K. D. Johnson Nagoya Math. J. Vol. 64 (1976), 17-29

DIFFERENTIAL EQUATIONS AND AN ANALOG OF THE PALEY-WIENER THEOREM FOR LINEAR SEMISIMPLE LIE GROUPS

KENNETH D. JOHNSON

§1. Introduction

Let G be a noncompact linear semisimple Lie group. Fix G = KANan Iwasawa decomposition of G. That is, K is a maximal compact subgroup of G, A is a vector subgroup with AdA consisting of semisimple transformations and A normalizes N, a simply connected nilpotent subgroup of G. Let M' denote the normalizer of A in K, M the centralizer of A in K, and W = M'/M the restricted Weyl group of G. Fix θ a Cartan involution of G which leaves every element of K fixed and set $\overline{N} = \theta N$. We denote the Lie algebras of G, K, A, N, \overline{N} , and M respectively by $\mathfrak{G}, \mathfrak{R}, \mathfrak{A}, \mathfrak{N}, \overline{\mathfrak{N}}$, and \mathfrak{M} respectively.

For $g \in G$ set $g = K(g) \exp H(g)n(g)$ where $K(g) \in K$, $H(g) \in \mathfrak{A}$, and $n(g) \in N$ and $\exp|_{\mathfrak{A}}$ is an isomorphism from \mathfrak{A} to A with inverse log. Recall that $\lambda \in \mathfrak{A}^*$ is called a root if $\mathfrak{G}_{\lambda} = \{X \in \mathfrak{G} : [H, X] = \lambda(H)X$ for all $H \in \mathfrak{A}\} \neq \{0\}$ and λ is a positive root if $\mathfrak{G}_{\lambda} \subseteq \mathfrak{N}$. Let P denote the set of all positive roots and let L be the semilattice of all elements of \mathfrak{A}^* of the form $\sum_{\lambda \in P} c_{\lambda}\lambda$ and c_{λ} is a nonnegative integer.

Let V be a finite dimensional vector space and let K act on V via the double representation τ . That is, for $v \in V$ and $k_1, k_2 \in K$

$$\tau(k_1, k_2): v \longrightarrow \tau(k_1) \cdot v \cdot \tau(k_2)^{-1}.$$

Consider the C^{∞} functions $f: G \to V$ for which $f(k_1gk_2) = \tau(k_1)f(g)\tau(k_2)$ $(k_1, k_2 \in K)$. We denote these functions by $C^{\infty}(G, \tau)$ and we denote the C^{∞} -functions with compact support by $C_c^{\infty}(G, \tau)$ and the Schwartz functions in $C^{\infty}(G, \tau)$ by $\mathscr{C}(G, \tau)$.

Consider $f \in \mathscr{C}(G, \tau)$ and for $\nu \in \mathfrak{A}_{\mathcal{C}}^*$ $m \in M$ set

Received June 16, 1975.

KENNETH D. JOHNSON

$$g_f(\nu)(m) = \int_A da \int_N f(man) e^{(\rho - i\nu)(\log a)} dn$$

where for $H \in \mathfrak{A}$ $\rho(H) = \frac{1}{2} \operatorname{tr} adH_{\mathfrak{M}}$ and for $\omega \in \hat{M}$, set

$$\psi_f(\omega:\nu) = \int_{\mathcal{M}} \chi_{\omega}(m') g_f(\nu)(m') dm' \, dm' \,$$

Now $\psi_f(\omega:\nu) \in V^M$ where $V^M = \{v \in V: \tau(m)v = v\tau(m) \text{ for all } m \in M\}$ and in fact $\psi_f(\omega:\nu) \in V^M(\omega)$ where $V^M(\omega) = E_{\omega}(V^M)$ and

$$E_{\omega}(v) = d_{\omega} \int_{M} \overline{\chi_{\omega}(m)} \tau(m) v dm$$

In general for $A \in V^{M}$ we define the Eisenstein integral of Harish-Chandra by setting

$$E(A:\nu:x) = \int_{K} \tau(K(xk)) \circ A \circ \tau(k)^{-1} e^{(i\nu-\rho)(H(xk))} dk .$$

Remark. Our notation for the Eisenstein integral differs slightly from Harish-Chandra's Eisenstein integral only in that we shall have no need to specify the parabolic subgroup P = MAN which defines the integral.

Part of the Plancherel formula of Harish-Chandra [6], [7] tells us that for $f \in \mathscr{C}(G, \tau)$ there is a function $f_A \in \mathscr{C}(G, \tau)$ where

$$f_{A}(x) = \sum_{\omega \in \hat{M}} \int_{\mathfrak{A}^{*}} E(\psi_{f}(\omega : \nu) : \nu : x) \mu(\omega : \nu) d\nu$$

and $F = f - f_A \in \mathscr{C}(G, \tau)$ with

$$\int_N F(gn) dn \equiv 0$$

where N is the unipotent radical of P = MAN. Moreover, the function $\mu: \hat{M} \times \mathfrak{A}_{c}^{*} \to C$ satisfies the following conditions:

1) $\nu \to \mu(\omega : \nu)$ is meromorphic on $\mathfrak{A}^*_{\mathcal{C}}(\omega \in \hat{M})$;

2) $\nu \to \mu(\omega; \nu)$ is analytic and ≥ 0 on $\mathfrak{A}^*(\omega \in \hat{M})$; and,

3) For $s \in W$ $\mu(s\omega : s\nu) = \mu(\omega : \nu)$.

In the following we will say that a function $F \in \mathscr{C}(G, \tau)$ is a quasicusp form if

$$\int_N F(gn) dn \equiv 0 \; .$$

We denote the space of quasi-cusp forms by $\mathscr{C}_q(G, \tau)$.

The main result of this paper (Theorem 3.1) gives a weak analog of the classical Paley-Wiener theorem in characterizing the support of a function $f \in C_c^{\infty}(G, \tau)$ in terms of growth conditions on the "Fourier-Laplace transform" $\psi_f(\omega: \nu)$.

We first state some results concerning some estimates which we shall need in the proof of the Paley-Wiener theorem.

In Section 3 we prove our result which contains a rather ambiguous residue function which we treat somewhat further in Section 4. In Section 5 we apply our results to the study of some partial differential operators on G.

§2. Some estimates.

Let V be as in section one, let $A \in V^{\mathcal{M}}$ and consider the Eisenstein integral $E(A:\nu:x)$. Let $\mathfrak{A}^+ = \{H \in \mathfrak{A}: \lambda(H) > 0 \text{ for all } \lambda \in P\}$ and set A^+ $= \exp \mathfrak{A}^+$. Harish-Chandra in Warner [16] has given a useful expansion of $E(A:\nu:a)$ for $a \in A^+$ which we now describe.

For $a \in A^+$ and $s \in W$ there exist functions $c: W \times \mathfrak{A}_c^* \to \operatorname{End} V^{\mathcal{M}}$ and $\Phi_s: A \times \mathfrak{A}_c^* \to \operatorname{End} V^{\mathcal{M}}$ such that $E(A:\nu:a) = \sum_{s \in W} \Phi_s(a:\nu)(c(s:\nu)(A))$. Furthermore, we have that

$$\Phi_{s}(a:\nu) = \sum_{\mu \in L} \Gamma_{\mu}(is\nu - \rho)e^{(is\nu - \rho - \mu)(\log a)}$$

where for $\mu \in L$ $\nu \to \Gamma_{\mu}(is\nu - \rho)$ is a rational function with image in End (V^{M}) . Here $\Gamma_{0} = I$.

For $\lambda \in \mathfrak{A}^*$ there is an $H_{\lambda} \in \mathfrak{A}$ such that $\lambda(H) = B(H, H_{\lambda})$ for all $H \in \mathfrak{A}$ where B is the Killing form of \mathfrak{G} . For $\nu \in \mathfrak{A}_c^*$ write $-i\nu = \xi + i\eta$ when $\xi, \eta \in \mathfrak{A}^*$. For $H_0 \in \mathfrak{A}$ set $T(H_0) = \{\nu \in \mathfrak{A}_c^* : H_{\xi} \in H_0 + \mathfrak{A}^+\}$. The Γ_{μ} 's now satisfy the following

LEMMA 2.1 (Lemma 2.3 [13]). Fix $H_0 \in \mathfrak{A}$ and $H_1 \in \mathfrak{A}^+$. Then there is a polynomial $p_{H_0}(\nu)$ and a polynomial $K(\nu) > 0$ depending on p_{H_0}, H_0 and H_1 such that

$$||p_{H_0}(\nu)\Gamma_{\mu}(i\nu - \rho)|| \le Ke^{\mu(H_1)}$$
.

For the proof of this lemma we refer to [13]. We now need some estimates on the functions $c(s:\nu)$.

We say that for $a \in A^+$ $a \to \infty$ if $\|\log a\| = B(\log a, \log a)^{1/2} \to \infty$ and

there is an $\varepsilon > 0$ such that for all $\lambda \in P$ $\lambda(\log a) \ge \varepsilon ||\log a||$. Then from Harish-Chandra [6], [7] we have for $A \in V^{\mathcal{M}}$ and $\nu \in \mathfrak{A}^*$ that

$$\lim_{a\to\infty} \left(e^{\rho(\log a)} E(A:\nu:a) - \sum_{s\in W} c(s:\nu)(A) e^{is\nu(\log a)}\right) = 0.$$

Again from Harish-Chandra [6], [7] we have that the map $\nu \to c(s:\nu) \in$ End (V^{M}) is meromorphic and hence we see that if $\operatorname{Re} i\nu(\log a) > 0$ for all $a \in A^{+}$

$$\log_{a\to\infty} e^{(\rho-i\nu)(\log a)} E(A:\nu:a) = c(1:\nu)(A) .$$

Hence for Re $i\nu(\log a) > 0$ and all $a \in A^+$ we obtain

$$c(1:\nu) = \int_{\overline{N}} A \circ \tau(K(\overline{n}))^{-1} e^{-(i\nu+\rho)(H(\overline{n}))} d\overline{n} .$$

More generally we obtain that if Re $is_{\nu}(\log a) > 0$ for all $a \in A^+$ and $s \in W$

$$\log_{a\to\infty} e^{(\rho-is\nu)(\log a)} E(A:\nu:a) = c(s:\nu)(A)$$

and in this case an elementary calculation yields

$$c(s:\nu)(A) = \tau(w)j_s^-(\nu) \circ A \circ j_s^+(\nu)\tau(w)^{-1} \qquad (w \in s)$$

where

$$j_s^+(
u) = \int_{\overline{N}_1} e^{-(i\nu+
ho)H(\overline{n})} \tau(K(\overline{n}))^{-1} d\overline{n}$$

and

$$j_{s}^{-}(\nu) = \int_{\overline{N}_{2}} e^{(i\nu-\rho)H(\overline{n})} \tau(K(\overline{n})) d\overline{n}$$

with $\overline{N}_1 = \{\overline{n} \in \overline{N} : w\overline{n}w^{-1} \in \overline{N}\}$ and $\overline{N}_2 = \{\overline{n} \in \overline{N} : w\overline{n}w^{-1} \in N\}.$

We wish to apply estimates of the form found in Lemma 3.1 of [13]. To do so we first need a product formula for the functions $j_s^+(\nu)$ and $j_s^-(\nu)$ which may be attributed to Gindikin and Karpelevic [4] and Schiffmann [15]. A more general product formula has been obtained by Harish-Chandra [7].

Let $P_s^+ = \{ \alpha \in P : s^{-1}\alpha \ge 0 \}$ and $P_s^- = \{ \alpha \in P : s^{-1}\alpha \le 0 \}$. Then

$$\overline{\mathfrak{N}}_1 = \sum_{\alpha \in P_{\overline{s}}^+} \mathfrak{G}_{-\alpha}$$
 and $\overline{\mathfrak{N}}_2 = \sum_{\alpha \in P_{\overline{s}}^-} \mathfrak{G}_{-\alpha}$

and for $\alpha \in P$ where $\alpha/2 \in P$ let $\mathfrak{N}_{\alpha} = \mathfrak{G}_{-\alpha} + \mathfrak{G}_{-2\alpha}$. If $\alpha \in P_s^+$ set

$$j_{\alpha}^{+}(\nu) = \int_{\overline{N}_{\alpha}} e^{-(i\nu+\rho)(H(\overline{n}))} \tau(K(\overline{n}))^{-1} d\overline{n}$$

and if $\alpha \in P_s^-$ set

$$j_{\alpha}^{-}(\nu) = \int_{\overline{N}_{\alpha}} e^{(i\nu-\rho)H(\overline{n})} \tau(K(\overline{n})) d\overline{n} .$$

If $|P_s^+| = k$ and $|P_s^-| = \ell$ we may put an ordering on P_s^+ where $P_s^+ = \{\alpha_1, \dots, \alpha_k\}$ on an ordering on P_s^- where $P_s^- = \{\lambda_1, \dots, \lambda_\ell\}$ where $\alpha_i \leq \alpha_{i+1}$ and $\lambda_i \leq \lambda_{i+1}$ such that $j_s^+(\nu) = j_{\alpha_k}^+(\nu) \cdots j_{\alpha_1}^+(\nu)$ and $j_s^-(\nu) = j_{i_\ell}^-(\nu) \cdots j_{\alpha_1}^-(\nu)$. The proof of this fact follows immediately from Gindikin-Karpelevic [4] or more precisely from the proof of their main theorem. From Lemma 3.2 of [13] we have the following lemma

LEMMA 2.2. Given $\delta > 0$ there is an R > 0 and an integer N > 0such that if $|\langle \nu, \alpha \rangle| > R$ and $|\arg \langle \nu, \alpha \rangle + \pi/2| \ge \delta$ for $\alpha \in P_s^+$ the matrix entries of $j_a^+(\nu)^{-1}$ are bounded in absolute value by $|\langle \nu, \alpha \rangle|^N$. Hence there is an $R_1 > 0$ and an $N_1 > 0$ for which the matrix entries of $j_s^+(\nu)^{-1}$ are bounded in absolute value by $\pi_{\alpha \in P_s^+} |\langle \nu, \alpha \rangle|^{N_1}$ if $|\langle \nu, \alpha \rangle| > R$, and $|\arg \langle \nu, \alpha \rangle$ $+ \pi/2| \ge \delta$ for $\alpha \in P_s^+$. (Here $|\arg z| \le \pi$.) Furthermore there is an R' > 0and an integer N' > 0 for which the matrix entries of $j_s^-(\nu)^{-1}$ are bounded in absolute value by $\pi_{\alpha \in P_s^-} |\langle \nu, \alpha \rangle|^{N'}$ if $|\langle \nu, \alpha \rangle| > R'$ and $|\arg \langle \nu, \alpha \rangle - \pi/2|$ $\ge \delta$ for $\alpha \in P_s^-$.

Using the inner product on $V^{\mathcal{M}}$ we now compute the adjoint of $c(s:\nu)$ for $\nu \in \mathfrak{A}^*$. Fixing $w \in s$ as before and letting $B \in \text{End } V^{\mathcal{M}}$, we see that

$$c(s:\nu)^*(B) = (j_s^-(\nu))^* \tau(w)^{-1} B \cdot \tau(w) (j_s^+(\nu))^*$$

Moreover, we see that $(j_s^{-}(v))^*$ is the limit of operators of the form

$$\int_{\overline{N}_2} e^{-(i\lambda+\rho)H(\overline{n})} \tau(K(\overline{n}))^{-1} d\overline{n}$$

where $\lambda \to \nu$ ($\nu \in \mathfrak{A}^*$) and $(j_s^+(\nu))^*$ is the limit of operators of the form

$$\int_{\overline{N}_1} e^{(i\lambda-\rho)(H(\overline{n}))} \tau(K(\overline{n})) d\overline{n}$$

where $\lambda \to \nu \ (\nu \in \mathfrak{A}^*)$.

We now compute the adjoint of $c(s:\nu)$ for $\nu \in \mathfrak{A}^*$. For $w \in s$ and $B \in V^{\mathbb{M}}$ we see that

$$c(s:\nu)^*(B) = j_s^-(\nu)^* \circ \tau(w)^{-1} \circ B \circ \tau(w) \circ j_s^+(\nu)^*$$

For $\lambda \in \mathfrak{A}_c^*$ let

$$J_{s}^{-}(\lambda) = \int_{\overline{N}_{2}} e^{-(i\lambda+\rho)(H(\overline{n}))} \tau(K(\overline{n}))^{-1} d\overline{n}$$

and

$$J_{s}^{+}(\lambda) = \int_{\overline{N}_{1}} e^{(i\lambda - \rho)(H(\overline{n}))} \tau(K(\overline{n})) d\overline{n}$$

and denote their meromorphic continuations by the same symbols. Then $(j_s^-(\nu))^* = J_s^-(\nu)$ and $(j_s^+(\nu))^* = J_s^+(\nu)$. Letting $\tilde{C}(s:\lambda)(B) = J_s^-(\lambda)\tau(w)^{-1}B\tau(w)$ $\times J_s^+(\lambda)$ we see that the function $\lambda \to \tilde{C}(s:\lambda)$ is defined meromorphically and for $\nu \in \mathfrak{A}^*$ $\tilde{C}(s:v) = c(s:\nu)^*$. It is a trivial fact to see that $J_s^-(\nu) = j_{\lambda_1}^+(\nu) \cdots j_{\lambda_d}^+(\nu)$ and $J_s^+(\nu) = j_{\alpha_1}^-(\nu) \cdots j_{\alpha_d}^-(\nu)$ where the α_i and λ_j are as before.

We conclude this section with the following observation. Suppose f is a holomorphic function on C^n and suppose that f satisfies the following estimate. There are constants C and A > 0 and an integer N > n for which

$$|f(\vec{z})| \le C(1 + \|\vec{z}\|)^{-N} e^{A||\operatorname{Im} \vec{z}||}$$

where $\|\vec{z}\| = (\langle \vec{z}, \vec{z} \rangle)^{1/2}$ and for $\vec{z} = \vec{x} + i\vec{y}$ with $\vec{x}, \vec{y} \in \mathbb{R}^n$ Im $\vec{z} = \vec{y}$.

Suppose m > 0 is an integer and let c_1, \dots, c_n , $\lambda \in C$. We assume that $\{\vec{z}: c_1z_1 + \dots + c_nz_n - \lambda = 0\} \cap \mathbb{R}^n = \emptyset$. Let $g(\vec{z}) = (\vec{c} \cdot \vec{z} - \lambda)^{-m} f(\vec{z})$ where $\vec{c} = (c_1, \dots, c_n)$. Then the following formula holds.

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1, \cdots, x_n) dx_1 \cdots dx_n
onumber \ = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1 + iy, x_1, \cdots, x_n) dx_1 \cdots dx_n
onumber \ - 2\pi i \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \operatorname{Res}_z \left(g(z, x_2, \cdots, x_n),
onumber \ rac{\lambda - c_2 x_2 - \cdots - c_n x_n}{c_1}
ight) dx_2 \cdots dx_n$$

The above observation is useful since the singularities of the function $\nu \to \Gamma_{\mu}(is\nu - \rho) \ (\mu \in L)$ and $\nu \to c(s:\nu)^{-1}$ have their singularities on hyperplanes and are meromorphic with polynomial growth.

§3. A Paley-Wiener theorem

We now describe our analog of the classical Paley-Wiener theorem.

We suppose first that $f \in C_c^{\infty}(G, \tau)$ and f(g) = 0 for $\sigma(g) > A$ where if $g = k_1 a k_2$ with $k_1, k_2 \in K$ and $a \in A$ $\sigma(g) = (B(\log a, \log a))^{1/2}$ or we say $f \in C_A^{\infty}(G, \tau)$. Observe that the map $\nu \to \psi_f(\omega; \nu)$ is holomorphic and satisfies

(1) For N > 0 an integer there is a constant C_N such that

 $\|\psi_f(\omega:\nu)\| \leq C_N (1+\|\nu\|)^{-N} e^{A||\operatorname{Im}\nu||} .$

(2) For $s \in W$ we have

$$c(s:\nu)(\psi_f(\omega:\nu)) = c(1:s\nu)(\psi_f(s\omega:s\nu)) .$$

We now derive a third condition which is satisfied by the function $\nu \to \psi_f(\omega; \nu)$ for $\omega \subset \tau_{1M}$. We have that

$$f_A(g) = \sum_{\omega \in \hat{M}} \int_{\mathfrak{A}^*} E(\psi_f(\omega \colon \nu) \colon \nu \colon g) \mu(\omega \colon \nu) d\nu \; .$$

Moreover, picking an $\eta \in \mathfrak{A}^*$ with $\|\eta\|$ small and with no $\nu \to \Gamma_{\mu}(is(\nu + i\eta) - \rho)$ ($\mu \in L$) having a singularity for any $\nu \in \mathfrak{A}^*$ we have

$${f}_{A}(g) = \sum_{\omega \in \hat{M}} \int_{\mathfrak{A}^{*}} E(\psi_{f}(\omega \colon \nu + i\eta) \colon \nu + i\eta \colon g) \mu(\omega \colon \nu + i\eta) d
u$$

and by Lemma 2.1 we have for $a \in A^+$

$$f_A(a) = \sum_{s \in w} \sum_{\omega \in \widehat{M}} \sum_{\mu \in L} \int_{\mathfrak{A}^{s+i\eta}} \Gamma_{\mu}(is\nu - \rho) c(s:\nu) (\psi_f(\omega:\nu)) \mu(\omega:\nu) e^{(is\nu - \rho - \mu)(\log a)} d\nu$$

The Maass-Selberg relations of Harish-Chandra [6], [7] state that

$$\|c(s:\nu)(\psi_{f}(\omega:\nu))\|^{2} = \|\widetilde{C}(s:\nu)(\psi_{f}(\omega:\nu))\|^{2} = \mu(\omega:\nu)^{-1}d_{\omega}\|\psi_{f}(\omega:\nu)\|^{2}$$

for $\nu \in \mathfrak{A}^*$. Hence we have $\mu(\omega:\nu)^{-1}d_{\omega} = c(s:\nu)\tilde{C}(s:\nu)_{|\mathcal{V}^{M}(\omega)}$. Thus,

$$\mu(\omega:\nu)c(s:\nu)(\psi_f(\omega:\nu)) = d_{\omega}\tilde{C}(s:\nu)^{-1}(\psi_f(\omega:\nu)) .$$

For $H \in \mathfrak{A}$ and $s \in W$ consider the tube $T(s, H) = \{\nu \in \mathfrak{A}_{\mathcal{C}}^*: -H_{\mathrm{Im}\,s\nu} \in \mathfrak{A}^+ + H\}$. Then the following lemma now follows from Lemmas 2.1 and 2.2

LEMMA 3.1. Given $H_{\eta} \in \mathfrak{A}$ and $s \in W$ there are a finite number of hyperplanes F_1, \dots, F_r in \mathfrak{A}_C^* which intersect $T(s, H_{\eta})$ and for which the functions $\nu \to \Gamma_{\mu}(is\nu - \rho)$ ($\mu \in L$) and $\nu \to \tilde{C}(s:\nu)^{-1}$ are analytic on T(s, H) $\sim (F_1 \cup \cdots \cup F_r)$. Furthermore, there is a C > 0 such that { $\nu : -\langle \operatorname{Im} \nu, \alpha \rangle$ > C for all $\alpha \in P$ } T(s, H) $F_i = \emptyset$ for all $1 \leq i \leq r$.

Now setting for $s \in W$ and $a \in A^+$,

KENNETH D. JOHNSON

$$f_{A,s}(a) = \sum_{\mu \in \widehat{M}} \sum_{\mu \in L} d_{\omega} \int_{\mathfrak{A}^{*}+i\eta} \Gamma_{\mu}(is\nu - \rho) \widetilde{C}(s:\nu)^{-1}(\psi_{f}(\omega:\nu)) d\nu$$

Using our remarks at the end of Section 2, we see that $f_{A,s}(a) = \operatorname{Res}_{s}(f)(a) + f_{s,s}(a)$ where $\operatorname{Res}_{s}(f)(a)$ is a residue integral over the imaginary part of the hyperplanes F_{1}, \dots, F_{r} and

$$f_{s,s}(a) = \sum_{\omega \in \widehat{\mathcal{M}}} \sum_{\mu \in L} \int_{\mathrm{Im} \ \nu = \lambda} \Gamma_{\mu}(is\nu - \rho) \widetilde{C}(s:\nu)^{-1}(\psi_f(\omega:\nu)) e^{(is\nu - \rho - \mu)(\log a)} d\nu$$

with $-H_{\lambda} \in \mathfrak{A}^+$ and $\|\lambda\| > C$. By the standard method used in the classical Paley-Wiener theorem we see that $f_{\epsilon,s}(a) = 0$ if $\sigma(a) > A$. Letting $\operatorname{Res}(f) = \sum_{s \in w} \operatorname{Res}(f)$ and $f_{\epsilon} = \sum_{s \in w} f_{\epsilon,s}$ and using the Plancherel formula we now see that there is an $F \in \mathscr{C}_q(G, \tau)$ such that

(3) $f = f_s + \text{Res}(f) + F$

and Res f(a) + F(a) = 0 for $a \in A^+$ with $\sigma(a) > A$.

Now for A > 0 let $\mathscr{P}(A, \tau)$ be the space of all functions $F: \hat{M} \times \mathfrak{A}_{\mathcal{C}}^* \to V$ such that $F(\omega: \nu) \equiv 0$ if $\omega \subset \tau_{|\mathcal{M}}$ and F satisfies the following conditions.

- I) $\nu_N(F) = \sup_{\omega,\nu} (1 + \|\nu\|)^N e^{-A |\operatorname{Im} \nu|} \|F(\omega;\nu)\| < \infty$
- II) $c(s:\nu)(F(\omega:\nu)) = c(1:s\nu)(F(s\omega:s\nu))$
- III) The function

$$f(g) = \sum_{\omega \in \widehat{\mathcal{M}}} \int_{\mathbb{R}^*} E(F(\omega : \nu) : \nu : g) \mu(\omega : \nu) d\nu$$

differs from a function in $C_c^{\infty}(G,\tau)$ by a function H in $\mathscr{C}_q(G,\tau)$. Moreover, for g regular $f(g) = \operatorname{Res} f(g) + f_{\mathfrak{s}}(g)$ with $f_{\mathfrak{s}}(g) = 0$ for V(g) > A.

THEOREM 3.1. A function $f \in C^{\infty}(G, \tau)$ is in $C^{\infty}_{A}(G, \tau) + C_{q}(G, \tau)$ if and only if its Fourier-Laplace transform is in $\mathcal{P}(A, \tau)$.

Proof. It is clear that if $f \in C^{\infty}_{\mathcal{A}}(G, \tau) + \mathscr{C}_{q}(G, \tau)$ its Fourier-Laplace transform is in $\mathscr{P}(A, \tau)$.

Suppose $0 \neq F \in \mathcal{P}(A, \tau)$. By Theorem 3.1 of Arthur [1] we have that

$$f(g) = \sum_{\omega \in \hat{M}} \int_{\mathfrak{A}^*} E(F(\omega : \nu) : \nu : g) \qquad \mu(\omega : \nu) d\nu \not\equiv 0 \; .$$

By Lemma 2.2 of [13] we have that $f \notin \mathscr{C}_q(G, \tau)$. By assumption there is an $H \in \mathscr{C}_q(G, \tau)$ for which $f \cdot H \in C_c^{\infty}(G, \tau)$. However our arguments in obtaining 3) guarantee that $0 \neq f - H \in C_A^{\infty}(G, \tau)$. This completes our proof. COROLLARY 1. A function $f \in C^{\infty}_{o}(G, \tau)$ is in $C^{\infty}_{A}(G, \tau)$ if and only if for every integer N > 0 there is a $C_N > 0$ such that

$$\|\psi_f(\omega;\nu)\| \le C_N (1+\|\nu\|)^{-N} e^{A\|\operatorname{Im}\nu\|}.$$

COROLLARY 2. Let $\mathscr{P}(\tau)$ be the union of all $\mathscr{P}(A, \tau)$. Then a function $f \in C^{\infty}(G, \tau)$ is in $C^{\infty}_{c}(G, \tau) + \mathscr{C}_{q}(G, \tau)$ if and only if its Four ier-Laplace transform is in $\mathscr{P}(\tau)$.

§ 4. The function $\operatorname{Res} f$

We inject here a few remarks concerning the function $\operatorname{Res} f$ where $f \in C^{\infty}_{A}(G, \tau)$. Although we have strong reason to believe that $\operatorname{Res} f$ extends to a function in $\mathscr{C}_{q}(G, \tau)$ and thus f_{\bullet} extends to a function in $C^{\infty}_{A}(G, \tau)$ we can only establish this for some special cases which we describe in this section. We first give a more detailed description of $\operatorname{Res} f$.

Let P denote the set of positive restricted roots and let $\Delta = \{\alpha_1, \dots, \alpha_\ell\}$ be the simple restricted roots in P. Let $\{\lambda_1, \dots, \lambda_\ell\} = \Delta$ be dual to Δ (i.e. $2(\langle \lambda_i, \alpha_j \rangle / \langle \alpha_j, \alpha_j \rangle) = \delta_{ij}$). For $F \subset \Delta$ let ${}^\circ F = \Delta \sim F$ and let $F \subset \Delta$ be dual to F and ${}^\circ F$ dual to ${}^\circ F$. Let $\mathfrak{A}(F)$ ($\mathfrak{A}({}^\circ F)$) be the linear span of $\{H_a : \alpha \in F\}$ ($\{H_a : \alpha \in {}^\circ F\}$) and set $A(F) = \exp \mathfrak{A}(F)$ ($A({}^\circ F) = \exp \mathfrak{A}({}^\circ F)$). Observe that if $H \in \mathfrak{A}$ $H = H_1 + H_2$ where $H_1 \in \mathfrak{A}(F)$ and $H_2 \in \mathfrak{A}({}^\circ F)$ and this decomposition is unique. Furthermore, if $H \in \mathfrak{A}^+$ $H = H_1 + H_2$ where $H_1 \in \mathfrak{A}(F)^+ = \{H \in \mathfrak{A}(F) : \alpha(H) > 0$ for all $\alpha \in F\}$ and $H_2 = \sum c_2 H_2$ where the sum is over ${}^\circ F$ and each $c_2 > 0$. (It is easy to see that the converse holds only when $F = \Delta$ or $F = \emptyset$). Now for $\alpha \in A^+$ we set $\alpha = a_1a_2$ where $H = \log a$ and $a_i = \exp H_i$ as above.

Continuing our integration process described at the end of Section 2 and allowing F to vary we see that the function Res f is a finite sum of functions of the form

$$ilde\eta_
u(a) = ilde\eta_
u(a_1,a_2) = \sum_{\mu\in L}\eta_{
u-\mu}(a_1)e^{(i
u-
ho-\mu)(\log a_2)}$$

where $\eta_{\nu-\mu}(a_1) \in \text{End}(V^M)$, $-H_{\text{Im}\nu} \in \mathfrak{A}^+$, L is the semilattice described in Section 2, the series converges absolutely for $a \in A^+$ and $\tilde{\eta}_{\nu}(a) = 0$ for $\sigma(a_1) > A$ as do all $\eta_{\nu-\mu}$'s.

The following lemma is an immediate consequence of this expansion.

LEMMA 4.1. If Res f(a) = 0 for all $a \in A^+$ with $\sigma(a) > C$ then Res f = 0.

KENNETH D. JOHNSON

THEOREM 4.1. If G has split rank one Res f extends to a (quasi) cusp form. If G has only one conjugacy class of Cartan subgroup Res f = 0.

Proof. The case where G has split rank one has been treated in [13] and the case where G has only one conjugacy class of Cartan subgroup follows from Lemma 4.1.

COROLLARY. Suppose G has split rank one or has only one conjugacy class of Cartan subgroup. Then if $f \in C_{\epsilon}^{\infty}(G, \tau)$ $f = f_{\epsilon}$.

§ 5. Applications to differential equations

Let $U(\mathfrak{G})$ be the complexified enveloping algebra of \mathfrak{G} and let $U(\mathfrak{G})^*$ be the centralizer of \mathfrak{R} in $U(\mathfrak{G})$. If $f \in C^{\infty}(G)$ and $X \in \mathfrak{G}$ set $Xf(g) = (d/dt)f(\exp - tXg)|_{t=0}$ and extend this action to all of $U(\mathfrak{G})$. Let $\mathscr{E}'(G)$ denote the distributions with compact support.

In [14] a sufficient condition for $D \in U(\mathfrak{G})^*$ to be injective as an operator $D: \mathscr{E}'(G) \to \mathscr{E}'(G)$ was established. In this section we prove the converse of this result. We first recall the definition of the principal series.

Let $\omega: M \to Gl(H)$ be an irreducible unitary representation of M and let $\nu \in \mathfrak{A}_{C}^{*}$. ω and ν define a representation $V_{\omega,\nu}$ of the group MAN = Bon H by setting $V_{\omega,\nu}(man) = e^{(i\nu+\rho)(\log a)}\omega(m)$ $(m \in M, a \in A, n \in N)$. Now let $H^{\omega,\nu}$ be the set of all measurable functions $f: G \to H$ such that:

- 1) $f(gp) = V_{w,v}(p)^{-1}f(g) \ (g \in G, \ p \in B);$ and,
- 2) $\int_{K} \|f(k)\|^2 dk = \|f\|^2 \leq \infty.$

Now $H^{\omega,\nu}$ becomes a Hilbert space with inner product

$$(u, v) = \int_{K} (u(k), v(k)) dk$$

and left translation induces a representation $\pi_{\omega,\nu}$ of G on $H^{\omega,\nu}$ and we call the pairs $(\pi_{\omega,\nu}, H^{\omega,\nu})$ the principal series of G. Let $K^{\omega,\nu}$ denote the K-finite vectors of $H^{\omega,\nu}$. Observe that $\pi_{\omega,\nu}$ induces a representation of $U(\mathfrak{G})$ on $X^{\omega,\nu}$ and that as a K-module $X^{\omega,\nu}$ is isomorphic to the space $X(\omega) = \{u: K \to H: u \text{ is left } K\text{-finite and } u(km) = \omega(m)^{-1}u(k) \text{ for all } k \in K,$ $m \in M\}$. We abuse notation and identify $X^{\omega,\nu}$ with $X(\omega)$.

We now restate Lemma 3.1 of [14]. (Injectivity criterion) Suppose

 $D \in U(\mathfrak{G})^{\mathfrak{g}}$. Suppose for no $\omega \in \widehat{M}$ is there a finite dimensional subspace $U \subseteq X(\omega)$ such that $\pi_{\omega,\nu}(D) : U \to U$ and det $\pi_{\omega,\nu}(D) \mid_U = 0$ for all ν . Then $D : \mathscr{E}'(G) \to \mathscr{E}'(G)$ is injective.

Observe that $\pi_{\omega,\nu}$ defines a linear map

$$\pi_{\omega,\nu} \colon C^{\infty}_{c}(G,\tau) \longrightarrow L(H^{\omega,\nu}, V \otimes H^{\omega,\nu})$$

by setting

If we set $\theta_{\omega,\nu}(f) = \sum_{i=1} (\pi_{\omega,\nu}(f)u_i, u_i)$ where $\{u_i : i \ge 1\}$ is an orthonormal basis of $H_{\omega,\nu}$ we obtain by a simple calculation that $\theta_{\omega,-\nu}(\ell(x)^{-1}f) = E(\psi_f(\omega:\nu):\nu:x)$ where $\ell(x)$ (r(x)) denotes left (right) translation by x. (Although the Eisenstein integral may be obtained from a distribution on G our treatment here is useful in the study of differential equations.)

We may now select u_1, \dots, u_d an orthonormal set of vectors in $H^{\omega,-\nu}$ such that

$$\begin{aligned} \theta_{\omega,-\nu}(\ell(x)^{-1}Df) &= \theta_{\omega,-\nu}(r(x)Df) \\ &= \sum_{i=1}^d \left(\pi_{\omega,-\nu}(D)\pi_{\omega,-\nu}(r(x)f)u_i,u_i\right) \end{aligned}$$

where for $h \in C_c^{\infty}(G)$

$$(\pi_{\omega,-\nu}(h)u_i,u_i) = \int_{\mathcal{G}} h(x)(\pi_{\omega,-\nu}(x)u_i,u_i)dx$$

We now prove the converse of the injectivity criterion.

Suppose that $D \in U(\mathfrak{G})^{\mathfrak{k}}$ and for $\omega_0 \in \hat{M}$ we have a finite dimensional *K*-invariant subspace $U \subseteq X(\omega_0)$ such that $\pi_{\omega_0,\nu}(D) \colon U \to U$ and det $\pi_{\omega_0,\nu}(D)|_U = 0$ for all $\nu \in \mathfrak{A}^*_{\mathcal{C}}$. Without loss of generality we may assume that $\pi_{\omega_0,\nu}(D) \equiv 0$ on U. Let τ be the representation of K on U and let V =End U and extend τ to a double representation of K on V.

Now let $F: \hat{M} \times \mathfrak{A}^*_{\mathcal{C}} \to V^{\mathbb{M}}$ be such that $F(\omega: \nu) = 0$ if $\omega \neq s\omega_0$ for some $s \in W$. Suppose also that F satisfies conditions I, II and III of Section 3. Set

$$f(x) = \sum_{\omega \in \widehat{\mathfrak{M}}} \int_{\mathfrak{A}^*} E(F(\omega : \nu) : \nu : x) \mu(\omega : \nu) dy .$$

There is an $H \in \mathscr{C}_q(G, \tau)$ such that $f + H \in C^{\infty}_c(G, \tau)$. Also a simple

calculation yields

$$Df(x) = \sum_{\omega \in \hat{M}} \int_{\mathfrak{A}^*} E(\pi_{\omega, -\nu}(D) \circ F(\omega : \nu) : \nu : x) u(\omega : \nu) d\nu$$

and thus Df = 0 and if G = f + H we see that $DG \in \mathscr{C}_q(G, \tau) \cap C_c^{\infty}(G, \tau)$ and by [14] DG = 0. Hence we have proved

THEOREM 5.1. Suppose $D \in U(\mathfrak{G})^*$. $D: \mathscr{E}'(G) \to \mathscr{E}'(G)$ is injective if and only if for no $\omega \in \hat{M}$ is there a finite dimensional subspace $U \subset X(\omega)$ such that $\pi_{\omega,\nu}(D): U \to U$ and det $\pi_{\omega,\nu}(D)|_U = 0$ for all $\nu \in \mathfrak{A}^*_{\mathcal{E}}$.

For
$$r > 0$$
 let $V_r(0) = \{g \in G : \sigma(g) \le r\}$

THEOREM 5.2 (P-convexity). Suppose $D \in U(\mathfrak{G})^*$ satisfies the injectivity criterion. Suppose $T \in \mathscr{E}'(G)$ and $\operatorname{supp} DT \subseteq V_r(0)$. Then $\operatorname{supp} T \subseteq V_r(0)$.

Proof. By convoluting with functions in $C_c^{\infty}(G)$, we see that it suffices to prove this result for $T = f \in C_c^{\infty}(G)$. Furthermore, it suffices to assume that f(x) = L(F(x)) where $F \in C_c^{\infty}(G, \tau)$, V = End U, U is a K-finite space of functions on K, $L \in V^*$ and τ is the double representation induced on V by left translation on U.

By hypothesis for all N > 0 there is a C_N such that

$$|\psi_{DF}(\omega:\nu)| \leq C_N (1 + ||\nu||)^{-N} e^{r ||\operatorname{Im}\nu||}$$

but as $\psi_{DF}(\omega:\nu) = \pi_{\omega,-\nu}(D)\psi_F(\omega:\nu)$ we have that $\psi_F(\omega:\nu)$ satisfies the same growth conditions. Thus, as $F \in C_c^{\infty}(G,\tau)$ we have supp $F \subseteq V_r(0)$ and hence supp $f \subseteq V_r(0)$.

REFERENCES

- [1] J. Arthur, Harmonic analysis of the Schwartz space on a reductive Lie group II, preprint.
- [2] L. Ehrenpreis and F. Mautner, Some properties of the Fourier transform on semisimple Lie groups, I, Ann. of Math. 61 (1955), 406-439.
- [3] R. Gangolli, On the Plancherel formula and the Paley-Wiener theorem for spherical functions on semisimple Lie groups, Ann. of Math. 93 (1971), 150-165.
- [4] S. G. Gindikin and F. I. Karpelevic, Plancherel measure of Riemannian symmetric spaces of nonpositive curvature, Sov. Math. 3 (1962), 962–965.
- [5] Harish-Chandra, Discrete series for semisimple Lie groups II, Acta. Math. 116 (1966), 1-111.
- [6] —, On the theory of the Eisenstein integral, Proc. Int. Conf. on Harm. Anal., Univ. of Maryland, 1971, lecture notes in Math. No. 266, Springer-Verlag, 1972.
- [7] —, Lectures at Institute for Advanced Study, Fall 1974.

DIFFERENTIAL EQUATIONS

- [8] S. Helgason, An analog of the Paley-Wiener theorem for the Fourier transform on certain symmetric spaces, Math. Ann. 165 (1966), 297-308.
- [9] —, A duality for symmetric spaces, with applications to group representations, Advan. Math. 5 (1970), 1-154.
- [10] —, The surjectivity of invariant differential operators on symmetric spaces I, Ann. of Math. 98 (1973), 451-479.
- [11] L. Hormander, Linear partial differential operators, Springer-Verlag, 1963.
- [12] K. Johnson, Functional analysis on SU(1,1), Advan. Math. 14 (1974), 346-364.
- [13] ----, Paley-Wiener theorems on groups of split rank one, to appear.
- [14] -----, Partial differential equations on semisimple Lie groups, to appear.
- [15] G. Schiffmann, Integrales d'entrelacement et fonctions de Whittaker, Bull. Soc. Math. France 99 (1971), 3-72.
- [16] G. Warner, Harmonic analysis on semisimple Lie groups, Springer-Verlag, 1972.

Department of Mathematics Indiana University