REPRESENTATIONS OF QUADRATIC FORMS AND THEIR APPLICATION TO SELBERG'S ZETA FUNCTIONS

Dedicated to the memory of Taira Honda

YOSHIYUKI KITAOKA

Let M and L be quadratic lattices over the maximal order of an algebraic number field. In case of dealing with representations of M by L, they sometimes assume certain indefiniteness and the condition rank L-rank $M \geq 3$. In this case, representation problems are reduced not to global but to local problems by virtue of the strong approximation theorem for rotations and of the fact that for regular quadratic spaces U, V over a non-archimedian local field there is an isometry from U to V if $\operatorname{dim} V-\operatorname{dim} U \geq 3$. On the contrary, global properties seem to be strongly concerned if we omit one of those two assumptions. As an example we prove in $\S 1$ that there is a sublattice of codimension 1 which characterizes L in a certain sense. In $\S 2$ we prove as its application that certain Selberg's zeta functions are linearly independent.

We denote by $\boldsymbol{Q}, \boldsymbol{Z}, \boldsymbol{Q}_{p}$ and \boldsymbol{Z}_{p} the rational number field, the ring of rational integers, the p-adic completion of \boldsymbol{Q}, and the p-adic completion of \boldsymbol{Z}. We mean by a quadratic lattice L over $\boldsymbol{Z}\left(\right.$ resp. \boldsymbol{Z}_{p}) a \boldsymbol{Z} (resp. \boldsymbol{Z}_{p})lattice in a regular quadratic space U over \boldsymbol{Q} (resp. \boldsymbol{Q}_{p}), and by definition $\operatorname{rank} L=\operatorname{dim} U$. For a quadratic lattice L over Z (or Z_{p}) we denote by $Q(x)$ and $B(x, y)$ the quadratic form and the bilinear form associated with $L(2 B(x, y)=Q(x+y)-Q(x)-Q(y))$, and by $d L$ the determinant of $\left(B\left(e_{i}, e_{j}\right)\right.$) where $\left\{e_{i}\right\}$ is a basis of L over \boldsymbol{Z} (or \boldsymbol{Z}_{p}). $d L$ is uniquely determined for a quadratic lattice L over Z, and for a quadratic lattice L over $Z_{p}, d L$ is unique up to the squares of units in Z_{p}. For two ordered sets $\left(a_{1}, a_{2}, \cdots, a_{n}\right),\left(b_{1}, b_{2}, \cdots, b_{n}\right)$, we define the order $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ $\leq\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ by either $a_{i}=b_{i}$ for $i<k$ and $a_{k}<b_{k}$ for some $k \leq n$

[^0]or $a_{i}=b_{i}$ for any i.
Let L be a quadratic lattice over \boldsymbol{Z}_{p}; then L has a Jordan splitting $L=L_{1} \cdot \perp L_{2} \perp \cdots \perp L_{k}$, where L_{i} is a $p^{a_{i}}$-modular lattice and $a_{1}<a_{2}$ $<\cdots<a_{k}$. We denote by $t_{p}(L)$ the ordered set ($\underbrace{a_{1}, \cdots, a_{1}}_{\text {rank } L_{1}}, \cdots, \underbrace{a_{k}, \cdots, a_{k}}_{\text {rank } L_{k}})$. For simplicity we denote $t_{p}\left(\boldsymbol{Z}_{p} L\right)$ by $t_{p}(L)$ for a quadratic lattice L over Z.
§1. Lemma. Let L be a Z_{p}-lattice in a regular quadratic space U over $\boldsymbol{Q}_{p} ;$ then L has a \boldsymbol{Z}_{p}-submodule*) M satisfying the following conditions 1), 2):

1) $d M \neq 0$, $\operatorname{rank} M=\operatorname{rank} L-1$, and M is a direct summand of L as a module.
2) Let L^{\prime} be a Z_{p}-lattice in U containing M; then $L^{\prime}=L$ if $d L^{\prime}$ $=d L$, and $t_{p}\left(L^{\prime}\right) \geq t_{p}(L)$.

Proof. Firstly we assume that L is modular; then we may assume that L is unimodular without loss of generality by scaling. Let L^{\prime} be a lattice in question in 2); then $d L^{\prime}=d L, t_{p}\left(L^{\prime}\right) \geq t_{p}(L)$ imply that L^{\prime} is also unimodular. Suppose that L has an orthogonal base, that is, $L={ }_{i=1}^{n} Z_{p} v_{i}$. We put $M=\stackrel{n-1}{L_{i=1}} Z_{p} v_{i}$; then M satisfies 1), and M is unimodular. Hence M splits L^{\prime} and $L^{\prime}=M \perp a Z_{p} v_{n}$ for $a \in \boldsymbol{Q}_{p}$. Since L^{\prime} is unimodular, a is a unit. This means $L^{\prime}=L$. If L does not have an orthogonal base, then $p=2$ and $L={ }_{i=1}^{k} Z_{2}\left[u_{i}, v_{i}\right]$, where $Z_{2}\left[u_{i}, v_{i}\right] \cong$ $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ for $i<k$, and $Z_{2}\left[u_{k}, v_{k}\right] \cong\left(\begin{array}{cc}2 c & 1 \\ 1 & 2 c\end{array}\right)(c=0$ or 1$)$. Put $M=\stackrel{k-1}{\stackrel{1}{i=1}} Z_{2}\left[u_{i}, v_{i}\right]$ $\perp Z_{2}\left[u_{k}+v_{k}\right]$; then $Q\left(u_{k}+v_{k}\right)=4 c+2 \neq 0$ implies $d M \neq 0$. The rest
 M, we may assume $k=1$ to prove 2). Now we have $L=Z_{2}[u, v], M$ $=Z_{2}[u+v]$, where $Q(u)=Q(v)=2 c, B(u, v)=1$, and L^{\prime} is a unimodular lattice containing $u+v$. Since $Q(u+v)=2(2 c+1), u+v$ is maximal in L^{\prime}. Hence $L^{\prime}=\boldsymbol{Z}_{2}[u+v, a u+b v]$ for some a, b in \boldsymbol{Q}_{2}. From the assumption that L^{\prime} is unimodular follows that $B(u+v, a u+b v)=$ $(a+b)(2 c+1)$ is a unit and $Q(a u+b v)=2 c\left(a^{2}+b^{2}\right)+2 a b$ is in Z_{2}. Put $a+b=x$; then x is a unit. $\quad Q(a u+b v)=2(2 c-1) a^{2}-2(2 c-1) a x$

[^1]$+2 c x^{2} \in Z_{2}$ implies $a \in Z_{2}$. Hence we get $a, b \in Z_{2}$, and $L^{\prime}=L$. Coming back to general cases, let L be a quadratic lattice and $L=\stackrel{k}{i=1} L_{i}$, where
 which satisfies 1), 2) in case of $L=L_{k}$ in Lemma and put $M=\stackrel{{ }_{i=1}^{k-1}}{\perp} L_{i} \perp M_{k}$. Obviously M satisfies the condition 1). Let L^{\prime} be a lattice in question in 2); then from the assumptions $t_{p}\left(L^{\prime}\right) \geq t_{p}(L), L^{\prime} \supset M$ follows that L_{1} splits L, M and L^{\prime} (82:15 in [2]). Hence we have only to prove the Lemma for the orthogonal complements of L_{1} in L, L^{\prime} and M. By induction it suffices to prove it in case of $k=1$. This was proved firstly.

We call M a characteristic submodule of L.
Theorem. Let L be a Z-lattice in a regular quadratic space U over \boldsymbol{Q}; then L has a \boldsymbol{Z}-submodule M satisfying the following conditions 1), 2):

1) $d M \neq 0, \operatorname{rank} M=\operatorname{rank} L-1$, and M is a direct summand of L as a module.
2) Let L^{\prime} be a quadratic lattice over \boldsymbol{Z} in some regular quadratic space U^{\prime} over \boldsymbol{Q} satisfying $d L^{\prime}=d L, \operatorname{rank} L^{\prime}=\operatorname{rank} L, t_{p}\left(L^{\prime}\right) \geq t_{p}(L)$ for any prime p. If there is an isometry φ from M to L^{\prime} such that $\varphi(M)$ is a direct summand of L^{\prime} as a module, then L^{\prime} is isometric to L.

Proof. Let rank $L=2$; by scaling we may assume that a matrix $\left(\begin{array}{ll}2 a^{\prime} & b^{\prime} \\ b^{\prime} & 2 c^{\prime}\end{array}\right)$ corresponding to L satisfies that $a^{\prime}, b^{\prime}, c^{\prime}$ are integers such that $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=1, a^{\prime}>0$. From the classical theory we know that there is an element u in L such that $Q(u)=2 p$, where p is a prime with ($p, 2 d L$) $=1$. Hence L has a matrix $\left(\begin{array}{lr}2 p & b \\ b & 2 c\end{array}\right)$ where $0<b<p$. Let e be an integer such that $e^{2} \equiv-d L \bmod p$ and $0<e<p . \quad$ From $d L=4 p c-b^{2}$ follows $b=e$ or $p-e$. If there is an integer x such that $d L=4 p x-e^{2}$, then there is no integer y satisfying $d L=4 p y-(p-e)^{2}$. Therefore the condition $0<b<p$ determines b uniquely. Now we put $M=Z[u]$. If L^{\prime} satisfies the condition 2), then L^{\prime} has a matrix $\left(\begin{array}{cc}2 p & b^{\prime \prime} \\ b^{\prime \prime} & 2 c^{\prime \prime}\end{array}\right)\left(b^{\prime \prime}, c^{\prime \prime}\right.$ $\in \boldsymbol{Q})$, since L^{\prime} contains a primitive vector u^{\prime} with $Q\left(u^{\prime}\right)=Q(u)=2 p$. $t_{q}\left(L^{\prime}\right) \geq t_{q}(L)$ implies $b^{\prime \prime}, c^{\prime \prime} \in \boldsymbol{Z}_{q}$ for any prime q. Hence $b^{\prime \prime}, c^{\prime \prime}$ are integers, and we may assume $0<b^{\prime \prime}<p$. As above we have $b^{\prime \prime}=b$. Hence L^{\prime} is isometric to L. Let rank L be larger than 2. By scaling
we may assume that the scale of L is in Z, and L is not negative definite. For brevity we denote $Z_{p} N$ by N_{p} for a quadratic lattice N over Z. For a prime p dividing $2 d L$ we can take an element v_{p} in L_{p} such that v_{p} is in the orthogonal complement of a characteristic submodule of L_{p}. Put $Q\left(v_{p}\right)=u_{p} p^{r_{p}}$, where Q is the quadratic form associated with L and u_{p} is a unit of Z_{p}, and $r_{p} \geq 0$. We take a prime q such that $(q, 2 d L)=1$ and $q \prod_{p l 2 d L} p^{r_{p}} \equiv Q\left(v_{l}\right) \bmod l^{t}$ for any prime l dividing $2 d L$ and a sufficiently large fixed integer t. Put $a=q \prod_{p / 2 a L} p^{r_{p}}$; then $Q\left(L_{p}\right)$ contains a for a prime $p \mid 2 d L$, since $a^{-1} Q\left(v_{p}\right)$ is a square of a unit of Z_{p}. If a prime p does not divide $2 d L$, then L_{p} is unimodular and $Q\left(L_{p}\right)=Z_{p}$ (92: 1b in [2]). Therefore from the non-negative-definiteness of L follows that $U=\boldsymbol{Q} L$ represents a by virtue of the Minkowski-Hasse theorem. Since $a^{-1} Q\left(v_{p}\right)$ is a square of unit of Z_{p} for p dividing $2 d L$, we may assume that $Q\left(v_{p}\right)=a$ and the orthogonal complement of v_{p} in L_{p} is a characteristic submodule of L_{p}. We can take an element v in U such that $Q(v)=a$, and v and v_{p} are sufficiently near if $p \mid 2 d L$. Put $S=$ $\left\{p ; v \notin L_{p}\right.$, and $\sigma_{p} v \in L_{p}$ for a rotation σ_{p} with $\left.\operatorname{ord}_{p} \theta_{p}\left(\sigma_{p}\right) \equiv 1 \bmod 2\right\}$, where θ_{p} stands for the spinor norm ; then $p \nmid 2 d L$ if $p \in S$. We take a prime $h \neq 2$ such that $h \equiv \prod_{p \in S} p \bmod (2 d L)^{t}$ and $\left(\frac{-a d L}{h}\right)=1$. Put $u=\sigma(v)$, where σ is a rotation of U whose spinor norm is $h \prod_{p \in S} p$ (101:8 in [2]). For a prime p with $p \nmid 2 h q d L$ there is a rotation σ_{p} such that $\sigma_{p} \sigma^{-1} u$ $=\sigma_{p} v \in L_{p}$ and $\operatorname{ord}_{p} \theta_{p}\left(\sigma_{p}\right) \equiv 0$ or $1 \bmod 2$ according to $p \notin S$ or $p \in S$ respectively, and then $\operatorname{ord}_{p} \theta_{p}\left(\sigma_{p} \sigma^{-1}\right) \equiv 0 \bmod 2$. Hence there is a rotation η_{p} such that $\theta_{p}\left(\eta_{p}\right)=1, \eta_{p}(u) \in L_{p}$ by virtue of $92: 5$ in [2] for $p \nmid 2 h q d L$. If $p=h$, then there is a rotation η_{p} such that $\eta_{p}(u) \in L_{p}$ since $Q(u)=a$ is a unit of \boldsymbol{Z}_{p} and L_{p} is unimodular. Since $\eta_{p}(u)$ splits L_{p} and its orthogonal complement N_{p} in L_{p} is a unimodular lattice with $\left(\frac{-d N_{p}}{h}\right)$ $=\left(\frac{-a d L}{h}\right)=1, N_{p}$ is isotropic. Hence we may assume that the spinor norm of η_{p} is 1 by virtue of $55: 2 \alpha$ in [2]. For $p \mid 2 d L$ put $\eta_{p}=\sigma^{-1}$; then $\eta_{p}(u)$ is sufficiently near to v_{p} and $\theta_{p}\left(\eta_{p}\right)=1$. By the strong approximation theorem regarding the set $\{p$; prime $\neq q\}$ as an indefinite set for U, there is a rotation η such that η and η_{p} are sufficiently near at both p dividing $2 d L$ and p satisfying $u \notin L_{p}$ for $p \nmid 2 q d L$, and $\eta L_{p}=$
L_{p} otherwise. Put $\eta(u)=w$; then $Q(w)=a$ and $w \in L_{p}$ if $p \neq q$. Since η and σ^{-1} are sufficiently near for $p \mid 2 d L$ and $w=\eta \sigma(v)$ is sufficiently near to v_{p} for $p \mid 2 d L$, hence the orthogonal complement of w in L_{p} is a characteristic submodule in L_{p}. Moreover for $p \nmid 2 q d L L_{p}$ is unimodular and $Q(w)$ is a unit of Z_{p}. This implies that the orthogonal complement of w is also a characteristic submodule in L_{p}. Put $M=\{x \in L ; x \perp w\}$. Then a submodule M of L satisfies the condition 1) and $d M=q^{r} m$, where q is a prime with $q \nmid 2 d L$ and a prime $p \mid 2 d L$ if $p \mid m$, and $r \geq 0$, and moreover M_{p} is a characteristic submodule of L_{p} for $p \neq q$. Let L^{\prime} be a quadratic lattice in question in 2). Since L^{\prime} represents M and $d L^{\prime}=$ $d L, U^{\prime}=\boldsymbol{Q} L^{\prime}$ is isometric to $U=\boldsymbol{Q} L$. Hence we may assume that L^{\prime} is in U and $L^{\prime} \supset M$. Since M_{p} is a characteristic submodule of L_{p} for $p \neq q, L_{p}^{\prime}=L_{p}$ for $p \neq q$. Take a basis $\left\{w_{i}\right\}$ of L_{q} such that $M_{q}={\underset{i=1}{n-1} Z_{q} w_{i}, ~}_{\text {in }}$ $(n=\operatorname{rank} L)$ and $\operatorname{ord}_{q} Q\left(w_{1}\right) \leq \cdots \leq \operatorname{ord}_{q} Q\left(w_{n_{-1}}\right)$; then a matrix corresponding to L_{q} is

$$
\left(\begin{array}{cccc}
a_{1} q^{r_{1}} & & & b_{1} \\
& \ddots & 0 & \vdots \\
0 & & a_{n-1} q^{r_{n-1}} & b_{n-1} \\
b_{1} & \ldots & b_{n-1} & b_{n}
\end{array}\right)
$$

where a_{i} is a unit of Z_{q} and $0 \leq r_{1} \leq \cdots \leq r_{n-1}$. Since the determinant of this matrix is a unit of Z_{q}, we see easily $r_{1}=\cdots=r_{n-2}=0$. By taking $w_{n}-\sum_{i=1}^{n-2} a_{i}^{-1} b_{i} w_{i}$ instead of w_{n}, we may assume that $b_{1}=\cdots=$ $b_{n-2}=0$ in the matrix. Then $N_{q}=Z_{q}\left[w_{n-1}, w_{n}\right]$ is unimodular and $-d N_{q}$ $=b_{n-1}^{2}-a_{n-1} b_{n} q^{r_{n-1}}$. If $r_{n-1} \geq 1$, then b_{n-1} is a unit, and $-d N_{q}$ is a square of a unit of Z_{q}. If $r_{n-1}=0$, then M_{q} is unimodular. Hence L_{q} has a basis z_{1}, \cdots, z_{n} such that $z_{i} \perp Z_{q}\left[z_{n-1}, z_{n}\right]$ for $i \leq n-2, Q\left(z_{n-1}\right)=$ $Q\left(z_{n}\right)=0, B\left(z_{n-1}, z_{n}\right)=1$ and $M_{q}=Z_{q}\left[z_{1}, \cdots, z_{n-2}, z_{n-1}+u_{q} q^{r} z_{n}\right]$, where u_{q} is a unit. Since L_{q}^{\prime} is unimodular and contains M_{q} primitively, we get $L_{q}^{\prime}=Z_{q}\left[z_{1}, \cdots, z_{n-2}\right] \perp K_{q}$, where K_{q} is unimodular and $z_{n-1}+u_{q} q^{\gamma} z_{n}$ is primitive in K_{q}. Put $K_{q}=Z_{q}\left[z_{n-1}+u_{q} q^{r} z_{n}, c z_{n-1}+d z_{n}\right]\left(c, d \in \boldsymbol{Q}_{q}\right)$; then $Q\left(c z_{n-1}+d z_{n}\right) \in \boldsymbol{Z}_{q}, B\left(z_{n-1}+u_{q} q^{r} z_{n}, c z_{n-1}+d z_{n}\right)$ is a unit, if $r>0$. If $r=0$, then $c, d \in \boldsymbol{Z}_{q}$. Hence we have $K_{q}=Z_{q}\left[z_{n-1}, z_{n}\right]$ or $Z_{q}\left[q^{-r} z_{n-1}, q^{r} z_{n}\right]$. From $w \perp M$ and $\left(z_{n-1}-u_{q} q^{r} z_{n}\right) \perp M_{q}$ follows that two symmetries $\tau_{w}, \tau_{z_{n-1}-u_{q} q z_{n}}$ are equal. Therefore we see $Z_{q}\left[q^{-r} z_{n-1}, q^{r} z_{n}\right]=\tau_{w} Z_{q}\left[z_{n-1}, z_{n}\right]$.

Thus we get $L^{\prime}=L$ or $\tau_{w} L$ since $L_{p}^{\prime}=\tau_{w} L_{p}^{\prime}=L_{p}$ for $p \neq q$, and $L_{q}^{\prime}=L_{q}$ or $\tau_{w} L_{q}$. This completes our proof.

For brevity we call M a characteristic submodule of L.
Remark. Our proof shows:
Let the scale of L be in Z and $\operatorname{rank} L \geq 3$; if a direct summand M of L satisfies

1) M_{p} is a characteristic submodule of L_{p} if $p \mid 2 d L$,
2) $d M=q^{r} m$, where q is a prime with $q \nmid 2 d L, r \geq 0$ and $p \mid 2 d L$ if a prime p divides m, then M is a characteristic submodule of L.

If we can take $r=0$ or 1 , then $\varphi(M)$ is a direct summand of L^{\prime} as a module in the assertion 2) if $\varphi(M)$ is a submodule in L^{\prime}. If rank L $\neq 3$ and L is indefinite, then we can easily show to take $r=1$. In definite cases analytic methods will be required.
§2. Let S, T be $n \times n$ rational symmetric matrices. We say that S, T are equivalent if and only if there is an element U in $G L(n, \boldsymbol{Z})$ such that $S[U]=T$. For a rational symmetric matrix $S=\left(s_{i j}\right)$ we define a quadratic lattice $L=Z\left[e_{1}, \cdots, e_{n}\right]$ by $B\left(e_{i}, e_{j}\right)=s_{i j} . \quad L$ is called the quadratic lattice corresponding to S. Then $d L=|S|$.

Lemma. Let S_{i} be positive definite rational matrices with $\left|S_{i}\right|=d$ and rank $=n$, and suppose that they are not equivalent. Put $\theta\left(Z, S_{i}\right)$ $=\sum e^{\pi i \operatorname{tr}\left(S_{i}[G] Z\right)}$, where G runs over $M_{n, n-1}(Z)$, and $Z^{(n-1)}={ }^{t} Z, \operatorname{Im} Z>0$; then $\theta\left(Z, S_{i}\right)$ are linearly independent.

Proof. Obviously we may assume that S_{i} is integral. Denote by L_{i} the quadratic lattice corresponding to S_{i}; then $d L_{i}=d$. Put $\theta\left(Z, S_{i}\right)$ $=\sum a_{i}(T) e^{\pi i \operatorname{tr}(T Z)}$. For $|T| \neq 0, a_{i}(T)$ is the number of isometries from the quadratic lattice corresponding to T to L_{i}. Suppose that $\theta\left(Z, S_{i}\right)$ are linearly dependent and $\sum c_{i} \theta\left(Z, S_{i}\right)=0$ with each $c_{i} \neq 0$. Let p_{1}, p_{2}, \cdots, p_{t} be all primes dividing $2 d$, and A_{1} be the set of L_{i} whose $t_{p_{1}}\left(L_{i}\right)$ is minimal in the set $\left\{t_{p_{1}}\left(L_{i}\right)\right\}$. Inductively we define the set A_{k+1} as follows; $A_{k_{+1}}$ is the set of L_{i} whose $t_{p_{k+1}}\left(L_{i}\right)$ is minimal in $\left\{t_{p_{k+1}}\left(L_{i}\right) ; L_{i} \in A_{k}\right\}$. For L_{i} in A_{t} we take a characteristic submodule M_{i} such that $\left(M_{i}\right)_{p}$ is a characteristic submodule of $\left(L_{i}\right)_{p}$ if $p \mid 2 d$, and $d M_{i}=q_{i}^{r i} m_{i}$, where q_{i} is a prime with $q_{i} \nmid 2 d$, and $p \mid 2 d$ if a prime p divides m_{i} (Proof of

Theorem in §1). Put $r=\min _{\substack{L_{i \in} A_{t} \\ M_{i}}} r_{i}$, and for some L_{i} in A_{t} and its characteristic submodule M_{i} we have $d M_{i}=q_{i}^{r} m_{i}$. If there is an isometry σ from M_{i} to L_{j}, then σ is extended to the isometry from $\boldsymbol{Q} L_{i}$ to $\boldsymbol{Q} L_{j}$, and $\sigma^{-1}\left(L_{j}\right)_{p_{1}} \supset\left(M_{i}\right)_{p_{1}}$. By definition of a characteristic submodule we get $\sigma^{-1}\left(L_{j}\right)_{p_{1}}=\left(L_{i}\right)_{p_{1}}$ and L_{j} is in A_{1}. Inductively we obtain $\sigma^{-1}\left(L_{j}\right)_{p}=$ $\left(L_{i}\right)_{p}$ for $p \mid 2 d$ and L_{j} is in A_{t}. Suppose that $\sigma\left(M_{i}\right)$ is not a direct summand of L_{j}; then there is a direct summand N of L_{j} such that $N \subseteq \sigma\left(M_{i}\right)$ and rank $N=\operatorname{rank} M_{i}$. From $\sigma^{-1}\left(L_{j}\right)_{p}=\left(L_{i}\right)_{p}$ for $p \mid 2 d$ follows $\left(M_{i}\right)_{p} \subset$ $\sigma^{-1}(N)_{p} \subset\left(L_{i}\right)_{p}$. Hence we have $\left(M_{i}\right)_{p}=\sigma^{-1}(N)_{p}$ for $p \mid 2 d$ since $\left(M_{i}\right)_{p}$ is a direct summand of $\left(L_{i}\right)_{p}$, and $d N=q_{i}^{r^{\prime}} m_{i}, r^{\prime} \leq r-2<r$. Hence N is a characteristic submodule of L_{j} if $n \geq 3$ (Remark in §1). This contradicts the minimality of r. In case of $n=2$, from the classical theory we can take $r_{i}=r=1$. Hence $r^{\prime}<0$ is a contradiction. Therefore $\sigma\left(M_{i}\right)$ is a direct summand of L_{j}. Hence L_{j} is isometric to L_{i} by virtue of Theorem in §1. This means that we have $a_{i}(T) \neq 0$ and $a_{j}(T)$ $=0$ if $j \neq i$ for the matrix corresponding to M_{i}. This contradicts $c_{i} \neq 0$.

Remark 1. Put $\theta_{p}\left(Z, S_{i}\right)=\sum e^{\pi i \operatorname{tr}\left(S_{i}[G] Z\right)}$, where G runs over primitive matrices in $M_{n, n-1}(Z)$. The proof of Lemma states that $\theta_{p}\left(Z, S_{i}\right)$ are linearly independent.

Remark 2. Let the class number of even integral positive definite quadratic forms over Z with det $=1$, rank $=8 k$ be $h(8 k)$. Then we have $h(8 k)$ linearly independent Siegel modular forms with weight $4 k$, degree $8 k-1$ defined by $\theta\left(Z, S_{i}\right)$ as above. The dimension of the space spanned by the corresponding Dirichlet series $\sum_{\{T\rangle>0} \frac{a(T)}{\varepsilon(T)|T|^{s}}$, where $a(T)=\sharp\{X \in$ $\left.M_{8 k, 8 k-1}(Z) ; S_{i}[X]=T\right\}$ and T runs over the representatives of equivalence classes of positive definite integral matrices, and $\varepsilon(T)=$ the order of the group of units of T, is equal to the dimension of the space spanned by the Epstein zeta functions of S_{i} by Theorem 4 in p. 298 in [1] and it ammounts to $[k / 3]+1$, since the space of elliptic modular forms with weight $4 k$ is spanned by theta functions, and its dimension is $[k / 3]+1$. Numerically we know $h(8)=1, h(16)=2, h(24)=24, h(32)>8 \cdot 10^{8}$.

Let $S=\left(s_{i j}\right)$ be a positive definite real matrix with rank $=n . \quad L$ denotes a Z-lattice $Z\left[e_{1}, \cdots, e_{n}\right]$ which has an inner product defined by $B\left(e_{i}, e_{j}\right)=s_{i j}$. For a submodule $M=Z\left[f_{1}, \cdots, f_{m}\right]$ of L we denote $\operatorname{det}\left(B\left(f_{i}, f_{j}\right)\right)$ by $d M$. Denote by z_{1}, \cdots, z_{n-1} a system of $n-1$ complex
variables and by s_{1}, \cdots, s_{n} a system of n complex variables, the two being related by the equations

$$
z_{k}=s_{k+1}-s_{k}+\frac{1}{2}, \quad k=1,2, \cdots, n-1 .
$$

Now the Selberg's zeta function is defined by

$$
\zeta^{*}\left(S ; s_{1}, s_{2}, \cdots, s_{n}\right)=\sum\left(d L_{n-1}\right)^{-z_{n-1}} \cdot\left(d L_{n-2}\right)^{-z_{n-2}} \cdots\left(d L_{1}\right)^{-z_{1}}
$$

where L_{k} runs over direct summands of $L_{k_{+1}}$ with $\operatorname{rank} L_{k}=k$ and L_{n} $=L$. This is absolutely convergent for $\operatorname{Re} z_{k}>1(1 \leq k<n)$ and satisfies certain functional equations (Theorem 1. p. 263 in [1]). Our aim in this section is to prove

Theorem. Let S_{i} be positive definite rational matrices with rank $=n$, $\left|S_{i}\right|=d . \quad$ If they are not equivalent with each other, then $\zeta^{*}\left(S_{i} ; s_{1}, \cdots, s_{n}\right)$ are linearly independent as functions of s_{1}, \cdots, s_{n}. Especially the Selberg's zeta function is a complete analytic class invariant.

Proof. Theorem is equivalent to the linear independence of $\theta_{p}\left(Z, S_{i}\right)$ by the Mellin transform in case of $n=2$ and it is true by virtue of Remark 1. Suppose that Theorem is true for $n-1$ but false for n; then there are positive definite rational matrices S_{i} with rank $=n,\left|S_{i}\right|$ $=d^{\prime}$ such that

$$
\sum a_{i} \zeta^{*}\left(S_{i} ; s_{1}, \cdots, s_{n}\right)=0,
$$

where S_{i} are not equivalent with each other. Put

$$
u(Y)=u_{1,2, \cdots, n-2}(Y)=|Y|^{k_{k=1}^{\Sigma_{1}^{2}} k z_{k} /(n-1)} \sum_{U} \prod_{k=1}^{n-2}\left|Y[U]_{k}\right|^{-z_{k}}
$$

where Y is positive definite and of rank $=n-1, U$ runs over the factor set $G L(n-1, Z) /\left\{\left(\begin{array}{cc}* & * \\ \ddots & . \\ 0 & *\end{array}\right) \in G L(n-1, Z)\right\}, Y=\left(\begin{array}{ll}\stackrel{\leftarrow}{Y}_{k}^{k} & * \\ * & *\end{array}\right)$ and $z_{k}=s_{k+1}$ $-s_{k}+\frac{1}{2}$. This is a Größen-character in the sense of $\S 10$ in [1]. We define a function $R_{i}(s)$ by

$$
R_{i}(s)=\int_{F} \theta_{p}\left(i Y, S_{i}\right)|Y|^{s} u\left(Y^{-1}\right) d v
$$

where F is the Minkowski's domain of reduced matrices in the space
of all positive definite matrices with rank $=n-1$ and $d v=|Y|^{-n / 2} \prod_{s \leq t} d y_{s t}$. Putting

$$
\begin{gathered}
\theta_{p}\left(i Y, S_{i}\right)=\sum_{T>0} a_{i}(T) e^{-2 \pi \operatorname{tr}(T Y)}, \\
R_{i}(s)=\int_{F} \sum_{T>0} a_{i}(T) e^{-2 \pi \operatorname{tr}(T Y)}|Y|^{s} u\left(Y^{-1}\right) d v \\
=\sum \frac{a_{i}(T)}{\varepsilon(T)} \int_{Y(n-1)>0} e^{-2 \pi \operatorname{tr}(T Y)}|Y|^{s} u\left(Y^{-1}\right) d v,
\end{gathered}
$$

where T runs over representatives of equivalence classes of positive definite rational matrices of rank $=n-1$,

$$
=\pi^{(n-1)(n-2) / 4}(2 \pi)^{(1-n) s} \prod_{k=1}^{n-1} \Gamma\left(s-c_{k}\right) \sum \frac{a_{i}(T)}{\varepsilon(T)}|T|^{-s} u(T),
$$

where c_{k} is a certain complex number (p. 94 in [1]), thus we get

$$
R_{i}(s)=\pi^{(n-1)(n-2) / 4}(2 \pi)^{(1-n) s} \prod_{k=1}^{n-1} \Gamma\left(s-c_{k}\right) \zeta^{*}\left(S_{i} ; s_{1}^{\prime}, \cdots, s_{n}^{\prime}\right)
$$

where s_{i}^{\prime} is defined by
$z_{k}=s_{k+1}^{\prime}-s_{k}^{\prime}+\frac{1}{2}(k<n-1), \quad-s+\sum_{k=1}^{n-2} k z_{k} /(n-1)=s_{n}^{\prime}-s_{n-1}^{\prime}+\frac{1}{2}$.
Hence our assumption implies $\sum a_{i} R_{i}(s)=0$. On the other hand, from Remark 1 follows that $\sum a_{i} \theta_{p}\left(i Y, S_{i}\right)=\sum a(T) e^{-2 \pi \operatorname{tr}(T Y)}$ is not zero. This yields that there is a T_{0} such that $a\left(T_{0}\right) \neq 0$. Regarding $\sum a_{i} R_{i}(s)$ as Dirichlet series with respect to s, we obtain

$$
\sum \frac{a(T)}{\varepsilon(T)} u(T)=0
$$

where T runs over representatives of classes with $|T|=\left|T_{0}\right|$. This contradicts our assumption since $|T|^{{ }^{n} \bar{E}_{=1}^{2} k z k /(n-1)} u(T)$ is by definition the Selberg's zeta function of positive definite matrix $T^{(n-1)}$.

Corollary. Let $f(Z)=\sum a(T) e^{2 \pi i \operatorname{tr}(T Z)}$ be a Siegel modular form of degree n. If the corresponding Dirichlet series

$$
\sum_{\{T\}>0} \frac{a(T) u(T)}{\varepsilon(T)|T|^{s}}
$$

with a Größen-character $u(T)$ as $|T|^{{ }^{n} \sum^{n}{ }^{1}{ }^{1} k z_{j} / n} \zeta^{*}\left(T ; s_{1}, s_{2}, \cdots, s_{n}\right)$ is zero as a function of s, s, \cdots, s_{n}, then $a(T)=0$ for $T>0$.

References

[1] H. Maaß, Siegel's modular forms and Dirichlet series, Lecture Notes in Math. 216, Springer-Verlag, 1971.
[2] O. T. O’Meara, Introduction to quadratic forms, Springer-Verlag, 1963.

Nagoya University

[^0]: Received November 18, 1975.

[^1]: *) We mean a finitely generated module by a module for brevity in this paper.

