) and supp DT c Fr(0). Γ/̂ ê  supp Γ c Fr(0).

Proof. By convoluting with functions in C"(G), we see that it
suffices to prove this result for T = feC?(G). Furthermore, it suffices
to assume that f(x) = L(F(αO) where F e C?(G, r), 7 = End U, U is a Z-
ίinite space of functions on if, L e 7* and τ is the double representation
induced on V by left translation on U.

By hypothesis for all N > 0 there is a C^ such that

but as ψDF(ω: x>) = π0i_v(D)ψF(ω: v) we have that -ψ>(ft>: y) satisfies the same
growth conditions. Thus, as F e C?(G, τ) we have supp F c Fr(0) and
hence supp / £ Fr(0).
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